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Abstract
Knowing the thermo-mechanical history of a part during its processing is essential to master the final properties of the product.
During forming processes, several parameters can affect it. The development of a surrogate model makes it possible to access
history in real time without having to resort to a numerical simulation. We restrict ourselves in this study to the cooling
phase of the casting process. The thermal problem has been formulated taking into account the metal as well as the mould.
Physical constants such as latent heat, conductivities and heat transfer coefficients has been kept constant. The problem has
been parametrized by the coolant temperatures in five different cooling channels. To establish the offline model, multiple
simulations are performed based on well-chosen combinations of parameters. The space-time solution of the thermal problem
has been solved parametrically. In this work we propose a strategy based on the solution decomposition in space, time, and
parameter modes. By applying a machine learning strategy, one should be able to produce modes of the parametric space
for new sets of parameters. The machine learning strategy uses either random forest or polynomial fitting regressors. The
reconstruction of the thermal solution can then be done using those modes obtained from the parametric space, with the
same spatial and temporal basis previously established. This rationale is further extended to establish a model for the ignored
part of the physics, in order to describe experimental measures. We present a strategy that makes it possible to calculate this
ignorance using the same spatio-temporal basis obtained during the implementation of the numerical model, enabling the
efficient construction of processing hybrid twins.

Keywords Smart manufacturing · Physics-based modeling · Model order reduction · PGD · Data-driven modeling · Artificial
intelligence · Hybrid twin · Casting

Introduction

Metal Casting is one of the oldest materials forming tech-
nique which is widely employed in industrial environment.
It enables manufacturing complex shaped parts with high
productivity and less raw consumption [1]. Gravity casting
is the simplest form of casting that consists of pouringmolten
alloy into a mould cavity with no force other than grav-
ity, where it cools and solidifies. The mould can be made
of sand, metal or some other materials [2]. The permanent
mould casting is a process that uses a metal mould namely
tool steel [3], iron and bronze [4]. Themost stringent require-
ment on permanent moulds is their cooling ability. They are
characterized by high thermal conductivity which allows to
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increase the rate of heat transfer and to reduce the solid-
ification time. As a consequence, the produced cast parts
present better dimensional tolerances, superior surfaces fin-
ishing, and higher mechanical properties [3, 4]. In industry,
the most up-to-date application of permanent mould casting
is the aluminium alloys due to their excellent properties such
as excellent cast ability [5], high electrical and thermal con-
ductivity [6–8], low density, low weight and high strength to
weight ratio [8, 9].

To ensure high quality casting products, the casting stages
need to be well controlled starting by mould preparation,
alloy melting, pouring, and finally solidification process.
Inaccurate supervision at these stages leads to casting defects
[10]. The cooling stage has a significant effect on the
microstructure of the cast parts, which means on their
mechanical properties. It is necessary to understand the heat
transfer process inside the mould to ensure the required
mechanical properties in the casting. Theheat releasedduring
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the solidification is transferred within the mould by conduc-
tion.Once the heat reaches themouldwalls, it is transferred to
the air essentially by natural convection [11]. It is well known
that for aluminium alloys, the cooling rate directly affects the
microstructuremorphology and the size of the grains:Raising
up the cooling rate during the casting can significantly refine
themicrostructure and thereby improve themechanical prop-
erties of produced parts [12–14]. The material and geometry
of permanentmetalmould contribute on the heat transfer pro-
cess, that is, on the casting cooling [11]. In permanent mould
casting, it is highly recommended to have homogeneous dis-
tribution of temperature in the mould. Non-uniform cooling
causes defects in the cast parts such as low residual stress, hot
spots and distortions in the form [15]. These casting defects
could be reduced by using “cooling channels" moulds. They
date back to 1990 and were initially suggested for injection
moulding [16, 17] and then were extended to others fields
such as extrusion [18], hot sheet metal forming [19], forging
[20], and die casting [15, 21, 22]. Karakoc et al. showed, in
references [22] and [15], that the porosity in the cast parts
was reduced by 43% and the average particle size of the cast
parts was 13.5% smaller than those parts obtained with stan-
dard moulds. Both of these studies were carried out through
experimental methods and numerical simulations. Norwood
et al. were also used the simulation tools to optimize the
design of cooling channels to ensure a high product quality
and minimize production costs [21].

Today, numerical simulations are widely used in casting
optimization process.However, for an optimized casting con-
figuration, the simulations analyses were generally based on
a particular set of parameters. In addition, the requirement
of very accurate and reliability data increases significantly
the calculation time of numerical simulations that means the
computing coasts. Thus, the numerical simulations in cast-
ing process is still interesting through the use of artificial
intelligence. It is hence possible nowdays in metal casting
processes to applied powerful tools and models developed
with reasonable number of simulations that allows predicting
parts defects and controlling complex processes [23–25]. For
example, Jiang et al. used back propagation neural network
models to establish a relationship between the continuous
casting parameters and the cooling rate which was based on
secondary dendrite arm spacing compute [26]. They showed
that this model has a higher accuracy in the optimization of
the continuous casting technology. Others researchers used
also artificial neural networks and they were more focused
on the cooling-solidification process and the heat transfer
coefficient as well [27, 28]. Susac et al. applied artificial
neural network to predict the thermal field of permanent
mould based on the thermal history of the aluminium cast
parts [28]. Vasileiou et al. proposed a genetic optimization
algorithm aided with numerical simulations to determine the
heat transfer values in casting [29]. However, for every new

casting change in material and/or in shape, this approach
should repeat again. Researchers tried to developpe interest-
ing approaches for thermal field evolution in the cast and in
themould as well. Despite these efforts, most of the proposed
approach are limited to the cast part design, casting process
parameters, and also to the number of input parameters. The
present work proposes a new approach combining physics-
based reducedordermodels, enabling parametric studies, and
data-driven model enrichment in the so-called hybrid mod-
elling framework, enabling the highest accuracy with respect
to the experimental measurements, while proceeding under
the stringent real-time constraint.

Empowering engineering from the use of surrogates

Efficient design and system control are needed for quick
evaluations of the system response for any choice of the
parameters involved in the associated model. Usual numer-
ical simulation techniques remain unable to provide results
under the stringent real-time constraints imposed by control.

Parametric models, also called surrogates, metamodels
or response surfaces, make it possible to attain such feed-
back rates. Then, on top of these surrogates, simulation,
optimization, uncertainty propagation or simulation-based
control become attainable even under the stringent real-time
constraint. Thus, the challenge of developing efficient simu-
lations is translated into the one of an efficient construction
of such surrogates, that is far from being a trivial task.

In fact, if one assumes amultivalued inputX and an associ-
ated multivalued output Y, the surrogate is no more than the
mapping Y = F(X), where F(X) constitutes the searched
model, that in general consists of a linear or a nonlinear
regression.

Constructing a regression is not difficult, conceptually
speaking. However, the amount of data needed for this pur-
pose strongly depends on the model complexity.

Since complexity will depend on the dimension of the
data (number of features involved in X) and variables to
model (size of Y), one is tempted to proceed reducing the
data dimensionality prior to create the regression.

Data dimensionality reduction can be performed by using
a linear reduction—for instance by employing principal com-
ponent analysis, PCA—or a nonlinear one, making use of
manifold learning techniques, for instance, or in amore trans-
parent manner, by training autoencoders able to map the data
into a reduced latent space.

Usually in the case of engineering, and more particularly
in casting process simulation, where the temperature field
is expected to depend on few process parameters (like in
this paper the temperature of the fluid flowing into the so-
called cooling channels disposed in the mould) we look to
infer 3D fields from few features. Thus we firstly need to
reduce computer memory storage space and enable real-time
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predictions for temperature field. Then we can move to cre-
ating a regression (linear or non-linear) between the features
and the reduced description of the temperature field.

In turn, this regression can be linear (evenwhen non-linear
approximation functions are involved) or non-linear. Polyno-
mial linear regressions are very usual, and they were adapted
to address multidimensional problems by making use of sep-
arated representations [30, 31].

Regularization allows us to address rich approximations
while keeping the amount of data to a minimum [32].
These situations result, in general, in underdetermined linear
systems, that need for appropriate regularizations to avoid
overfitting. Elastic Net regularizations combining the Ridge
L2-regularization, that prevent overfitting, and the Lasso L1-
regularization, that promotes sparsity, are widely adopted
[33].

When the amount of data is large enough and it is expected
to be distributed on a nonlinear manifold, artificial neural
networks, ANN, [34] become an appealing choice.

Filling the gap between knowledge
and observations: the hybrid twin

A particular situation occurs when physics is solved very
efficiently by employing surrogates, whose construction has
just been addressed, but a significant gap between the predic-
tions and the observations is noticed. Such a gap reflects the
limitations of the considered model, that can be inaccurate
or incomplete with respect to the addressed physics. In this
situation, two direct alternatives exist: (i) refine the physics-
based model to improve the prediction performance; or (ii)
correct (or enrich) the physics-basedmodel by adding a data-
driven model of the observed gap—something that we refer
to as modelling the ignorance (i.e., the gap between mea-
sures and simulations). This second route is at the origin of
the so-called hybrid-twin concept, addressed in our recent
works [35–39].

The main advantage of this augmented framework is
twofold. First it offers the possibility of explaining the
(usually) most important part of the resulting hybrid (or
augmented) model: the one concerning the physics-based
contribution. Second, with a deviation less nonlinear that in
the case of the observed reality (the physics-based model
contains an important part of such nonlinearity), less data
becomes sufficient for constructing the data-driven model.

Methods

This section revisits usual surrogate constructors that make
use of separated representations, and proposes an appealing
alternative that overcomes these. Our objective in this study
is to elaborate a parametric solution with a representation

compatible with the use of machine learning techniques, so
as to enable the prediction of new scenarios associated with
arbitrary parameter choices.

A space-time and parameters separated
representation

We consider a field T defined in the physical domain,
x ∈ Ωx ⊂ R

D, D = 2, 3. This field evolves in time
t ∈ [0,+∞). Our problem depends on a set of parameters
p = p1, p2, . . . , pn,p ∈ Ωp ⊂ R

n .
It is assumed that a design of experiment makes it possible

to obtain the evolution of the field T , in space and time, for
several combinations of parameters p. Our solution is then
written in a general form T (x, t,p).

The representation of this solution, specifically according
to the parametric dimension, is discrete. Artificial intelli-
gence plays the role of interpolating (or extrapolating) from
the set of parameters already considered in the training stage.

In those approaches we have developed so far, we used
a non-intrusive dimensionality reduction that expresses the
solution from a finite sum of products of functions. For this
purpose, we rely on the singular value decomposition. In
order to apply this singular value decomposition approach,
we need to operate on a discrete representation of the field
T . In its classical form, the singular value decomposition
decomposes the field into sums of tensor products of two
discretized functions. A simple choice is to consider space
and time on the one hand, and parameter space on the other.
The reader can refer to [40] to see an example of the appli-
cation of this approach.

The continuous form reads:

T (x, t,p) =
∞∑

k=1

Fk(x, t)Hk(p). (1)

This form corresponds to a discrete form which could be
written with the index notation as

Ti j =
∞∑

k=1

Fk
i H

k
j , (2)

where the subscripts i and j , refer here to the degrees of free-
dom in space, time and parameter dimensions, respectively.

The previous form can be rewritten in the tensor form

T =
∞∑

k=1

Fk ⊗ Hk . (3)

The determination of this form can be made in a direct
way, by using a classical calculation based on the eigenvalue
decomposition.However, inwhat follows,we use an iteration
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procedure, easily generalizable later to more dimensions, the
so-called high-order singular value decomposition.

To find the series (F1,H1), (F2,H2), . . . we assume that
the solution at iteration k − 1 is known and given by

T̃ =
k−1∑

m=1

Fm ⊗ Hm, (4)

where T̃ represents the field discrete approximation.
The difference between the initial discrete field and the

approximated one is noted by T′ = T− T̃, which represents
the approximation residual. The associated iteration algo-
rithm solves:

Fk
i =

∑

j

T
′
i jH

k
j

∑

j

(Hk
j )
2

, (5)

Hk
j =

∑

i

T
′
i jF

k
i

∑

i

(Fk
i )

2
, (6)

until the convergence (fixed point) is reached.
The enrichment stops when the norm of the residual T′

becomes lower than a tolerance criterion, fixed by the user.
Here we assume that the enrichment process stops after K
couples have been computed.

It follows that vectors Hk contains the parameter weights
at each considered choice of parameter p, p j . Thus, the com-
ponent Hk

j , k = 1, . . . , K , is related to p j = (p j
1 , . . . , p

j
n).

Thus, one is tempted to train, from the available data cou-
ples (p j ,Hk

j ), an AI-based regression to evaluate the scalar

Hk , ∀k, for any other value of pnew, noted by Hk(pnew),
fromwhich the reconstructed espace-time solutionTxt (pnew)

reads

Txt (pnew) =
K∑

k=1

Fk Hk(pnew). (7)

Separating space and time

The approach that we have just presented fails to address
problems with too many degrees of freedom in space and
time. It is therefore useful to separate the temporal dimension
from the spatial one (see [41] for an example).

The simplest option consists of performing a singular
value decomposition in space and time for each solution
associated to the parameters choice ph = (ph1 , p

h
2 , . . .),

h = 1, . . . , H . This SVD allows us to write

T (x, t;ph) =
∑

k

hFk(x) hGk(t), (8)

whose discrete form reads

h
Ti j =

∑

k

hFk
i
hGk

j , (9)

and, in tensor form

h
T =

∑

k

hFk ⊗ hGk . (10)

This expression does not allow us to build a response sur-
face on the parametric space. To this end, we must express
our different functions in a common approximation basis. To
avoid redundancies between the different functions hFk and
hGk , obtained during the performed simulations for different
parameter choices, and in order to guarantee the orthog-
onality of the basis, a proper orthogonal decomposition is
performed.

Let Q be the matrix composed by the functions hFk for
different parameters choices ph

Q = [1F1,1 F2, . . . ,1 FK ,2 F1,2 F2, . . . ,2 FK , . . . ,HFK ].
(11)

The resulting orthonormal eigenvectors are noted as
B1,B2, . . ..

By selecting the r eigenvectors associated with the r
highest decomposition eigenvalues, the space approximation
basis reads

B = [B1,B2, . . . ,Br ]. (12)

To express the basis obtained for a set of parameters h
into the global basis Eq. 12, we define the coordinates matrix
hβ enabling the expression of hF = [hF1, . . . ,h FK ] into the
common basis Eq. 12, according to

B
hβ =h

F, (13)

whose solution results from

hβ = (BT
B)−1(BT h

F). (14)

The same rationale applies on the time vectors, leading to

C
hγ =h

G. (15)

Thus, finally, the approximation reads

h
T =h

F (hG)T = B
hβ(hγ )T C

T , (16)
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or, by defining the new matrix hα =h β(hγ )T , it results

h
T = B

hα C
T . (17)

Artificial intelligence intervenes here to obtain each com-
ponent of thematrixα,αi j (p1, p2, . . . , pn) from the existing
knowledge: hαi j (ph1 , p

h
2 , . . . , p

h
n ), h = 1, . . . , H .

The major drawback of such an approach is that the α

coordinate matrix is not diagonal. This leads to a very large
number ofαi j values involved in the training process. In addi-
tion, the numerous projections into the common truncated
POD approximation basis introduce an additional error.

The proposed approach: a space, time
and parameter separated representation

In this section we propose an approach that combines the
advantages of the two procedures just described.

This approach relies on ahigh-order singular valuedecom-
position involving three functions:

T (x, t,p) =
∞∑

k=1

Fk(x)Gk(t)Hk(p), (18)

whose discrete form reads

Ti jh =
∞∑

k=1

Fk
i G

k
jH

k
h . (19)

Following the rationale previously introduced, the approx-
imation is obtained by successive enrichments (until obtain-
ing the desired accuracy at k = K ) and at each enrichment
step k iterating until convergence, that is, until attaining the
fixed point, according to

Fk
i =

∑

j,h

T
′
i jhG

k
jH

k
h

∑

j

(Gk
j )
2
∑

h

(Hk
h)

2
, (20)

Gk
j =

∑

i,h

T
′
i jhF

k
i H

k
h

∑

i

(Fk
i )

2
∑

h

(Hk
h)

2
, (21)

Hk
h =

∑

i, j

T
′
i jhF

k
i G

k
j

∑

i

(Fk
i )

2
∑

j

(Gk
j )
2
. (22)

Using the same rationale previously described, from the
couples (ph,Hk

h), k = 1, . . . , K , a regression is constructed
to infer the scalars Hk(pnew), ∀k, related to the parameters
choice pnew.

The reconstructed solution reads

T(pnew) =
K∑

k=1

(Fk ⊗ Gk)Hk(pnew). (23)

Fig. 1 Summary of the
methodology
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Themain steps of this methodology are summarized in Fig. 1

Case study

The problem here consists in the metal cooling that fills a
mould during the casting process. Themould cavity is created
using tool steel and endowed with cooling channels. The
metal used to fill the cavity is an aluminium-silicon alloy.

We denote byΩ1 the domain filled by themetal and byΩ2

the mould, being Γ the interface between the metal and the
mould. Γ2 represents the interface between the mould and
the surrounding environment occupied by the air.

In the mould there are five cooling channels where the
cooling liquid circulates. The interfaces between the mould
and the cooling channels are denotes Ci , i = 1, . . . , 5.

The thermal properties including themetal (with subscript
1) and themould (with subscript 2) are given below (all quan-
tities are expressed in the international units system):

– The convection coefficient on Γ is denoted h12 = 500
for the external boundary and 300 for the internal one.

– The convection coefficient on Γ2 is denoted hair = 20.
– The convection coefficient between the mould and the
cooling liquid on Ci , ∀i , is denoted hc = 104.

– The product of the density by the heat capacity for the
part is ρ1Cp1 = 5.4 106.

– The product of the density by the heat capacity for the
mould is ρ2Cp2 = 1.5 106.

– The conductivity of the metal is λ1 = 70.
– The conductivity of the mould is λ2 = 40.
– The air temperature outside the mould is Tair = 20.

Fig. 2 Model geometry (meter unit for dimensions)

Fig. 3 Meshed computational domain

The system of equations to solve during the time interval
[0, tmax = 300] is given by

ρ1Cp1
∂T1
∂t

= −∇.q1, q1 = −λ1∇T1, (24)

for (x, t) ∈ Ω1\Γ × (0, tmax],

ρ2Cp2
∂T2
∂t

= −∇.q2, q2 = −λ2∇T2, (25)

for (x, t) ∈ Ω2\(Γ2 ∪ C1 . . . ∪ C5) × (0, tmax].

Fig. 4 Temperature distribution in degrees Celsius with homogeneous
parameters p1, . . . , p5
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Fig. 5 Temperature distribution in degrees Celsius with homogeneous parameters p1, . . . , p5 in the different components

These equations are subjected to the boundary conditions

q1.n = h12(T1Γ − − T2Γ +) on Γ −, (26)

q2.n = h12(T2Γ + − T1Γ −) on Γ +, (27)

q2.n = hair (T2Γ −
2

− Tair) on Γ2, (28)

q2.n = hc(T2C−
i

− pi ) onCi , (29)

where pi refers to the temperature of the fluid circulating
inside the channels and the superscripts Γ + and Γ − the two
sides of the interface.
The variational formulation for the problem on Ω1 with a
test field Ψ ∗ writes

∫

Ω1

Ψ ∗ρ1Cp1
∂T1
∂t

dΩ1 = +
∫

Ω1

∇Ψ ∗q1dΩ1 −
∫

Γ

Ψ ∗q1.n dΓ (30)

= −
∫

Ω1

λ1∇Ψ ∗∇TdΩ1−
∫

Γ

Ψ ∗h12(T1Γ − −T2Γ + )dΓ

(31)

This can be rewritten as

∫

Ω1

Ψ ∗ρ1Cp1
∂T1
∂t

dΩ1 +
∫

Ω1

λ1∇Ψ ∗∇T1dΩ1+
∫

Γ −
h12Ψ

∗T1Γ − dΓ − −
∫

Γ +
h12Ψ

∗T2Γ + dΓ + = 0 (32)

By skipping the details of the integration using the Galerkin
approach with peace-wise linear functions the discrete
system writes after simplification of the test field

M1Ṫ1 + K1T1 + D1T1 − P1T2 = 0 (33)

In Eqs. 32 and 33we have kept the same order of the different
contributions so that the reader can make the correspondence
between the different terms.
A similar approach for the domain Ω2 gives the following
system

M2Ṫ2 + K2T2 + (D2 + E2)T2 − P2T1 = J2, (34)

where the new terms E2 and J2 account for the contributions
of the convective heat transfer with air and with coolant.
The coupled system to be solved writes finally

(
M1 0
0 M2

)(
Ṫ1

Ṫ2

)
+

(
K1 + D1 −P1

−P2 K2 + D2 + E2

)(
T1

T2

)
=

(
0
J2

)

(35)

In order to take into account the phase change latent heat for
the metal, we use effective value of (ρ1Cp1)eff:

(ρ1Cp1)eff = ρ1Cp1 + A
exp(− (T−Tϕ)2

δ2
)

δ
√

π
. (36)

The introduction of this relation to model latent heat
effects comes from [42] and [43]. The idea consists to replace
the constant value of ρ1Cp1 by an effective value that is aug-
mented by a new curve in the form of a smoothed Dirac
function. The area under this curve represents the latent heat
and controlled by the parameter A. δ is the phase change tem-
perature range. It characterizes the global width of the curve.

Fig. 6 Temperature distribution in degrees Celsius with heterogeneous
parameters p1, . . . , p5
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Fig. 7 Temperature distribution
in degrees Celsius with
heterogeneous parameters
p1, . . . , p5 in the different
components

It is homogeneous to a temperature. Tϕ is the temperature
around which the phase change occur.

The numerical values considered in our study are A =
3.3.108, δ = 1.1, Tϕ = 380.

The simulation is done with an implicit approach in time
and with a time step equal to 1 second in a time interval of
300 seconds.

The five variable parameters in this study are the temper-
atures of the fluid circulating in the five cooling channels.
They will be denoted by p = p1, . . . , p5.

The domain of this study is presented in Fig. 2. The casted
part has a width equal to 0.1 and a height equal to 0.06.
The external dimensions of the mould are 0.16 × 0.12. The
computational mesh is represented in Fig. 3.

Figure 4 shows the thermal field on the mould and metal
assembly, when our five parameters are uniformly set to 20.
However, to better identify the distribution of temperature in
each region, an exploded representation is given in Fig. 5.
The initial conditions are such that temperature is equal to
500 degrees Celsius for themetal and 100 degrees Celsius for

Fig. 8 Modal decomposition
(space-time-parameters) of the
discrete temperature field T: F
functions (left), G functions
(center) with time expressed in
seconds and H functions (right)
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Fig. 9 Error versus number of modes considered in the modal decom-
position

the mould. The illustrations of figures are after 300s cooling
time.

Another illustration is shown in Figs. 6 and 7 where we
deliberately unbalanced different temperatures in the cooling

channels to see the consequence on the thermal distribution,
in both, the part and in the mould.

Parametric surrogate

Adesign of experimentswas generatedwith 200 simulations.
Each of the simulations start from the initial temperature field
described above, and the temperature evolution is calculated
during 300 seconds.

From these 200 simulations, 150 were used in the model
training, 30 were used for testing, and the remaining 20 will
be used for validation purposes as discussed later.

These 200 configurations, consisting of different param-
eters choices ph , were generated using the Latin hypercube
sampling. The interval in which the different parameters take
their values is [0, 100].

Even if, during the simulations, we are interested in the
thermal field in the global domain, part andmould, during the
machine learning phase, we will focus only on the domain
defined by the cavity because indeed our interest focus in
controlling the evolution of the temperature in the part, which
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Fig. 12 First validation case. Temperature in degrees Celsius at 100 and 300 seconds and associated errors in degrees Celsius
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Fig. 13 Second validation case. Temperature in degrees Celsius at 100 and 300 seconds and associated errors in degrees Celsius

can affect its properties in service, from the level of residual
stresses.

The temperature field in the domain defined by the cavity
was then stored for the 300 iterations and for the different
parameters, in a three-dimensional matrix description T.
The application of the singular value decomposition on this
matrix leads to different modes in space, in time, and in the
parameters space.

Figure 8 shows the first four modes of the decomposi-
tion. The left column depicts the modes in space. The central
column presents the time modes. Finally, the right column
presents the parametric modes. In the figures of the right col-
umn, the order of the points is completely arbitrary. In order

Fig. 14 Thermocouple location

to simplify the visual representation, we represented only
10% of the points in the design of experiments, that is 18
over the 180 (training and test sets). On the x-axis each point
represents a parameter data-point ph (the five temperatures
of the cooling fluid circulating in the five channels) and on
the y-axis the associated value of function Hk

h .
The relative norm of the residue represented in Fig. 9

proves that the first mode is the most relevant, and that 40
allows reducing the error by three orders of magnitude.
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Fig. 15 Experimental temperature (in degrees Celsius) during time (in
seconds) at the thermocouple location
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Fig. 16 Deviation and deviation model predictions (values of temper-
ature in degrees Celsius and time in seconds)

Two training set one based on random forest approach and
another based on polynomial interpolation were performed
on all the H -functions, the training set consisting of the cou-
ples (ph,Hk

h), ∀h, ∀k.
The graphs in Figs. 10 and 11 represent the performance of

the predictions for the first 12 functions Hk, k = 1, . . . , 12.
For each of the functions we represent the inferred value
versus the value given by the simulation (considered as a
reference value) and we indicate at the top of each image,
the performance of the training.

These performances are quantified from the root mean
square error (RMSE) and the R2 coefficient. The first line
deals with he set used for training and the second line is for
the set used for the test. By comparing both approaches, it
turns out that in this case the polynomial approach performs
better. An approach based on neural networks (not presented
here) provides results that are very close to those obtained
from the polynomial regression.

In order to quantify the performances of ourmethod on the
sets of parameters used for the validation, we will directly

Fig. 17 Numerical result at t = 300s (values in degrees Celsius)

compare the thermal fields with the reference simulations.
Indeed, these simulations used for the validation did not
intervene in the singular value decomposition. We will use
the modal basis extracted from the SVD built on the training
simulations combinedwith the estimation of the H -functions
based on AI-based regressions.

The comparison made directly on the thermal field on
all the 20 simulations used for the validation, gives devi-
ations which do not exceed 0.4 degree in the temperature
values. Figures 12 and 13 concern two arbitrary combina-
tions of parameters, and depict the temperature field at 100
and 300 seconds. The thermal fields presented here are the
ones obtained by reconstruction from the use of the surro-
gate. The bottom figures represent the error with respect to
the reference solution. These errors remain relatively small
and are acceptable for a prediction of the thermo-mechanical
properties induced by the thermal field.

Construction of the hybrid twin

Our objective in this part is to set up a hybrid twin of the cast-
ing process. This twin shall be able to learn the difference
between numerical simulations and experimental observa-
tions. As we have not yet developed experiments for the case
presented above, we will generate the experimental data syn-
thetically.

We use the numerical model previously developed as the
basis, while increasing the conductivities by 10% and reduc-
ing the convection coefficients by 10%. From now on, we
note by experimental results the numerical data generated
under these conditions.

The experimental observation is normally limited to a set
of thermocouples. In our case this set is presented in Fig. 14.
The indexes of the eight nodes where thermocouples are
placed are noted by i1, i2, . . . , i8.

For a set of parameter ph we denote by h
T
Exp
i ′ j , i ′ =

i1, . . . , i8, j = 1, . . . , 300 the matrix containing the experi-
mental temperature evolution at the eight thermocouples for
the 300 simulation time steps. We also denote by h

T
Num
i ′ j the

matrix containing the simulated temperature evolution at the
same nodes where the thermocouples are located.

Our aim is to establish a correction model based on the
tensor decomposition of the numerical simulation h

T
Num
i j =∑

k

Fk
i H

k
hG

k
j .

Let us denote the difference between experiments and
simulation (or model’s ignorance), at each thermocouple
location, by

h
T̄i ′ j =h

T
Num
i ′ j −h

T
Exp
i ′ j . (37)
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Fig. 18 Ignorance model
solution obtained by using the
minimization (left) and the
projection (right) procedures
(values is in degrees Celsius)

Ignorancemodel learnt through aminimization
procedure

In order to express this difference in the same space-time
basis (Fk

i ,G
k
i ), the following minimization problem should

be solved:

H̄ k
h = argmin

Hk

(
h
T̄i ′ j −

∑

k

Fk
i ′ Hk Gk

j

)
. (38)

It is important to mention at this point that in this mini-
mizationwe constrain the difference (ignorance) to bewritten
using the functions defined in the space-time description of
the numerical simulation. This can sometimes be slightly
restrictive. Later we will propose a less restrictive approach
later.

In the present case order to alleviate theminimization pro-
cedure, we limit the time period in which the minimization
applies to the interval j ′ = 200, . . . , 300.

In Fig. 15 the time evolution of the temperature at the eight
thermocouples locations are illustrated for the choice of the
parameters indicated in the figure. In Fig. 16 the deviation
(ignorance) between the numerical predictions and the exper-
imental observation is shown. In this figure the dashed lines
represent the results of the reconstructed model by using the
optimisation procedure described above.

The numerical prediction of our model is provided
in Fig. 17. The reconstructed ignorance is illustrated in
Fig. 18(left). All these figures are produced with the final
time (t = 300) and with the set of parameters indicated in
Fig. 15.

The predictions obtained by using the numerical model
enriched with the one of the ignorance is represented in
Fig. 19(left). Figure 20 shows the experimental temperature

at the thermocouples location. Finally, Fig. 21(left) gives the
global error of the hybrid twin model, where an impressive
error reduction can be identified.

Ignorancemodel learnt from a projection procedure

We propose here a more general procedure that alleviates
some of the constraints of the previous procedure. Here we
will use slightly different notations. The Eq. 19 is rewritten
using theKhatri-Rao product (�) generalized for threematri-
ces.

By defining the following matrices

F = [F1,F2, . . .],

G = [G1,G2, . . .],
H = [H1,H2, . . .],
Equation 19 can be rewritten as

T = F � G � H. (39)

The simulation matrix T has dimension (N × t × d) and
the size of F is (N × K ) where N is the number of nodes
involved in the cavity mesh, t the number of time steps, d the
DoE size and K is the number of modes.

Concerning the ignorance matrix, with n = 8 thermocou-
ples, the matrix size becomes (n × t × d). This ignorance
matrix reads

T̄ = F̄ � Ḡ � H̄, (40)

where

F̄ = [F̄1, F̄2, . . .](n×K ′),

Fig. 19 Superposition of the
numerical prediction and the
ignorance based on the
minimization (left) and the
projection (right) procedure
(values in degrees Celsius)
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Fig. 20 Experimental measurements (values in degrees Celsius)

Ḡ = [Ḡ1, Ḡ2, . . .](t×K ′),

H̄ = [H̄1, H̄2, . . .](d×K ′).

This matrix has been obtained from a new iterative SVD
(involving K ′ modes) completely independent of the one that
served to decompose the simulation solution.

The main idea consists in expressing this new decom-
position using the space-time functions of the numerical
decomposition. Let us denote by F′

(n×K ) the selection of the

n rows of the matrix F. The coordinates of the matrix F̄ into
the basis F′ define matrix a(K×K ′)

F̄ = F
′a, (41)

that defining an undetermined problem, its solution must
be regularized. In order to preserve the sparsity this system
is solved subjected to the L1-norm minimisation. Thus the
obtained solution a selects naturally the more adequate func-
tions of the numerical basis to express the ignorance.

Concerning the time basis, the coordinates of the matrix
Ḡ into the basis G results in matrix b(K×K ′)

Ḡ = Gb, (42)

that being usually overdetermined, a classical minimization
procedure performs well (but a L1 norm could be applied if

Fig. 22 Experimental temperature field

the system becomes undetermined)

b = [GT
G]−1[GT

Ḡ]. (43)

It is now possible the write the ignorance defined in Eq.
40 by using the space-time basis that comes from numerical
simulation

T̄(n×t×d) = (F′ a)(n×K ′) � (Gb)(t×K ′) � H̄(d×K ′), (44)

that can be then extended to the whole space domain by
simply replacing F

′ by F

T̄(N×t×d) = (F a)(N×K ′) � (Gb)(t×K ′) � H̄(d×K ′). (45)

In order to compare the performance of this projec-
tion based approach in relation to the minimization based
approach described in the previous section, the new proposed
procedure is applied to the case-study previously addressed.

The reconstructed ignorance is illustrated in Fig. 18(right).
The superposition of the ignorance with the numerical model
is depicted in Fig. 19(right). Finally Fig. 21(right) gives the
global error of the hybrid twinmodel, proving its exceptional
performance.

In the particular case of our so-called experimental solu-
tion that has been obtained numerically, temperature filed
could be known everywhere in the computational domain, as
illustrated in Fig. 22. Thus, the global error of the hybrid twin
model can be obtained for both, minimization and projection
procedures as depicted in Fig. 23.

Fig. 21 Prediction error of the
hybrid twin model with
minimization (left) and with
projection (right) (values in
degrees Celsius)
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Fig. 23 Hybrid Twin error for
both, the minimization (left) and
the projection (right) procedures

The performance of the projection method are better in
terms of error values but also in terms of error distribution
over the domain.

Remark

In order to specify an order of magnitude on the resolution
and storage cost we give a small illustration on the stud-
ied case. In our study we have a problem which contains
N degrees of freedom in space (about 1500), t time steps
(about 300) and d combinations of parameters (about 200).
The decomposition of the tensor T as written in Eq. 19 takes
around 5 CPU-seconds for each fixed point iteration involv-
ing about 100 alternating resolution of Eqs. 20, 21 and 22.
If 50 enrichments are performed the entire decomposition
takes about 250 CPU-seconds. In terms of memory storage
we are always dealing with a tensor size containing 9 · 107
real values that represents 0.7 Gigabytes assuming a double
precision of float number representation. In such situation if
we imagine that one would use a more refined mesh which
involves twicemore degrees of freedom in the physical space
representation (2N ) thus the total used memory is multiplied
by 2. It is the same for the CPU cost of the resolution of Eqs.
20, 21, 22. In fact the CPU evolution here is linear and not
quadratic because the latter systemdoes not contain inversion
but just a set of matrix product operations. However for the
hybridmodel as we have very little experimental information
(n = 8 instead of N ) the costs of calculation and storage are
much reduced.

Conclusion

The casting twin addressed in the present paper was devel-
oped on a combination of a singular value decomposi-
tion strategy with machine learning-based regressions. This
approach has been extended to establish amodel of ignorance
when experimental data is available. To our knowledge, the
combination of singular value decomposition with machine
learning-based regressions has very rarely been applied to
processes in general and we have not found any work in the
literature concerning the specific casting process. In most
studies using artificial intelligence for processes, inputs and

outputs are related to more macroscopic quantities. This new
proposed methodology was applied to a casting part where
the different temperatures of the fluid circulating in the cool-
ing channels were considered as variable parameters. The
errors of the digital twin, as well as the hybrid twin, were
evaluated at different instants of the cooling process and com-
pared to a reference solution.
The error and performance of the parametric surrogates and
the hybrid twin were convincing, proving the potential of the
proposed approach. Less than one degree Celsius was noted
formodel accuracy. This remains largelywithin the tolerance
interval in the temperature prediction of such a process.
The machine learning part convincingly showed the abil-
ity of the artificial intelligence models used to determine a
response surface with completely satisfactory metrics. Both
regressions tested (RandomForest and Polynomial) gave rise
to RMSE errors less than 0.1 for training and testing sets
associated to a determination coefficients generally higher
than 0.8. The application framework of the strategy put in
place within the framework of this work can be extended to
any transient problem without being limited to shaping pro-
cesses. This can be in particular the case of velocity field
evolution in a transient flow, or for example the evolution
of chemical concentration in a transient non-homogeneous
problem.
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