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Abstract
This paper focuses on calibrating and modeling of distortional hardening behaviours in twinning induced plasticity steels. 
True stress-strain curves for uniaxial tension, plane strain tension, and pure shear specimens are inversely identified from 
corresponding load-displacement curves. The study reveals that accurately predicting the hardening behaviours of TWIP980 
steel under plane strain tension and pure shear stress states is challenging with an isotropic hardening model, and a nega-
tive hydrostatic effect for TWIP980 is observed through shear testing. A novel distortional hardening model is proposed to 
simultaneously accommodate the three stress states on the contours of plastic work. Coefficients of the distortional harden-
ing model are calibrated at discrete levels of plastic work and then interpolated to describe the distortion of the initial yield 
surface. The model is then expanded to consider the true stress-strain curves under uniaxial tension along 0, 45 and 90-degree 
directions, as well as under the plane strain tension along the 0-degree direction simultaneously. This expansion explicitly 
incorporates the three true stress-strain curves under uniaxial tension, with the curve of plane strain tension captured by an 
evolutionary exponent related to plastic work. The developed distortional hardening models demonstrate reasonable reproduc-
tion of load-displacement curves for TWIP980 steel under uniaxial tension, plane strain tension, and pure shear stress states.
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Introduction

Finite element analysis (FEA) has been widely employed in 
the metal forming industry to optimize the manufacturing 
process, thereby reducing costs and time during trial stages. 
The accuracy of simulation results heavily relies on constitu-
tive models, including yield functions, work hardening laws, 
and flow rules. Phenomenological yield functions with the 
Cauchy stress components are commonly used to describe 
yielding in engineering. Once the yield function is cali-
brated, a hardening law is required to govern the evolution 
of the yield surface during plastic deformation, considering 

factors such as plastic strain, strain rate, and temperature. 
For example, the isotropic hardening law assumes uniform 
expansion of the initial yield surface, irrespective of the 
loading directions and stress states. However, this assump-
tion is too simplistic for accurately describing complex hard-
ening behaviours even under proportional loading cases.

 Asymmetric hardening [1, 2], anisotropic hardening [3, 
4], and differential hardening [5–8] have been proposed to 
improve the description of hardening behaviours. Accord-
ing to the above studies, anisotropic hardening represents 
the in-plane directionality of true stress-strain curves under 
stress states with the same stress triaxiality. On the other 
hand, differential hardening describes the stress triaxiality 
dependence of true stress-strain curves under stress states 
along the same loading direction. Thus, asymmetric hard-
ening could be regarded as a special case of the so-called 
differential hardening.

The initial yield surface will undergo distortion during 
plastic deformation under proportional loading cases if the 
above hardening behaviours are observed, arising from the 
variation in loading directions and stress states. For example, 
due to the loading direction dependence of true stress-strain 
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curves under uniaxial tension (UT), the initial yield sur-
face expands non-uniformly [9, 10]. Experimental results 
have shown that the subsequent yield surfaces distorted for 
brass [11], steels [5, 6], aluminium alloys [12, 13], magne-
sium alloys [14], and titanium sheets [15] in proportional 
loadings.

The anisotropy parameters, stress ratios and the r-values, 
are generally not fixed during plastic deformation. The evo-
lution of either or both stress ratios and the r-values has 
been considered in previous studies [16, 17]. Anisotropic 
coefficients of yield functions were then calibrated at the 
discrete levels of equivalent plastic strain or plastic work 
to describe the distortion of the yield surface. On the other 
hand, Stoughton and Yoon [9] analytically incorporated ani-
sotropic hardening responses for AA5182-O along 0, 45 and 
90-degree directions from the rolling direction (RD) and the 
equibiaxial tension (ET) into the normalized Hill48 crite-
rion [18] using the non-associated flow rule. Lee et al. [19] 
proposed the coupled quadratic and non-quadratic (CQN) 
model by coupling the non-quadratic term, the Hosford yield 
function, with the S-Y2009 model [9]. Recently, Hu et al. 
[20] developed another coupled yield function using the 
Poly4 yield function [21] and the Hosford yield function, 
allowing for analytical descriptions of the hardening curves 
and r-values.

Aside from the anisotropic hardening mentioned the 
above, differential hardening is another significant factor that 
contributes to yield surface distortion. Hill and Hutchinson 
[5], as well as Hill et al. [6], observed progressive distor-
tion of successive contours of plastic work in the biaxial 
stress area under stress states with arbitrary fixed principal 
stress ratios, indicating the influence of differential harden-
ing. Kuwabara et al. [7] measured differential hardening in 
cold-rolled steel sheet using cruciform specimens and found 
that the Hill48 yield criterion overestimated the measured 
locus, particularly in the vicinity of ET. Differential hard-
ening between UT and ET has also been reported by Ahn 
et al. [22], Stoughton and Yoon [9], and Ahn and Seo [23]. 
Notably, stress-strain curves for ET are often observed to be 
higher than those obtained from UT. As a special case of dif-
ferential hardening, asymmetric hardening between propor-
tional tensile and compressive tests have been documented 
in various works [1, 24].

While considerable efforts have been devoted to mod-
eling initial yielding and hardening behaviors, many existing 
models are primarily characterized based on stress states 
like UT, ET, or uniaxial compression (UC). However, it has 
been recognized by several researchers that the yield locus 
near plane strain tension (PST) and pure shear (PS) states 
significantly influences the simulation results of sheet met-
als [25, 26]. Lee et al. [19] and Hu et al. [20] employed a 
coupling method with a non-quadratic term to flatten the 
locus to approximately capture the biaxial stress states. 

Others, such as Kuwabara et al. [12] and Pilthammar et al. 
[27], introduced yield functions with variable exponents, 
enhancing mathematical flexibility. Additionally, various 
interpolation-based yield criteria have been developed by 
Vegter and van den Boogaard [28], Peng et al. [29], and 
Hao and Dong [30]. Those yield criteria can account for 
the initial yield stresses at plane stress states with different 
stress triaxialities. However, modeling of the distinct work 
hardening behaviours at various stress states has rarely been 
reported. Recently, a stress invariant-based yield function 
considering stress states of UT, PST, and PS under isotropic 
hardening was proposed [31, 32]. Pham et al. [15] observed 
the distinct hardening curves between UT, PST, UC, and PS 
for a pure titanium grade-1 sheet in different directions. The 
UT, PST, and UC data were utilized to calibrate the yield 
functions at different levels of plastic work.

In the present study, a distortional hardening model is 
firstly developed to account for the initial yield stresses 
and the true stress-strain curves for UT, PST, and PS in the 
fixed loading direction. The true stress-strain curves for 
UT, PST, and PS specimens were obtained using an inverse 
experimental-numerical scheme. Note that for multiaxial 
stress states, von Mises stress is used as the “equivalent true 
stress”, and the true stress components can be easily cal-
culated. Subsequently, a distortional hardening model con-
sidering the loading direction of UT is developed using the 
framework of CQN model [19]. This model accounts for the 
three true stress-strain curves under UT in the RD, diagonal 
direction (DD), and transverse direction (TD), as well as the 
true stress-strain curve under PST state along the RD. The 
load-displacement curves were reproduced from simulations 
to validate the distortional hardening models.

Experiment

A cold-rolled twinning induced plasticity (TWIP) steel 
sheet with an ultimate tensile strength up to 980 MPa was 
considered in this study. It was supplied by POSCO Ltd. 
(South Korea) with a chemical composition of Fe–18Mn–0.6 
C–1.5Al (wt%). The stable microstructure is austenitic at 
room temperature with an average grain size of 2.2 μm.

The proportional UT, PST, and PS tests were conducted 
with the specimens shown in Fig. 1. The specimen dimen-
sions for the UT tests follow the ASTM E8 standard, while 
the dimensions for the PST tension tests follow those used 
by Lou and Huh [33]. The specimen dimensions for the 
shear test samples proposed by Merklein and Biasutti [34] 
was adopted as it is shown in Fig. 1c. The specimens were 
cut from the TWIP980 steel sheet with the thickness of 0.8 
mm in the RD by waterjet cutting. An INSTRON 5967 was 
used with a crosshead speed of 2.28 mm/min for UT test, 0.5 
mm/min for PST test and 0.21 mm/min for PS test to ensure 
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the same quasi-static strain rate of 0.001/sec. The deforma-
tion of the specimens is measured by tracking the movement 
of the two markers on the surfaces of specimens using a 
video extensometer. The same distance of 20 mm between 
the two markers was selected for all specimens.

The load-displacement curves of the three loading cases 
in Fig. 2 show the repeatability of the tests. There is a large 
difference in the displacement at the sudden drop of load 
between tests. This may be caused by the imperfections 
along the gauge section. Since this study focuses on the 
yielding and work hardening behaviours rather than the frac-
ture behaviour, the high variation in the measured sample 
fracture point will not affect this study.

 To investigate the anisotropic hardening under the UT 
stress state, the uniaxial tension tests were conducted along 
the RD, DD, and TD directions. The comparisons of the 
load-displacement curves for these tests are shown in Fig. 3. 
To identify the anisotropic true stress-strain curves in each 
direction and model the anisotropic hardening behaviour is 
introduced in Section 5.

Isotropic hardening model

Under the isotropic hardening assumption, the yield surface 
maintains the initial shape and expands uniformly under all 
stress states for both isotropic and anisotropic yield function. 

The consistency condition during loading must be satisfied 
between yield function and hardening which is why the hard-
ening is essential to accurately describe the full deformation 
process. Usually, the hardening curve can be obtained from 

Fig. 1   Specimen dimensions for: (a) UT tests; (b) PST tests; (c) PS 
tests (unit: mm)

Fig. 2   Experimental load-displacement curves of (a) UT tests; (b) 
PST tests; (c) PS tests under proportional loading in the RD. The 
numbers in the legend represent the specimen number
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the part of the true stress-strain curve of the uniaxial tension 
before localized necking. The hardening curve can be fitted 
with various hardening laws, or it can be obtained by using 
the inverse engineering method. In this section, both meth-
ods were adopted and validated by comparing the load-dis-
placements data obtained from experiment and simulation.

The Swift-Voce hardening law, as shown in Eq. (1), is 
adopted to fit the true stress-strain curve of the uniaxial 
tension test, as shown in Fig. 4. K , �0 , n , A , B , and C in 
Eq. (1) are unknown coefficients that need to be identified. 
−
� is effective stress and 

−
�p is equivalent plastic strain. The 

fitting results are listed in Table 1. Then, the von Mises 
function combined with the Swift-Voce hardening law is 
implemented into the ABAQUS User MATerials (UMAT) 

subroutine to predict the load-displacement response under 
UT, PST, and PS.

Fig. 3   Load-displacement curves obtained in the uniaxial tensile tests 
in the RD, DD, and TD

Fig. 4   The true stress-strain curve of TWIP980 steel obtained from 
the uniaxial tensile test and the curve fit with the Swift-Voce harden-
ing law

Fig. 5   Comparison of the load-displacement curves from experiments 
and the simulation results assuming isotropic hardening with the von 
Mises yield function and the Swift-Voce hardening law: (a) UT; (b) 
PST; (c) PS
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The load-displacements in Fig. 5 show that when using 
the isotropic hardening assumption, there is an obvious 
deviation between the experimental and the simulated 
load-displacement responses when the true stress-strain 
curve obtained from the UT test is used as the hardening 
curve to predict the load-displacement curves of the PST, 
and PS stress states. This phenomenon is caused by the 
stress triaxiality dependence of true stress-strain curves for 
the TWIP980 sheet metal. This suggests that the isotropic 
hardening law combined with one hardening function cannot 
account for the evolution of the true stresses at stress states 
with distinct stress triaxialities. To represent this the yield 
surface must be non-uniform to accommodate the differ-
ent stress states simultaneously. Similar phenomena have 
been reported for other materials, AA7075 [31], for instance. 
Since the yield stresses under PST and PS have a significant 
impact on the sheet forming simulation, it is necessary to 
develop a hardening model to consider their individual evo-
lutions during plastic deformation.

Distortional hardening modeling 
without considering the loading direction

Distortional hardening model without considering 
the loading direction

In order to accommodate the stress states at UT, PST, and PS 
simultaneously, an isotropic yield function is proposed. It is 
composed of the Hosford yield function 

−
�H and the normal 

stress term �n , as shown in Eq. (2):

where parameters a and � are the constants for isotropic 
hardening, and 

−
�D is the effective stress at the UT, PST and 

PS stress states, with

�1 , �2 , and, �3 in Eq. (3) are principal stresses, and m is the 
unknown parameter. The stress triaxiality is defined below:

(1)−
�=

K(�0 +
−
�p)

n
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−
�p)

2

(2)a(
−
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−
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2

where the von Mises stress, 
−
�vM , is given by

The Lode parameter is defined as

With Eqs. (5), (6), and (7), the principal stresses can be 
expressed by 

−
�vM , � , and L as follows:

where �m = (�1 + �2 + �3)∕3 , and s1 , s2 , and s3 are the 
principal deviatoric stresses. By substituting the principal 
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−
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−
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stress components can be calculated by Eq. (12):

For example, under the UT the corresponding von Mises 
stresses σUT at 

−
�D can be calculated from Eq. (13):
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have different values for each loading case. If σUT , σPST , and 
σPS at each 

−
�D are known, the three unknown coefficients 

a , � , and m can be identified. More detail about the coef-
ficients’ identification process is given in Section 4.2.

The true stress-strain curve of the UT test along the 
RD is selected as the hardening curve for Eq. (2), i.e., 
−
�D = σUT = �11 . Then Eq. (13) can be rewritten by Eq. (14):

Assuming isotropic hardening, the coefficients of the pro-
posed isotropic yield function are constants. Yet, to accu-
rately represent the distinct true stress-strain curves at UT, 
PST, and PS stress states, all coefficients must be updated 
to accommodate the three stress states simultaneously. This 
distinction characterizes the present distortional hardening 
model in contrast to the isotropic hardening model.

Calibration of the distortional hardening model

The previous section has shown that the true stress-strain 
curves at UT, PST, and PS are distinct under proportional 
loading. In order to calibrate the distortional hardening 
model, an inverse engineering method was adopted to 
obtain the true stress-strain curves for the UT, the PST, and 
the PS stress states. The inverse engineering method is an 
optimization process that minimizes the gap between the 
experimental and the simulated load-displacement curves by 
modifying the coefficients of the fitting functions of the true 
stress-strain curves until the results are satisfactory. There-
fore, the advanced strain measure system is avoided, which 
is especially beneficial for conducting experiments for multi-
axial stress states. During the optimization, the von Mises 
function was adopted, and the coefficients of the Swift-Voce 
hardening laws were modified iteratively. The results are 
listed in Table 1.

Figure 6 shows that the true stress-strain curve under UT 
obtained from the inverse engineering method is similar to 
the one obtained from the fitting method. This demonstrates 
the validity of the inverse engineering method for obtaining 
the true stress-strain curves. However, the true stress-strain 
curves for PST and PS specimens are quite different from 
that of UT. This illustrates the necessity to consider the dif-
ferential hardening for stress states with distinct stress tri-
axialities. It also can be observed that the true stress-strain 

(14)a = 1∕(1 + 0.5�)

curves for the PST and the PS stress states are lower than 
that of the UT stress state. This is the reason why the load-
displacement curves of Fig. 5b and 5c were overestimated 
when von Mises function and the hardening function fitted 
from the UT data were used in FEA.

The proposed function in Section 4.1 allows the identifi-
cation of unknown parameters under UT, PST, and PS stress 
states explicitly. By updating the unknown parameters, the 
hardening behaviours for the different stress states can be 
captured. As for the state variable to describe the plastic 
deformation, either the accumulated equivalent plastic strain 
or the plastic work [12, 35] can be selected.

In this study, the plastic work is selected as the state vari-
able. The plastic work increment can be calculated directly 
from the plastic strain increments and the stress components 
regardless of the definition of the yield functions. To meas-
ure and record the strain components and obtain the stress 
components, an advanced digital image correlation equip-
ment is needed. According to the plastic work equivalence 
principle [36], the plastic work increment can be determined 
from the effective stress and its conjugated equivalent plastic 
strain increment, as shown in Eq. (15). If differential harden-
ing is not considered, the effective stress and the conjugated 
equivalent plastic strain increment can have different values 
when calculated from the same stress and strain compo-
nents by different yield functions and plastic potentials. In 

Table 1   Coefficients of the 
Swift-Voce hardening laws for 
the true stress-strain curves

Note Cases K (MPa) �
0

n A (MPa) B (MPa) C

Fitting method UT 2410.4 0.10 0.63 2840.4 2282.8 1.42
Inverse engineering
method

UT 2628.4 0.13 0.74 2821.6 2282.4 1.43
PST 2003.7 0.26 0.86 2927.3 2490.0 1.06
PS 2268.2 0.10 0.56 2740.6 2227.4 0.21

Fig. 6   Comparison of the true stress-strain curves obtained from the 
fitting method and the inverse engineering method
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contrast, the values of effective stress and equivalent plas-
tic strain increment are independent of the formulations of 
yield functions and the plastic potentials for the stress states 
(UT, PST, and PS) used in the calibration of the distortional 
hardening model. Therefore, if more true stress-strain curves 
from stress states under different stress triaxialities or load-
ing directions are considered in the hardening modeling, 
errors stemming from the selection of constitutive models 
can be reduced.

where, dw is the plastic work increment. 
−
�D is the effec-

tive stress of the distortional hardening model, and d
−
�
p

D
 is 

the conjugated equivalent plastic strain increment to 
−
�D . d

−
�
p

 
is a general equivalent plastic strain increment conjugated to 
a general effective stress 

−
�.

Since the evolution of �UT , �PST , and �PS with the refer-
ence plastic strain were obtained by the inverse engineering 
method, as shown in Fig. 6, they can uniquely define the 
size of the yield surface at the corresponding stress states. 
In other words, the true stress-strain curves shown in Fig. 6 
are independent of the formulations of yield functions used 
in the inverse analysis. Then, it is possible to obtain their 
evolution laws with plastic work from Fig. 6 according to 
the plastic work equivalence principle, as is shown in Fig. 7. 
In this study the von Mises yield function was used in the 
inverse analysis. Thus, the ordinate values are von Mises 
stresses in Fig. 6 and Fig. 7. The inversely obtained von 
Mises stresses of UT, PST, and PS at the equivalent amounts 
of plastic work can be used to identify the unknown param-
eters. Since the UT true stress-strain curve is selected as the 
hardening curve for the distortional hardening model, i.e., 
−
�D = �UT = �11 , the evolution laws of the parameters with 

(15)dw = � ∶ d�p = d
−
�
p −
�= d

−
�
p

D

−
�D

plastic work can be further converted into the evolution laws 
with equivalent plastic strain 

−
�
p

D
.

To identify a,� and m , an object function is defined by 
Eq. (16) to minimize the difference between the von Mises 
stresses �UT , �PST , and �PS calculated from Eq. (12) and 
the inversely obtained counterparts at several plastic work 
levels. The optimization was performed with the commer-
cial software ISIGHT. During the optimization process, the 
theoretical values of the stress triaxiality � and the Lode 
parameter L for the three states were adopted.

The Hooke-Jeeves optimization algorithm was selected 
with a relative step size of 0.05. And the boundary for � 
was selected as [−0.5, 0.5] . As for m , it must be greater than 
or equal to 1 to ensure the convexity, although there is no 
concern about the violation of Drucker Postulate for plastic 
work contours. Iteration was stopped when err. < 10−8.

The calibrated coefficients at several plastic work levels 
are shown in Table 2. The evolution of m and � with the 
accumulated plastic work is depicted in Fig. 8, using the 
piecewise linear interpolation method. The parameter a can 
be calculated from Eq. (14). Figure 9 illustrates the evolution 
of the yield surfaces with plastic work. The proposed distor-
tional hardening model (denoted as ‘distor1’) successfully 
accommodates UT, PST, and PS stress states on the same 
contour during plastic deformation, as depicted by the red 
surfaces in Fig. 9.

The evolution of von Mises yield surface under the iso-
tropic hardening assumption is also shown in Fig. 9. While 
the von Mises yield function accurately captures the evo-
lution of the UT stress state (since UT is selected as the 
reference stress state to obtain the hardening function), it 
overestimates true stresses near PST and PS areas at each 
plastic work level. Consequently, the load-displacement of 

(16)err. = min
∑3

i=1

(
−
�
calcu.

vM
∕
−
�
inver.

vM
− 1

)2

Fig. 7   Evolution of the von Mises stress with plastic work under UT, 
PST, and PS

Table 2   The values of a , m , and � at the different levels of plastic 
work and accumulated equivalent plastic strain 

−
�
p

D

w (MPa) a m � �
p

D

0 0.962 1.437 0.079 0
20 0.985 1.264 0.031 0.033
50 1.100 1.184 -0.019 0.074
100 1.038 1.139 -0.073 0.131
200 1.072 1.112 -0.135 0.224
300 1.094 1.105 -0.172 0.302
400 1.110 1.104 -0.198 0.371
500 1.122 1.105 -0.218 0.434
600 1.132 1.107 -0.233 0.492
700 1.140 1.110 -0.245 0.547
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PST and PS are overestimated by the simulation when iso-
tropic hardening is assumed, as shown in Fig. 5. Moreover, 
the negative pressure effect is observed for the TWIP980 
sheet metal at large plastic work levels, which is captured 
by the negative values of � , as shown in Fig. 8.

Prediction of load‑displacement curves using 
the distortional hardening model

To validate the proposed distortional hardening model, it 
was implemented into the ABAQUS/UMAT interface to pre-
dict the load-displacement curves for the UT, PST, and PS 
stress states. The displacement output from the simulations 
represent the elongation between 2 nodes initially positioned 
20 mm apart for the PST and PS specimens and 25 mm for 
the UT specimens, as shown in Fig. 10. The left side of the 
specimens are completed fixed, while concentrated loads 
are applied at the reference points at the right side. The von 
Mises stress distributions after simulations are shown in 
Fig. 11.

In the implementation of the distortional hardening 
model, equivalent plastic strain increments and stress 

Fig. 8   Evolution of  and  with 
the accumulated plastic work

Fig. 9    Evolution of the yield surface with plastic work in the princi-
pal stress space under distortional hardening (‘distor1’) and the iso-
tropic hardening assumption

Fig. 10   Meshed specimens 
for UT, PST, and PS simula-
tions (red circles denote the 
points where displacements are 
extracted)
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components were obtained using the well-known cutting 
plane method. An efficient finite difference method [37] 
was adopted in the stress integration algorithm to reduce 
the computing cost. Subsequently, plastic work can be cal-
culated to update the coefficients according to the evolution 
laws depicted in Fig. 8.

Figure 12 shows that the load-displacement curves are 
reasonably reproduced using the distortional hardening 
model. Significant improvement has been achieved com-
pared with the prediction results shown in Fig. 5. This illus-
trates the advantage of the proposed distortional hardening 
model over any isotropic model. It’s noteworthy that the rea-
sonable results were achieved with the assumption that the 
deformation of PST and PS specimens is uniform, consider-
ing the theoretical stress triaxiality and Lode parameter for 
the two stress states were used for calibrating the distortional 
hardening model.

Distortional hardening modeling 
considering the loading direction of UT

Distortional hardening model considering 
the loading direction of UT

The plane stress assumption is widely embraced in sheet form-
ing simulations, although the consideration of the full stress 
condition becomes crucial in certain forming operations, such 
as ironing [38]. Most 3D anisotropic yield functions can be 

formulated using stress invariants or polynomial descriptions 
of all stress components. Among them, the Hill48 quadratic 
yield function [18] remains popular due to its simplicity, allow-
ing for the analytical identification of material coefficients. 
The use of a non-associated flow rule allows the Hill48 yield 
function to capture both stress and r-value directionalities. By 
explicitly incorporating the loading direction-dependent true 
stress-strain curves, the Hill48 yield function can be analyti-
cally calibrated to describe anisotropic hardening [9]. As intro-
duced in the introduction section, the CQN model proposed by 
Lee et al. [19] can describe the flatness at the plane strain ten-
sion area while keeping the advantages of the S-Y2009 model.

In this section, it is aimed to extend the distortional hard-
ening model without considering the loading direction into 
a distortional hardening model that accounts for the loading 
direction of UT in the full stress space. This extension results 
in the development of a 3D evolutionary anisotropic yield 
function through the utilization of the coupling method. As 
formulated in Eq. (17), the deformation is defined to be elas-
tic-plastic when �1(�) = 1 . The distortional hardening model 
aims to account for the true stress-strain curves under the UT 
stress states in the RD, DD and TD, and that under PST stress 
state along the RD simultaneously. The pure shear state is not 
considered for the distortional hardening model in this section. 
A further discussion is given in Section 6.

(17)�1 =
(
−
�hf1

) 1

m1+2

Fig. 11   The von Mises stress 
distributions after simulations
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In Eqs. (17),

where, �0(w) , �45(w) and �90(w) are the UT true stresses 
along the RD, the DD and the TD associated with the plastic 
work, and �ET (w) is the true stress-strain function for the ET 
state. Due to the lack of ET data, �ET (w) in this work it is 
determined by Eq. (20):

The plastic work w in �0(w) , �45(w) and �90(w) can be 
obtained by Eqs. (21),

Equation (17) adopts the framework of the CQN model 
but introduces an evolutionary exponent m1 that varies with 
respect to plastic work, and it is determined by the PST state. 
m1 is specified as a constant in the original CQN model [19], 
leading to a limitation in accurately capturing the evolution of 
true stress under PST in the presence of differential hardening.

Calibration of the distortional hardening model

In Section 3, the true stress-strain curves for UT, PST and PS 
in the RD have been obtained using the inverse engineering 
method. The true stress-strain curves for UT along the DD 
and TD directions can also be obtained with this method. The 
coefficients for the three curves are shown in Table 3. Accord-
ingly, their evolution laws with plastic work can be obtained 
as described in Section 4.2 and shown in Fig. 13. In Fig. 13, 
the TWIP980 steel shows no significant anisotropic hardening 
for the UT stress state along the RD, DD and the TD. Since 
the capability to capture the directionality of UT has been well 
presented and verified by Lee et al. (2017), this study will 
focus on its improvement to describe the distinct true stress-
strain curve at PST.

Under the plane stress condition, the stress states can be 
described by the stress components

(
�11, �22, �12

)
 , where �11 

and �22 are the yield stresses along the RD and the TD, and �12 
is the in-plane shear stress. Since the von Mises stress has been 
inversely obtained, it is straightforward to calculate the theo-
retical stress components. The stress components for PST are 

(18)

−
�
h
=

|�1−�2|m1+|�2−�3|m1+|�1−�3|m1
2

f
1
=

1

�
m1+2

0
(w)
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33
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1
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(19)+
4

�
m1+2

45
(w)

(
�12�12 + �23�23 + �13�13

)

(20)�ET (w) =
(
�0(w) + 2�45(w) + �90(w)

)
∕4

(21)

w = ∫ �0
(
�
p

0

)
d�

p

0
= ∫ �45

(
�
p

45

)
d�

p

45
= ∫ �90

(
�
p

90

)
d�

p

90

Fig. 12   Comparison of the load-displacement curves from the experi-
ments and the simulation using the distortional hardening model and 
the von Mises yield function with the inversely obtained hardening 
functions
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�
2�PST√

3
,
�PST√

3
, 0
�
 . For UT, the stress components are expressed 

as

where � is the loading direction of UT from the RD, and 
�UT_� is the corresponding effective stress.

The principal stresses are:

Similar to the calibration process of the distortional 
hardening model in Section 4, for the distortional hard-
ening model considering the loading direction of UT, the 
coefficient m1 can be identified at several selected plastic 
work levels of UT along the RD, DD and TD and of PST 
in the RD. The coefficient m1 was identified by minimizing 
the difference between the calculated �1 and the theoretical 
counterpart at several plastic work levels. The optimization 
was conducted with the software ISIGHT, and the object 
function is described by Eq. (24). To calculate �1 in Eq. (17), 
the stress components in Eq. (22) and the principal stresses 

(22)

⎧⎪⎨⎪⎩

�11 = σUT_� ⋅ cos
2�

�22 = σUT_� ⋅ sin
2�

�12 = σUT_� ⋅ cos�sin�

(23)�1,2 =
�11 + �22

2
±

√(�11 − �22

2

)2

+ �12
2

in Eq. (23) were inserted into Eq. (19) and Eq. (18), respec-
tively. The theoretical value for �1 at yielding is 1.

During the calibration process, the Hooke-Jeeves opti-
mization algorithm was selected with a relative step size 
of 0.05. m1 must be greater than or equal to 1 to ensure the 
convexity. The iteration was stopped when err. < 10−8 .

Figure 14 shows the evolution of the calibrated coeffi-
cient m1 with the plastic work. It was interpolated with the 
piecewise linear functions before implemented into FEA. 
The evolution law of m1 with plastic work can be further con-
verted into the evolution law with equivalent plastic strain 
−
�
p

D
 , according to the work equivalence principle. Figure 15 

shows that both the UT and PST stress states are well cap-
tured by the distortional hardening model (‘distor2’) at each 
plastic work level. However, the CQN model is unable to 
accurately predict the PST, and the von Mises yield function 
can only capture the evolution of the UT stress state along 
the RD.

Prediction of load‑displacement curves

To validate the proposed distortional hardening model, it 
was implemented into ABAQUS UMAT subroutine to pre-
dict the load-displacement curves of the PST and UT stress 

(24)err. = min
∑4

i=1

(
�1∕1 − 1

)2

Table 3   Coefficients of the 
Swift-Voce hardening laws 
obtained from the inverse 
engineering method for UT in 
the RD, DD and TD.

Cases K (MPa) �
0

n A (MPa) B (MPa) C

UT-RD 2628.4 0.13 0.744 2821.6 2282.4 1.43
UT-DD 2570.7 0.16 0.766 2829.1 2295.9 1.33
UT-TD 2576.0 0.155 0.767 2839.4 2272.8 1.39

Fig. 13   Comparison of the anisotropic true stress-strain curves of UT 
obtained from the inverse engineering method in the RD, DD and TD

Fig. 14   Evolution of  with the accumulated plastic work
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state. As shown in Fig. 16, the load-displacement under PST 
is well predicted, indicating the distortional hardening at 
PST is captured. Figure 17 shows the capability of the model 
to reproduce the load-displacement curves of the UT stress 
state in the RD, DD and TD. The results indicate that the 
anisotropic hardening of UT is well captured. In contrast, the 
distortional hardening model without considering the load-
ing direction can only well predict the load-displacement 
curve of the UT stress state for the RD.

Discussion

It is commonly observed that when the stacking fault 

Fig. 15   Evolution of the yield surfaces with plastic work in  space. 
The corresponding accumulated equivalent plastic strain  of the plas-
tic work can be found in Table 3

Fig. 16   Load-displacement curves for PST from the experimental and 
simulation results using the distortional hardening model and the von 
Mises yield function with the inversely obtained hardening function

Fig. 17   Comparison of load-displacement curves under UT in the 
RD, DD, and TD between experiments and simulations using distor-
tional hardening models, with and without consideration of the load-
ing direction of UT
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energy (SFE) falls in the narrow range of 15–45 mJ/m2 
[39–41], TWIP steels deform mainly by dislocation glide 
and twinning. Twinning acts as an obstacle to dislocation 
glide, contributing to the high ductility and strength of 
TWIP steels. As reported by Kim et al. [42] and Kim and 
De Cooman [41], the TWIP steel used in the present study, 
Fe–18Mn–0.6 C–1.5Al, has a SFE value around 30 mJ/m2, 
ensuring the main deformation modes of dislocation glide 
and twinning at room temperature. Microstructural analy-
sis of deformed samples after UT, PST, and ET revealed 
variations in twin volume fractions for different strain 
paths [43]. In addition, it was reported that the twin vol-
ume fraction in tension test is larger than in the other two 
states. The polycrystal plasticity approach, visco-plastic 
self-consistent (VPSC) model was also adopted to investi-
gate the twinning behaviour, and similar results have been 
observed, which was considered as the result of texture 
development. These findings may explain the differential 
hardening phenomenon introduced in Section 4, as higher 
twinning tends to increase strain hardening [43].

A lower yield stress in compression is often observed 
in twin-driven HCP materials [44, 45]. A negative 
dependence on hydrostatic pressure for TWIP steels is 
first reported in this paper. A study on a high manganese 
steel (Fe–33Mn–2.93Al–3Si) has provided insights into 
the dependence of twinning on grain orientation for ten-
sion and compression stress states. This observation may 
offer an explanation for the negative hydrostatic pressure 
effect. More details can be found in the references [46, 47]. 
However, due to the lack of compression tests, the micro-
structure and texture evolution are unknown yet for the 
present TWIP980 metal sheets. This is worthy of further 
investigation.

The proposed distortional hardening model in Section 4 
successfully describes a negative dependence on hydrostatic 
pressure in order to capture the relatively lower yield stresses 
and hardening rate at the pure shear stress state, as illustrated 
in Fig. 9. However, this is not the case for the distortional 
hardening model in Section 5, as shown in Fig. 15, because 
the pure shear state was not considered. To enable the dis-
tortional hardening model considering the loading direction 
of UT to capture the pure shear stress state, further improve-
ment is necessary. One feasible method involves dividing 
the full stress space into two domains, each described by 
a 3D evolutionary anisotropic yield function based on the 
S-Y2009 model. This allows the functions to blend at the 
UT stress state, capturing anisotropic hardening under UT. 
The evolutionary coefficients in each part can be identified 
using either PST or PS stress state, thereby capturing the 
stress evolution at the two stress states. The detailed analysis 
and illustration of the yield surfaces blending method will 
be reported in future work.

Moreover, to enhance the model’s universality and 
applicability, the inclusion of additional stress states is 
recommended by introducing extra coefficients to the 
existing model. This extension allows the model to cover 
a broader range of stress triaxiality, and this enhancement 
has already been accomplished and is currently awaiting 
submission. In practical applications of the distortional 
hardening model in metal forming processes, the calibra-
tion of the model is particularly sensitive to the dominant 
stress states during plastic deformation, and these selected 
stress states may vary from case to case. For example, it’s 
suggested that ET, PST, UT, and PS should be selected 
when calibrating the distortional hardening model for 
the deep drawing of a cross-cup [48] whereas PST, plane 
strain compression should be considered in roll forming 
simulations.

Conclusions

In this study, the distinct true stress-strain curves under 
UT, PST and PS stress states for the TWIP980 steel were 
identified from the inverse engineering method and mod-
eled by associating with one reference stress-strain curve. 
A distortional hardening model without considering the 
loading direction was proposed to explain the differential 
hardening among UT, PST and PS along a specific direc-
tion. Both the differential hardening between UT and PST 
and the anisotropic hardening under UT were modeled by 
the distortional hardening model considering the loading 
direction of UT. Both models were implemented into FEA 
and compared with the experimental results. The primary 
conclusions are summarized as follows:

(a)	 Under proportional loading, variations in loading stress 
states and the loading directions contribute to the dis-
tortion of yield surfaces.

(b)	 The TWIP980 steel sheet exhibits notable differential 
hardening behaviours, which cannot be explained by an 
isotropic hardening model. The proposed distortional 
hardening model effectively accommodate stress states 
of UT, PST and PS on the same plastic work contours 
during plastic deformation. Besides, a negative depend-
ence on hydrostatic pressure is observed for TWIP980 
sheet metal.

(c)	 The distortional hardening model considering the load-
ing direction of UT successfully represents loading 
direction-dependent true stress-strain curves under UT 
stress and stress triaxiality-dependent true stress-strain 
curves between UT and PST stress states along the RD 
for TWIP980 steel.
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