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Abstract
This study aims to provide precise predictions for the compression of reinforced polymers during the sheetMoldingCompound
(SMC) process, ensuring the attainment of a predefined structure while preventing material overflow during the process. The
primary challenge revolves around identifying the optimal initial shape to prevent material rebound during the process. To
confront this issue, a numerical model is utilized, faithfully simulating the SMC process and forming the foundation for our
investigations. Furthermore, to optimize the pre-fill stage, a surrogate model is proposed to enhance modeling efficiency, and
then an inverse analysis method is applied. This approach of minimizing material rebound during the SMC process results in
a reliable metamodel to predict an initial mass shape accurately and at a low computational cost, thus ensuring the squeezed
material fits the mold shape.

Keywords Surrogate model · SMC process · Feedforward neural networks ·Model Order Reduction(MOR) · Inverse analysis

Introduction

Over the last two decades, the benefits of utilizing poly-
mer and composite structures have become increasingly
evident. These structures offer numerous advantages, includ-
ing lightweight strength, corrosion resistance, and design
flexibility [1]. These features reduce costs and increase
value in industries where performance and durability matter.
Recognizing the advantages of polymer and composite struc-

All authors contributed equally to this work.

B Fariba Ebrahimian
fariba.ebrahimian@ensam.eu

Sebastian Rodriguez
sebastian.rodriguez_iturra@ensam.eu

Daniele Di Lorenzo
daniele.di_lorenzo@ensam.eu

Francisco Chinesta
francisco.chinesta@ensam.eu

1 PIMM Lab, ENSAM Institute of Technology 151 Boulevard
de l’Hôpital, Paris 75013, France

2 ESI Group, 3bis Rue Saarinen, 94528 Rungis CEDEX, France

tures, various industries have adopted these materials to
revolutionize their manufacturing processes and product
designs. Among these, the automotive sector stands out
as a prime example of innovation in material application.
Between the various methods, the sheet molding compound
(SMC) process has emerged as the preferred choice for
manufacturing composite structures in the automotive indus-
try, primarily due to its exceptional high-volume production
capabilities.

In the SMC, polyester resin and glass or carbon fibers are
combined and heated to produce a hot substance that is then
compressed in a mold [2]. The process is illustrated in Fig. 1.

However, the process has its challenges because critical
process parameters, such as curing time, mold closing speed,
molding pressure, and precharge specifications (including
geometry, placement, and size), significantly influence the
final product’s quality in the compression molding process
[4]. The mechanical properties of the final structure are con-
siderably influenced by the incorporation of glass or carbon
fiberswithin the resin [5]. This influence stems from the alter-
ation of the SMCmaterial’s concentration and flow behavior
within the mold due to the presence of fibers. Consequently,
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Fig. 1 Squeeze flow phenomenon observed in a confined narrow gap [3]

numerous researchers have focused on understanding the
SMC process of reinforced polymers [6–8].

Simulating and optimizing the manufacturing process
is crucial to produce high-quality polymer and composite
structures, especially reinforced polymers. Since the SMC
cycle test costs are not cheap, computer simulations are
used as a reference [9]. However, in contemporary scien-
tific research, the consensus is that numerical modeling is
a resource-intensive approach, mainly when dealing with
complex phenomena. Therefore, surrogate models emerge
as an attractive solution to speed up optimization processes
[10, 11]. Surrogate models can be built employing different
techniques, among the most popular one finds Genetic Algo-
rithms(GA) [12], Proper Generalized Decomposition(PGD)
[13, 14], sparse-PGD [15], and Neural Networks [16].

Neural networks possess significant advantages in the
domain of data analysis and optimization. Their notable
adaptability allows them to effectively tackle diverse tasks,
including pattern recognition, image classification, and nat-
ural language processing. This versatility positions neural
networks as a powerful tool for complex data analysis [17].
Additionally, the capability of neural networks to compre-
hend intricate non-linear relationshipsmake themquite adept
at handling complex data patterns and achieving high predic-
tive accuracy across various real-world applications [18–20].

In this paper, a surrogate for the SMC process is proposed
based on the use of the POD model reduction method and
the use of neural networks. The objective is to optimize the
SMC parameters using a rapid simulation model in a reverse
engineering context [21]. Therefore, the initial shape of the
mass is optimized using this surrogate so that at the end of
the process the mass coincides with the edge of the mold,
thus minimizing the rebound of the resin in the mold. In this
regard, established optimization methodologies such as gra-
dient descent [22], Newton’s method, Levenberg-Marquardt
[23, 24] algorithm could be employed.

The paper is organized into several sections. Section 2
introduces the mathematical formulation and assumptions
used for simulating compression and material flow. In
Section 3, the numerical implementation and methodology
introduced in the previous section are presented in detail.
Additionally, Section 4 provides an explanation of the surro-
gate model construction, specifically the Feedforward neural
network that is used to optimize the SMC process. Section 5
presents a numerical example to demonstrate the applica-
tion of the surrogate for compression molding behavior and
optimization of precharge. Finally, Section 6 provides con-
clusions and perspectives.

Modeling of SMC process

In this section, we outline the mathematical modeling
employed that will be used to numerically simulate a Sheet
Molding Compound (SMC) process necessary to build a sur-
rogate model. Our focus lies in capturing the evolution of the
flow-front for each initial shape during the process. Given
the complexity of the process and the need to prioritize opti-
mizing precharge dimensions, it is practical to simplify the
SMC process at this stage. Consequently, we have chosen
to neglect the effect of fiber orientation in the material flow
kinematics. In order to describe this process, it’s essential to
identify and explain the key relationships and equations that
govern the compression process. These will be detailed in
the following section.

Squeeze flow approximation

Inmodeling the compressionprocess,we assume theybehave
as a Newtonian fluid. Also, the motion of fibers does not
influence the main flow field of resin. The initial equa-
tion for modeling molding processes such as Resin Transfer
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Molding (RTM) [25] or Sheet Molding Compound (SMC)
[7] is derived from the Navier-Stokes equations. To sim-
plify further the model , we make use of the narrow gaps
hypothesis ( 2h

L � 1), as illustrated in Fig. 2. Additionally,
by assuming the validity of the narrow gaps hypothesis, the
lubrication theory becomes a valuable tool for significantly
reducing computational complexity in the modeling process
[3].

So, the governing equation for flow becomes:

∇P = η�v , (1)

where P is the pressure, v = (u, v, w) is the velocity vec-
tor and η is the dynamic viscosity while ∇ and � represent
respectively the gradient and Laplacian operator. In what fol-
lows, the velocity gradient in the thickness direction is much
larger than in the x and y (in-plain gradients) direction and
the component of velocity in z direction (w) is neglectedwith
respect to the in-plain component:

⎧
⎪⎨

⎪⎩

∂u
∂z � ∂u

∂x , ∂u
∂z � ∂u

∂ y
∂v
∂z � ∂v

∂x , ∂v
∂z � ∂v

∂ y

w ≈ 0

. (2)

Therefore, in the Eq. 1, P = P(x, y). By performing the
integration with the z-variable and enforcing no-slip bound-
ary conditions at both gap walls, we obtain:

v(x, y, z) = 1

2η
∇P(z2 − h2) , (3)

representing the velocity of the flow. The velocity averaged
over the gap thickness is then:

ṽ(x, y) = 1

2h

∫ +h

−h
v(x, y) dz = −h2

3η
∇P , (4)

Fig. 2 Squeeze flow phenomenon observed in a confined narrow gap

while the flow-rate (q(x, y)) is given by:

q(x, y) = 2hṽ(x, y). (5)

Finally, the mass conservation is given by:

∇ · q(x, y) = U , (6)

where the compression rate U is assumed to be constant.
Now, by replacing expression Eq. 5 into Eq. 6, and consid-
ering Ũ = U

2h , we have:

− h2

3η
�P = Ũ . (7)

It is important to note that as the fluid is subjected to
compression, its thickness reduces progressively with time
and can be described by the following relation:

h(t) = h0 − U × t

2
, (8)

where h0 is the initial thickness. Ultimately, Eq. 7 can be
reformulated in weak form, as:

h2

3η

∫

� f (t)
∇ P̂ · ∇P d� =

∫

� f (t)
P̂Ũ d� . (9)

where the fluid domain at time t is defined by � f (t) and P̂
is a test function. By discretizing the weak formulation, we
can calculate the pressure, and then according to Eq. 4, we
have the average velocity for the fluid domain.

Flow front tracking

To consider the temporal evolution of the fluid boundary
(� f (t)) in Eq. 9, two main approaches can be employed,
namely, the fixed or modified mesh techniques [26]. Since
the modified mesh involves re-meshing at each time step and
it can be highly costly [27], to lower the computational bur-
den, we adopted the fixed mesh approach [25, 28, 29].

This approach consists of using an auxiliary function
I (x, t), defined across the entire domain (�), to account for
the continuous updating of the boundary. In particular, within
the fluid domain � f (t), I is equal to one, while in the empty
domain (�e(t) = � − � f (t)), it is zero:

I (x, t) =
{
1 if x ∈ � f (t)

0 if x ∈ �e(t)
. (10)
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At time equals 0, I variable is determined by the initial
shape of precharge which is defined in advance, this means:

I (x, t = 0) = Iini t . (11)

The time evolution of the fluid domain is governed by a
scalar and linear advection equation that can be expressed as
follows:

∂ I (x, t)
∂t

+ v(x, t) · ∇ I (x, t) = 0 . (12)

To solve the transport (12), we used the volume of fluid
technique along with the Total Variation Diminishing (TVD)
method [30].

In order to use the fixed mesh approach we need to extend
the Eq. 9 to the whole domain. Thus considering:

• Null pression in the the empty region of the mold:

P = 0 in �e(t) . (13)

• Flow model in the fluid region:

∇ ·
(

−h2

3η
∇P

)

= Ũ in � f (t) . (14)

Using these assumptions, combining the Eqs. 13 and 14,
and introducing the I function, the weak formulation defined
in the whole domain reads:

∫

�

(I∇ P̂(
h2

3η
∇P)+ (1− I )P̂ P) d� =

∫

�

I P̂Ũ d� . (15)

A schematic illustration of themodel is presented in Fig. 3.
To achieve time evolution of SMC process, Eqs. 15 and 12
are solved.

Numerical implementation

In order to build aworkflow that can be easily adapted to sim-
ulate a diverse spectrumof shapes,we parameterize the shape
of the initially precharge with the help of the Non-Uniform
RationalB-Splines (NURBS)method [31]. In particular, a set
of m control points is essential to create the curve shape for
the initial fluid (precharge). The first and mth control points
are intentionally set to be identical, ensuring the creation of a
closed curve. Additionally, we strategically position the sec-
ond and the (m − 1)th along the same line to eliminate sharp

Fig. 3 Mass variations across compression moulding

corners, promoting smoothness and continuity. Therefore,
(m − 2) independent points are considered to parameter-
ize the shape. Figure 4 shows a shape generated with this
methodology.

After fixing the independent points and generating the
initial shape configuration, the SMC process has been simu-
lated, employing Finite Element Method (FEM) and Control
Volume (CV) techniques in MATLAB. Figure 5 illustrates
the approach used to create the numerical simulation model
for Sheet Molding Compound (SMC) process.

We consider the elements of the mesh that are inside this
curve as full elements (I (x, 0) = Iini t = 1, x ∈ � f ). Sub-

Fig. 4 Illustration of the shape generated by NURBS
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Fig. 5 Numerical simulation of compression molding process

sequently, Eq. 15 is solved to determine the pressure and
velocity profile along the fluid boundary. Based on the flow
pattern evolution, the fluid domain boundary is updated based
on Eq. 12. Figure 6 shows the snapshot of the flow front cap-
turing the boundary evolution.

Fig. 6 Recovery of the boundary at each time-step

At each time step, the boundary is determined by con-
sidering the center of mass of each element falling within
the boundary (where the value I ranges between 0 and 1).
Then, by interpolating between these points and sampling
with a constant number of points (n), following a uniform
discretization of the angular polar coordinate, ensuring that
the number of points used to describe the boundary remains
fixed for each time step. This process ensures consistency in
the number of points on the boundary, providing stability in
the representation of the flow front tracking.

The boundaries describing all the points are ultimately
saved in the format of (Xt ,Yt ):

Xt =
⎛

⎜
⎝

x1
...

xn

⎞

⎟
⎠

t

,Yt =
⎛

⎜
⎝

y1
...

yn

⎞

⎟
⎠

t

, (16)

where t = {1, ..., Nt } define the time-step of the simula-
tion, and n is the number of chosen points that discretize the
boundary curve. Or in a more compact expression for each
time step:

Rt =
[
Xt

Yt

]

. (17)
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Fig. 7 Feedforward neural
network algorithm

To study different mold shapes, we process (by compress-
ing) various primitive shapes. To create initial shapes, we
used a Latin Hypercube Sampling method to produce dif-
ferent control points for the NURBS curves. This sampling
method is particularly advantageous because it ensures that
the obtained samples accurately reflect the underlying dis-
tribution of the data compared to other random sampling
methods, and it also reduces the sample size.

Finally, K sampled initial shapes are simulated, and the
evolution of the boundary for each case and time step is stored
in a matrix.

D =
⎡

⎢
⎣ [R1

1, ...R
1
Nt

]
︸ ︷︷ ︸

1st simulation

, ... [RK
1 , ...RK

Nt
]

︸ ︷︷ ︸

Kth simulation

⎤

⎥
⎦ . (18)

In the following section, we will utilize the stored bound-
ary to construct the surrogate model.

Surrogatemodel

Our main goal is to figure out the best initial shape for each
unique mold shape. Therefore, we need to apply an inverse
analysis to the SMC model. In order to intelligently process,
analyze data, and apply reverse analysis, a data-driven model
is proposed. One data-driven model that can significantly
reduce computational costs consists of Neural Networks
(NN) along with model-order reduction techniques.Neural
Networks are capable of learning non-linear relationships
and identifying complex patterns in data, which is crucial for
solving the SMC problem due to the intricate geometry to
which the deformed mass can evolve.

In order to create a Neural Network (NN) model, data
of different initial shapes is required. The previous sec-
tion introduces a numerical model that defines the changing
boundaries of the shape during the compression process.

A Feedforward Neural Network (FFNN) is a machine
learning tool that links input data to output data. In this case,
each vector of Control Points (CP) (that represents the initial
shape by (m − 2) independent points) and time connected to

Fig. 8 Updated feedforward
neural network algorithm by
SVD
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Fig. 9 Reverse analysis strategy
to identify the precharge state

a specific boundary in that time (Rt ) as the output (Fig. 7).
Through thismethod,we can develop a neural networkmodel
that has the capability to forecast the compressed mass at any
given time. Utilizing this approach enables us to have various
solutions for every initial mass geometry. Therefore, we can
select the appropriate time for compressing the mass based
on the mold geometry.

This study trained the FFNN from K samples and their
associated flow front evolution stored in matrix D. To estab-
lish an analytical correlation between input and output, i
hidden layers consisting of j neurons are implied, and the
activation function implemented in the hidden layer could
depend on the complex patterns and relationships within the
data.

Fig. 10 Results at various time steps of a mass compression using the
FEM solver

However, training a neural network model can be chal-
lenging due to its complex nature and high computational
demands. To mitigate these challenges and prevent over
fitting, and computing time savings, we can reduce the com-
plexity of neural network models by decreasing the output
size. This approach conserves computational resources and
leads to more efficient training of FFNN models. Therefore,
the Model Order Reduction technique will be applied to the
output dataset (D), after which we can train the model using
the reduced data.

Fig. 11 In black, the initial shape used to compare the performance of
the trained NN with the FEM solver. The mass has been compressed
for 10 seconds, and the results from the two approaches are compared.
In particular, in blue, the approximation of the neural network, and in
red, the solution of the FEM solver
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Fig. 12 Mold shape chosen to verify the inverse procedure

One of themethods to reduce the dimension is the Singular
Value Decomposition (SVD) [32, 33], which is applied to the
matrix D obtaining:

D = U�V̂ , D ∈ R
2n×(K ·Nt ) . (19)

Where U ∈ R
2n×2n and V ∈ R

(K ·Nt )×(K ·Nt ) are unitary
and such that � ∈ R

2n×(K ·Nt ) is a matrix with real, non-
negative entries on the diagonal and zeros out the diagonal.
By using the SVD and pre-multiplying (19) by Û , we have :

Û D = �V̂ = λ . (20)

Where λmatrix is essentially a projection of the D matrix
onto a lower dimensional to simplify computations and
improve analysis. Therefore, the FFNN is trained by a new

Fig. 13 Results of the inverse procedure: the shape of the mass identi-
fied in as the initial shape to use for the chosen mold (dashed curve) is
depicted in violet. In the inverse analysis, the output compression time
for this shape is 9.9 seconds

Fig. 14 Comparison of the compressed (9.9 seconds) initial shape iden-
tified by the inverse procedure with the shape of the mold used as input
for the inverse procedure

dataset λ that consists of the z first decomposition models.
Figure 8 shows a schematic representation of the neural net-
work architecture used in this paper.

Inverse analysis for precharge reconstruction

Given our objective of determining the optimal initial shape
based on themold shape, wemust employ an inverse analysis
approach to the neural network model developed to generate
boundary profiles in response to various initial shapes. In
particular, to minimize the objective function:

f = ‖λmold − λNN‖22 . (21)

where λmold is the arbitrary mold shape, λNN is generate for
a random initial shape parameters and ‖ · ‖2 represents the
classic L2 norm. We adopted gradient descent techniques,
thus the initial shape parameters Xk will be updated in each
iterate accordingly:

Xk+1 = Xk − α∇ f , (22)

with α being the learning rate. Figure 9 shows the inverse
analyses applied to reach the initial shape for particular mold
shapes.

Case study analysis

In this section, we analyze the methodology outlined in the
previous section through a numerical case study. Following
the rationale presented in Section 4, we construct a surrogate
model by simulating 200 molding processes using a FEM
solver. In these simulations, the key parameter variations
involve the shape of the initial mass, which is represented by
nine independent control points of a NURBS. For all shapes
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Fig. 15 (a) Shape of the mold (dash line) used as input for the inverse analysis, initial shape identify by the inverse analysis (violet line) ; (b)
Comparison of the compressed (7.2 seconds) initial shape identified by the inverse procedure with the shape of the mold

considered, a body thickness of 20mmand a dynamic viscos-
ity of 0.1 Pa/s are imposed. The molding process assumes a
compression rate of 1mm/s and a compression timeof 10 sec-
onds. Figure 10 illustrates one of the simulations, showing
the boundary shape propagation at different time step dur-
ing the compression. Throughout all numerical simulations,
mass conservation is ensured bymonitoring the relative error
given by :

Error = 100 × |Mend − Mint |
Mint

, (23)

where Mint denotes the mass of the fluid before the com-
pression process starts, and Mend represents the compressed
mass. The error in mass conservation observed at the end of
all simulations performed was no greater than 2.5% , which
is acceptable, considering the size of the mesh elements used
for the simulation.

The simulated shapes are divided into training and test sets
with an 80-20% split ratio. The shapes in the training set are
then used to construct theDmatrix Eq. 18 and then the SVD
method is applied to identify the first 7 modes that best repre-
sent these shapes. These modes, combined with time, serve
as inputs for a NN designed to simulate the SMC process
(Section 4). In this configuration, the NN consists of a sin-
gle hidden layer containing 50 neurons, with the hyperbolic
tangent (tanh) activation function employed. Once the NN is
trained, it is tested over the test set. Figure 11 shows the output
of the NN of one of the shapes from the test set compressed
for 10 seconds wrt to the numerical reference (FEM). The
relative error (RE) between the two results (FEM and NN) is
calculated as follows:

RE = 100 × ‖xi − x′
i‖2

‖xi‖2 , (24)

where, x = (x, y) and x′ = (x ′, y′) represent the coordinates
of the boundary points of the reference and the NN approxi-
mation, respectively. The relative error (24) for all the shapes
in the test set was no greater than 1.3%.

After training the Neural Network (NN), we can utilize
inverse analysis to deduce the geometry of the initial shape
based on the mold’s geometry (Section 4.1). Suppose we
have a new shape of the mold (Fig. 12) that is outside the
train-test set.

Applying the inverse procedureweobtain as initial ofmass
the one showed in Fig. 13. According to the inversion algo-
rithm, the identified shape will reach the mold’s boundary
within 9.9 seconds.

To validate the outcome of inverse procedure, the identi-
fied initial shape is compressed for 10 seconds and compared
with the mold in Fig. 14. The relative error between the com-
pressed mass and mold shapes is 0.06 %.

To demonstrate the effectiveness of the presented method,
different shapes of the mold have been considered. Figure 15
displays the results of the inverse procedure in the case of a
mold with star shape. For this case the relative error between
the compressed mass and mold shapes is 0.3 %.

Conclusions and perspectives

The primary focus of our investigation was to pinpoint the
optimal initial shape, a critical factor in preventing material
return during compression and ensuring the successful attain-
ment of the intendedmolded shape. To achieve this objective,
we employed a Feedforward neural network trained using
data from the high fidelity model. In particular, the inverse
analysiswas conductedwithin the neural network framework
using gradient descent (GD) techniques. The results suggest
the ability to predict the optimal shape corresponding to a
specific compression duration. As a result, this research can
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create a background for investigating the behavior of fibers in
order to improve the physical properties of the final product
in the SMC process.
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