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Abstract
Due to the growing trend towards miniaturization, small-scale manufacturing processes have become widely used in various
engineering fields to manufacture miniaturized products. These processes generally exhibit complex size effects, making the
behavior of materials highly dependent on their geometric dimensions. As a result, accurate understanding and modeling
of such effects are crucial for optimizing manufacturing outcomes and achieving high-performance final products. To this
end, advanced gradient-enhanced plasticity theories have emerged as powerful tools for capturing these complex phenomena,
offering a level of accuracy significantly greater than that provided by classical plasticity approaches. However, these advanced
theories often require the identification of a large number of material parameters, which poses a significant challenge due to
limited experimental data at small scales and high computation costs. The present paper aims at evaluating and comparing
the effectiveness of various optimization techniques, including evolutionary algorithm, response surface methodology and
Bayesian optimization, in identifying thematerial parameter of a recent flexible gradient-enhanced plasticity model developed
by the authors. The paper findings represent an attempt to bridge the gap between advancedmaterial behavior theories and their
practical industrial applications, by offering insights into efficient and reliable material parameter identification procedures.

Keywords Material parameter identification · Gradient-enhanced plasticity · Evolutionary algorithm · Response surface
methodology · Bayesian optimization

Introduction

Manufacturing engineering is about designing and optimiz-
ing manufacturing processes that transform raw materials
or unfinished goods into desired products. It is responsible
for ensuring the quality of the final product along with the
safety and efficiency of the production lines. As the indus-
try evolves, there is a growing interest in producing lighter
and more sophisticated products with a lower carbon foot-
print and smaller or thinner components. This trend has
led to the development of new manufacturing processes at
lower scales, such as ultra-thin sheet metal forming, micro-
milling, and thin wire drawing, where product dimensions
are very small and loads are highly localized. In these sit-
uations, peculiar phenomena known as size effects occur,
causing the strength of materials to become dependent on
their geometric dimensions. These effects must be carefully
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considered in small-scale manufacturing processes to avoid
unexpected performance issues. In the context of numerical
simulation, such effects can be accurately reproduced using
advanced theories based on gradient plasticity [1–5]. Unlike
classical plasticity approaches which are based on the prin-
ciple of local action, gradient-enhanced theories are capable
of predicting non-uniform plastic deformations which cor-
relate with size effects as experimentally observed [6, 7].
These theories have received a strong scientific interest in
recent years and numerous gradient-enhanced models have
been developed in the literature [8–21]. Although providing
an accurate description of complex size-dependent material
behaviors [17, 21–25], thesemodels generally involve a large
number of material parameters, making their identification a
non-trivial endeavor. The ability of suchmodels to accurately
predict the behavior of small-scale products is intricately
tied to the relevance of the identification procedure and the
available data used to identify the material parameters, par-
ticularly the internal length scales.

Although physical interpretations of somemajor gradient-
enhanced material parameters have been proposed in the
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literature [26, 27], most of them still need to be calibrated
using experimental data. Begley and Hutchinson [28], Yuan
and Chen [6], and Abu Al-Rub and Voyiadjis [7] have shown
that microindentation is an effective test for identifying
the gradient-enhanced length scales. Alternative micro-scale
tests, such as micro-bending [29] and micro-torsion [17],
have also been investigated for parameter identification.
However, as pointed out by Voyiadjis and Song [30], some
important parameters, like the internal length scales, may
not be intrinsic and can depend on the model, the loading
conditions, the underlying deformation mechanisms, and the
microstructural evolution. Therefore, it is generally neces-
sary to identify the appropriate material parameters of a
given gradient-enhanced model for each specific test con-
dition, typically by defining an inverse problem based on a
simulation and an optimization scheme. This problem poses
three challenges. First, the number of material parameters
to be identified is usually much larger than in the case of
classical models. Second, experimental data are very limited
due to the high cost and complexity of experiments at small
scales. Third, the adoption of gradient-enhanced plasticity,
like strain gradient plasticity, in the simulation dramatically
increases the computation cost. As a result, the number of
the simulations required to evaluate a given set of material
parameters must be reduced as much as possible. These chal-
lenges constitute a significant obstacle to the deployment
of gradient-enhanced models in industrial settings, despite
the remarkable advancements in the development of increas-
ingly accurate and industry-ready models. As a step towards
overcoming this obstacle, the effectiveness of identification
procedures used for classical plasticity must be evaluated in
the context of gradient-enhanced plasticity assuming limited
data conditions. This is the primary objective of the present
paper, which is motivated by the notable lack of existing
research on the subject in the literature.

In the frameworkof classical plasticity,material parameter
identification by simulation-based inverse problem method-
ologies is an active topic, resulting in a rich toolbox of
methodologies for engineers and researchers.Gradient-based
optimization techniques have long been the cornerstone of
this domain. These techniques utilize the derivatives of the
objective function(s) to navigate the parameter space effec-
tively. Over the years, various gradient-based algorithms
have been developed and applied for material parame-
ter identification. Examples of these algorithms include
Conjugate Gradient [31], Levenberg-Marquardt [32–34],
and Sequential Quadratic Programming [35] algorithms.
Although widely used in material parameter identification,
the performance of gradient-based optimization methods is
sensitive to the initial guess of the parameters [36]. Fur-
thermore, they are not well-suited for complex problems
where the objective functions are not smooth or when their
derivatives are computationally expensive to obtain. A more

appropriate class of optimization techniques for this kind
of problems is the class of direct search (or derivative-
free) methods [37, 38]. Evolutionary methods [39], simplex
approaches [40], and pattern search techniques [41] are
typical examples of this class. Chakraborty and Eisenlohr
[42] used the Nelder-Mead simplex algorithm [40] to deter-
mine the parameters of a crystal plasticity constitutive law
based on nanoindentation experiments. Vaz et al. [43] used
a particle swarm optimization algorithm to identify inelas-
tic parameters for a deep drawing process. Agius et al. [44]
implemented a multi-objective genetic algorithm (MOGA-
II) for the search of a suitable set of material parameters
of the Chaboche elastoplastic model for an aluminum alloy.
Kapoor et al. [45] calibrated the parameters of a crystal
plasticity model for a dual-phase titanium alloy within the
framework of a genetic algorithm. Qu et al. [46] and Cha-
parro et al. [47] adopted a combination of a genetic and a
gradient-based optimization method by using the results of
the former as the initial guess for the latter. In an originalwork
within the context of gradient-enhanced plasticity, Pantegh-
ini et al. [17] have applied the Coliny evolutionary algorithm
to identify parameters of a distortion gradient plasticity
model. The identification procedure has required several tens
of thousands of finite element simulations. Despite their
robustness, direct search methods generally require a large
number of objective function evaluations to reach conver-
gence [48]. This can be particularly costly in the context of
gradient-enhanced plasticity, where a large number of mate-
rial parameters are generally involved.

Considering the limitations of the aforementioned opti-
mization approaches, alternative techniques based on the
Response Surface Methodology (RSM) have gained atten-
tion in the realmofmaterial parameter identification [49–51].
RSM enhances efficiency by approximating the objective
function with a cheap-to-evaluate metamodel, also called
surrogatemodel [51]. This approach enablesmaterial param-
eter identification to be carried out using the computationally
efficient metamodel, bypassing the need for more resource-
intensive simulations. Kakaletsis et al. [52] have demon-
strated the suitability of machine learning-based (Gaussian
process and neural network) metamodels to identify the
constitutive parameters of soft materials. However, careful
attention must be paid to the accuracy and reliability of the
metamodel, as any inaccuracies can propagate into the mate-
rial parameter identification process. Moreover, the initial
dataset used to train the metamodel should be robust and rep-
resentative to ensure that the approximation is valid across
the parameter space of interest. This could be problematic
for complex problems with little or no prior knowledge to
guide the preparation of this dataset. A promising approach
to overcome this difficulty is to apply the Bayesian opti-
mization with an adaptive or infilling sampling strategy
[53]. This approach starts with a probabilistic metamodel
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based on a minimal dataset and iteratively updates it using
strategically chosen sampling points. This iterative sampling
process allows for more oriented sampling in areas around
the optimized solution, minimizing the number of objec-
tive function evaluations. Kuhn et al. [54] and Veasna et al.
[55] have recently applied theBayesian optimization strategy
based on Gaussian process metamodels to identify the mate-
rial parameters of complex crystal plasticity models. These
authors have reported the promising outcomes of this strat-
egywith respect to classical optimization techniques. Thanks
to its efficiency, the Bayesian optimization has emerged as
a powerful solution for various design problems [56]. Its
application to gradient-enhanced plasticity has not yet been
explored.

The present paper aims at investigating and comparing
different optimization approaches, including evolutionary
algorithm, response surfacemethodology, andBayesian opti-
misation, for the identification of thematerial parameters of a
recent flexible gradient-enhancedmodel developed by Jebahi
et al. [5]. The choice of the objective functions will be dis-
cussed in detail. After the present introduction, the paper
is organized as follows. Section “Inverse problem” presents
the main features of the gradient-enhanced model used in
this work and the inverse problem for material parameter
identification. Section “Identification procedures” details the
identification procedures to be investigated and compared in
the paper. The associated results are discussed in Section
“Results and discussions”. Finally, Section “Conclusion”
presents some concluding remarks.

Inverse problem

The present investigation of material parameter identifica-
tion is performed considering the recent gradient-enhanced
crystal plasticity model developed in [5], which belongs to
the most widely used class of strain gradient plasticity mod-
els in the literature. The main features of this model will be
recalled in the next forthcoming subsection. Following this,
the inverse problem associated with the identification of its
material parameters is defined.

Constitutive model

A flexible Gurtin-type strain gradient crystal plasticity
(SGCP) model, which has recently been developed in [5],
is involved in this study. In this model, both displacement
and plastic slip fields are considered as primary and con-
trollable variables. As a consequence, it relies on two kinds
of equilibrium equations, which are referred to hereafter as
macroscopic and microscopic equilibrium equations. The
macroscopic equilibrium equations as well as the associated

boundary conditions are equivalent to those implied in tra-
ditional plasticity models and can be written as (static case):

{∇ · σ = 0 in V
σ · n = t on S (1)

where V is the studied domain having as boundary S, σ is
macroscopic (Cauchy) stress tensor, n is outward unit nor-
mal to S, t is macroscopic traction vector, and ∇ · (∗) is the
divergence operator. The microscopic counterparts, which
are associated with the plastic slips (viewed as primary vari-
ables), can be written as (static case):

{
τα + ∇ · ξα − πα = 0 in V

ξα · n = χα on S (2)

where τα is resolved shear stress on slip system α, πα

and ξα are respectively microscopic stress scalar (work-
conjugate to plastic slip γ α) and microscopic stress vector
(work-conjugate to plastic slip gradient ∇γ α), and χα is
microscopic traction scalar on slip system α. To solve the
above equilibrium equations, constitutive laws governing
the evolution of the involved macroscopic and microscopic
stresses are required. These constitutive laws have been
introduced in [5] assuming quadratic elastic strain energy
and generalized power-law defect energy. Furthermore, to
increase the flexibility of the proposed model, first- and
higher-order dissipative processes are assumed to be uncou-
pled. For more details about the SGCP model, the reader is
referred to the original paper [5]. Considering a 2D plane
strain condition with only planar slip systems, the overall
constitutive equations can be expressed in a simplified form
as follows [5]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Ṡα
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ξ , Sα

ξ (0) = Sξ0 ≥ 0

ėα
π = ∣∣γ̇ α

∣∣ , ėα
ξ = ∥∥ldis ∇αγ̇ α

∥∥
α = 1, 2, ..., q

(3)

where λ and μ are the first and second Lamé elastic mod-
uli, εe is elastic strain tensor, X0 is higher-order energetic
slip resistance, Sπ0 and Sπ are respectively initial and cur-
rent first-order dissipative slip resistances, Sξ0 and Sξ are
respectively initial and current higher-order dissipative slip
resistances, Hπ and Hξ are respectively first- and higher-
order hardeningmoduli, len and ldis are respectively energetic
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and dissipative length scales, n is defect energy index, sα is
slip direction associated with slip system α, eα

π and eα
ξ are

respectively first- and higher-order effective plastic strains
for slip system α, γ̇ α

0 > 0 is a constant strain rate repre-
sentative of the flow rates of interest, m > 0 is a constant
characterizing the rate-sensitivity of the considered material,
and q is the total number of slip systems. In total, twelve
material parameters are involved in system Eq. 3, as summa-
rized in Table 1.

It isworth noting that the reference slip rate γ̇ α
0 and the rate

sensitivity parameter m are introduced in the model for the
purpose of numerical regularization. These parameters are
adjusted in such a way as to obtain a nearly elastic-plastic
behavior, and consequently, they are not considered in the
present identification study. Similarly, the elastic moduli (λ
and μ) are generally well-known for a given material and
therefore are also excluded from this study. Finally, the defect
energy index is deliberately set to n = 2 for the hardening
behavior to be more consistent with common experimental
observations. In summary, seven key parameters are involved
in the proposed identification study, each crucial in defining
the mechanical behavior of materials (Table 1).

Reference data

The present study of identification procedures is carried out
based on a widely used benchmark in the context of gradient-
enhanced models, which is the cyclic shear response of a
constrained plate. In the absence of pertinent experimen-
tal data associated with this benchmark, synthetic numerical
data, generated from presumed reference values of the SGCP
model parameters (Table 1), are used as reference data for
parameter identification. It is important to emphasize that
these reference values are deliberatelymasked from the iden-
tification algorithms to ensure objectivity and reliability of
the work findings. Although the identification of material

parameters using real experimental datawould bemore inter-
esting and challenging due to the presence of noise and the
extent to which the constitutive model is valid, a well-posed
problem using synthetic data does not entirely hinder the
evaluation of the effectiveness of identificationmethods. The
results of this study serve as a first step towards application
in real settings.

Figure 1 presents the geometrical model associated with
the considered benchmark. It consists of a simple 2D crys-
talline strip with h × w dimensions and two symmetrically
tilted slip systems with respect to e1 direction (θ1 = −θ2 =
60◦). The strip is clamped at the bottom edge:

u1(x1, 0) = u2(x1, 0) = 0 (4)

where u1 and u2 are displacements in e1 and e2 directions.
The upper edge is subjected to a loading-unloading cycle of
displacement in e1 direction:

u1(x1, h) = hΓ and u2(x1, h) = 0 (5)

where Γ is the prescribed macroscopic shear strain which
goes from 0 to 0.01 and back to 0. In addition to these classi-
cal boundary conditions, the upper and lower edges are also
assumed to be passivated (no plastic slip on these edges):

γ α(x1, 0) = γ α(x1, h) = 0 for α = 1, 2 (6)

In order tomodel the infinite width of the strip in e1 direction,
periodic boundary conditions are imposed on the left and
right edges:

ui (0, x2) = ui (w, x2) for i = 1, 2 (7)

γ α(0, x2) = γ α(w, x2) for α = 1, 2 (8)

The simulation of the sheared strip is conducted using
the commercial finite element code Abaqus/Standard. The

Table 1 Material parameters of
the strain gradient crystal
plasticity model, their reference
values and ranges for the
identification

Material parameter name Symbol Reference value Range Unit

First Lamé elastic modulus λ 150 Fixed GPa

Second Lamé elastic modulus μ 100 Fixed GPa

Reference slip rate γ̇ α
0 0.04 Fixed s−1

Rate-sensitivity parameter m 0.01 Fixed –

Higher-order energetic slip resistance X0 100 [0, 500] MPa

Initial first-order dissipative slip resistance Sπ0 50 [0, 100] MPa

Initial higher-order dissipative slip resistance Sξ0 10 [0, 100] MPa

First-order hardening modulus Hπ 200 [0, 500] MPa

Higher-order hardening modulus Hξ 100 [0, 500] MPa

Energetic length scale len 8 [0, 10] ¯m

Dissipative length scale ldis 5 [0, 10] ¯m

Defect energy index n 2 Fixed –
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Fig. 1 Illustration of a 2D crystalline strip of height h and of width w

with two slip systems subjected to pure shear load

aforementioned SGCP model is implemented in this code
using a User-ELement (UEL) subroutine. The strip is dis-
cretized using 20 quadratic finite elements, representing a
good compromise between accuracy and computation cost.
Considering this number of elements, the duration of a typical
simulation ranges from 60 to 90 minutes with a single core
of the Intel Core i9-10900K CPU allocated for computation.

Unlike when using classical (local) plasticity theories, the
dataset required to identify the SGCP material parameters
(particularly those defining size effects) must be generated
considering more than one geometrical size of the strip.
Accounting for the scarcity of data at small scales, only
three strip configurations with different heights (h = 8mm,
10mm and 15mm) are simulated, all using the same ref-
erence constitutive parameters as given in Table 1. The
associated simulation results, in terms of macroscopic shear
stress as a function of macroscopic shear strain, are used
as reference data for identifying the SGCP material param-
eters (Fig. 2a). As can be observed in Fig. 2a, the initial
yield and the hardening slope increase as the strip height
decreases. These effects, known as size effects, are naturally
captured by the SGCP model thanks to its ability to pre-
dict plastic deformation gradients, as illustrated in Fig. 2b.
One may also combine macroscopic shear stresses and plas-
tic strain distribution as reference data for the identification.
The effectiveness of this strategy will be discussed later. It
should be noted that the small oscillations observed at the

elastic-plastic transition are due to the relatively large time
step used in the simulations. While these oscillations can be
eliminated by employing a smaller simulation time step, they
were deliberately retained to mimic experimental artifacts,
like noise in experimental data. An effective filtering tech-
nique is necessary to process them without compromising
the identification process. As will be explained later, this is
done by approximating the response curves using piecewise
linear functions.

The objective of the inverse problem is then to iden-
tify from these reference macroscopic responses the seven
adjustable constitutive parameters: higher-order energetic
slip resistance X0, initial first- and higher-order dissipative
slip resistance Sπ0 and Sξ0, first- and higher-order hardening
modulus Hπ and Hξ , energetic and dissipative length scales
len and ldis . A large search space is covered with parameter
bounds listed in Table 1.

Identification procedures

This section describes different identification strategies
selected in this investigation for the identification of mate-
rial parameters. First, different choices for the definition of
objective functions are provided. Next, three optimization
procedures, including evolutionary algorithm, response sur-
face methodology and Bayesian optimization, are presented.

Objective functions

To solve the inverse problem inside an optimization frame-
work, one first needs to define the objective functions that
quantify the similarity between the simulation outputs and
the observations. The inverse problem is solved by minimiz-
ing these objective functions,whichmust be carefully defined
to ensure accurate identification of the material parameters.
In this study, as the elastic and plastic behaviors are nearly
linear, the macroscopic cyclic response of the sheared strip
can be characterized by three representative stress scalars:
the elastic limit during the loading stage, denoted as σ1; the
flow stress at the maximum prescribed strain Γ = 0.01,
denoted asσ2; and the elastic limit during theunloading stage,
denoted asσ3.While the flow stressσ2 atΓ = 0.01 can easily
be obtained, the extraction of the elastic limits (σ1 and σ3) is
more challenging, owing to the presence of small oscillations
at the elastic-plastic transitions. To avoid the application of
excessively small time steps for eliminating these oscilla-
tions, the two stresses are determined from the breakpoints
of two-piecewise linear functions fitted on the elastic and
plastic slopes of the macroscopic curves (Fig. 3). In the case
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Fig. 2 (a) Reference macroscopic shear responses and (b) distribution of plastic shear strains along the strip thickness at the maximum prescribed
macroscopic strain Γ = 0.01 for three different strip heights

of single-objective optimization, the objective function can
then be defined as the Mean Squared Relative Error (MSRE)
across all representative stresses (i.e., σ1, σ2 and σ3) and strip
configurations (i.e., different strip heights):

f = 1

3m

m∑
i=1

3∑
j=1

(δ
i

j )
2

(9)

where m is the number of strip configurations used for the
identification (m = 2 or 3 in this study), and δ

i

j is the relative

error associated with the i th strip configuration and the j th

representative stress:

δ
i

j = σ i
j − σ̂

i

j

σ̂
i

j

(10)

Here, σ̂
i

j and σ
i

j represent respectively the reference and sim-
ulated stress values. This objective function is used in the
comparative study of the optimization procedures.

To explore the possibility of incorporating strain field
measurements into the identification process, an alternative
definitionof the objective functionwill be evaluated and com-
pared with the formulation given by Eq. 9 in the Bayesian
optimization framework:

f = 1

2

⎛
⎝ 1

3m

m∑
i=1

3∑
j=1

(δ
i

j )
2 + 1

mn

m∑
i=1

n∑
k=1

(η
i

k)
2

⎞
⎠ (11)

where n = 39 is the number of finite element nodes along the
strip thickness at which the plastic shear strains are measured
(the nodes at the top and bottom boundaries, where boundary
conditions are applied, are excluded), and η

i

k is the relative

Fig. 3 Illustration of the determination of the elastic limits from the macroscopic response
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error associatedwith the i th strip configuration and the plastic
shear strain at the kth finite element node:

η
i

k = (γ
p
12)

i
k − (γ̂

p
12)

i

k

(γ̂
p
12)

i

k

(12)

Here, (γ̂
p
12)

i

k and γ
p
12)

i
k represent respectively the reference

and simulated plastic shear strain values. The objective
function defined by Eq. 11 contains two parts: the first
part controlling the relative error on the macroscopic shear
stresses and the second part controlling the relative error on
the plastic strain distribution. It should be noted that, in order
to capture the full form of the plastic strain distribution, the
latter is evaluated on a rather large number of points (n = 39)
along the strip thickness.

To explore the suitability of multi-objective optimization
for the inverse problem being studied, two alternative defi-
nitions of multi-objective functions are also introduced and
evaluated in the Bayesian optimization framework. In one
definition, an objective function is defined for each strip con-
figuration:

f
i = 1

3

3∑
j=1

(δ
i

j )
2

with i = 1, ...,m (13)

In the second definition, an objective function is defined for
each representative stress:

f j = 1

m

m∑
i=1

(δ
i

j )
2

with j = 1, 2, 3 (14)

Optimization outcomes obtained using these multi-objective
functions will be compared with each other and with those
obtained using single-objective function Eq. 9.

Optimization algorithms

This subsection briefly introduces the three selected opti-
mization methods designed to address the inverse problem
described earlier, namely evolutionary algorithm, response
surface methodology based on Gaussian process metamod-
els and Bayesian optimization.

Evolutionary algorithm

Evolutionary algorithms refer to a class of stochastic opti-
mization algorithms that employ mechanisms inspired by
the principles of biological evolution, such as selection,
recombination and mutation [39]. On the basis of how these
nature-inspired operators are implemented, the class is cat-
egorized into different subclasses that include, but are not

limited to, genetic algorithm, differential evolution, evolution
strategy. In general, an evolutionary algorithm begins with a
population of randomly generated candidate solutions called
individuals. In each iteration, the individuals are evaluated
and the best ones are selected based on the corresponding
value of the objective function. The selected individuals,
called parents, are then recombined and/or mutated to gener-
ate a new population. Through an iterative process involving
multiple generations, the population evolves towards an opti-
mal solution.

While a large number of evolutionary algorithms are avail-
able in the literature, they usually require a large population
and, thus, a large number of objective function evaluations to
obtain a good solution [57]. However, this configuration can-
not be allowed in the context of gradient-enhanced plasticity
because the computation cost associated to the evaluation
of objective function is highly expensive. Consequently, it
is crucial that the selected evolutionary algorithm is able to
work effectively on a limited population size. Considering
this requirement, the Covariance Matrix Adaptation Evolu-
tionStrategy (CMA-ES) algorithm is selected to represent the
class of evolutionary algorithms in this study. CMA-ES is a
stochastic derivative-free optimization algorithm for difficult
(non-convex, noisy) optimization problems in continuous
search spaces. It belongs to the evolution strategy subclass.
Initially introduced by Hansen and Ostermeier in 2001 [58],
CMA-ES is currently regarded as one of the state-of-the-
art algorithms for black-box optimization. The algorithm
has been shown to be effective with a small population [59,
60]. In addition, the majority of its internal parameters are
autonomously adjusted by the algorithm rather than requir-
ing user input. Using CMA-ES, Cauvin et al. [61] identified
the parameters of a crystal plasticitymodel in an inverse anal-
ysis to reproduce the macroscopic stress-strain curves under
uniaxial tension.

Figure 4 shows the flowchart of CMA-ES. During an i-th
iteration, a population of sizeλ is sampled fromamultivariate
Gaussian distribution around a mean point mi in the search
space:

xik = mi + σ i zk with zk ∼ N (0,Ci ) for k = 1, ..., λ

(15)

where σ i is a positive scalar called the step size and Ci

is called the covariance matrix. Phenomenologically, Ci

represents the direction along which the distribution is elon-
gated while σ i indicates the extent to which the mutation
should occur in that direction. The candidates are evaluated
and sorted, and a number μ of best candidates are selected
(μ < λ). The mean point, the step size and the covariance
matrix for the next iteration are then updated based on the
selected candidates. The mathematical formulations for the

123

Page 7 of 19    10International Journal of Material Forming (2024) 17:10



Fig. 4 Flow chart of the CMA-ES algorithm

update can be found in the original paper [58]. Figure 5
demonstrates the principle of the CMA-ES for the optimiza-
tion of a simple 2D function. The algorithm requires the user
to provide the population size, the initial mean point and the
initial step size. In this study, a population size λ = 5 is
selected. An initial step size equal to one-fourth of the width
of the search domain is set. At the start, five random candi-
dates are evaluated and the one with the lowest objective is
chosen for the initial mean point.

Response surface methodology

This approach implies the training of a metamodel that
approximates the objective function for any given set of
material parameters. Initially, a number of parameter sets are
sampled in the search space and then evaluated by the simula-
tion to construct the database that is required for the training.
Given a fixed sample size and without any prior knowledge
about the objective function landscape, the sample should
be evenly distributed across the entire search space. In this
study, the sampling is performed using the scrambled Sobol
sequence [62–64]. This method has an advantage over the
Latin Hypercube sampling in that one can incrementally
add more points to an existing sample. When an increase
of the sample size is needed to improve the accuracy of an
existing metamodel, it allows to reuse data generated for
the initial sample. This advantage is useful in the context
of gradient-enhanced plasticity where the data generation is
highly expensive.

Besides the classic choice of polynomial regression, vari-
ous algorithms based onmachine learning can be used for the
metamodeling. Examples of these algorithms include radial
basis functions [65], support vector machine [66], ensembles
of decision trees [67], Gaussian Process (GP) [68], artifi-
cial neural network [69], optimal transport-based surrogate
model [70] and proper generalized decomposition (PGD)-
based regression [71].When the data generation is expensive,
it is crucial that the regression metamodel is able to give reli-
able predictions given a small dataset. In this context, GP
regression [68] emerges as a viable option and is selected
for this study. GP is known for its data-efficiency and its
ability to handle high-dimensional data. In addition, as a
non-parametric algorithm, it does not require the user to
tune hyperparameters which are optimized directly on the
dataset. Consequently, there is no need to divide the dataset
into training and validation sets, and all data can be used
for the training of the metamodel. One major drawback of
GP is its poor scalability for large datasets. However, as the
data in this study is limited, this concern is irrelevant. Indeed,
GP is one of the most frequent metamodeling techniques in
metamodel-based simulation optimization [72].

The idea of GP is to model a function f (x) as a stochastic
process or a collection of random variables such that its val-
ues at any finite set of inputs follow a multivariate Gaussian
distribution:

⎛
⎜⎜⎜⎝

f (x1)
f (x2)

...

f (xn)

⎞
⎟⎟⎟⎠ ∼ N (m(x), K ) with

K =

⎡
⎢⎢⎢⎣
k(x1, x1) k(x1, x2) · · · k(x1, xn)

k(x2, x2) · · · k(x2, xn)
. . .

...

k(xn, xn)

⎤
⎥⎥⎥⎦ (16)

where xi is an input vector which is a set of material param-
eters in this study, m(x) is a mean function, and K is
a symmetric covariance matrix. GP generalizes the multi-
variate Gaussian distribution to infinite dimensionality by
introducing the covariance function k(x, x ′) such that k is
large when x and x ′ is close to each other. This behavior
reflects the similarity of the function f (x) at two adjacent
inputs. In this study, the Radial Basic Function also known
as Squared Exponential is used for the kernel :

k(x, x ′) = σ 2 exp(−||x − x ′||2
2l2

) (17)

where ||.|| is the Euclidean distance, and σ and l are two
hyperparameters. The prediction of a GP metamodel is a
normal distribution conditioned on the observations in the
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Fig. 5 Illustration of the CMA-ES algorithm for the minimization of a simple 2D function

training dataset. The mean and variance of the predicted dis-
tribution refers to the most probable predicted value and the
associated uncertainty respectively.

At the start of this study, a GPmetamodel has been trained
to directly approximate the objective function defined in Eq.
9. However, the metamodel accuracy, when trained with a
limited dataset, is insufficient to achieve a good optimized
solution. The problem is related to the fact that the similarity
between the simulated and reference macroscopic responses,
originally characterized by a vector of different representa-
tive stresses, is compacted into an unique scalar. As a result,
the information about the dependence of each representa-
tive stress on the material parameters, which is relatively
monotonic and therefore easier to learn, is mixed together
resulting in a scalar that is more complicated to predict. To
overcome this issue, it is decided to train different GP mod-
els, each approximating a distinct representative stress from
a strip configuration involved in the objective function. The
mean predictions of these models are then aggregated using
Eq. 9 to give a final metamodel approximating the objective.
Finally, a gradient-based optimization algorithm is applied
on the final metamodel for the search of the best parameter
set. To avoid local minima, the optimization is performed
with different initializations. The final solutions are vali-
dated by the simulation. This procedure is summarized in
Figs. 6.

Bayesian optimization

In the Bayesian optimization, GP probabilistic metamodels
are constructed to approximate the objective function. Its
flow chart is shown in Fig. 7. This algorithm distinguishes
itself from other optimization approaches by two features :
adaptive sampling strategy and acquisition function. During
each iteration, the algorithm learns fromprevious evaluations
to select new potential candidates to be evaluated next. At the
beginning of the algorithm, only a small dataset is required,
and the dataset is progressively enriched during the optimiza-
tion. This principle allows to focus the sampling in regions
where the objective is expected to be minimized. Con-
sequently, the underlying surrogate model exhibits higher
accuracy in proximity to the solutions as compared to con-
ventional metamodel-based approaches, where the dataset is
uniformly sampled throughout the search space. The crite-
rion used to decide the new candidates to be evaluated and
added to the dataset is based on the introduction of the acqui-
sition function. Based on the predicted mean and uncertainty
variance given by the probabilistic metamodel, the acqui-
sition function is defined over the search space such that its
value is high in regions near potential solutions. New samples
are thus chosen in each iteration by maximizing the acqui-
sition function. The resolution of these internal optimization
problems is much simpler than the original problem as the
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Fig. 6 Flow chart of the identification procedure by GP-based RSM

acquisition function is cheap to evaluate and any gradient-
based or evolutionary algorithms can be used. Compared to
RSM, the incorporation of the uncertainty of the metamodel
into the acquisition function allows to achieve an optimal
balance between exploration (sampling in regions where the
objective is unknown) and exploitation (sampling in regions
where the objective is believed to beminimal), hence increas-
ing the sampling efficiency. The principle of the Bayesian
optimization is illustrated in Fig. 8. Each iteration can be
summarized as follows:

• Step 1: New solution candidates are selected by maxi-
mizing the acquisition function

• Step 2: Evaluate the new candidates through the simula-
tion

• Step 3: Add the new candidates and their evaluation into
the database

Fig. 7 Flow chart of the Bayesian optimization

• Step 4: Update the surrogate model and go for the next
iteration.

For our inverse problem,we opt for theExpected Improve-
ment which is a common acquisition function for a single-
objective function. Its formulation is as follows:

E I (x) = [
μ(x) − f (x∗)

]
�(z) + σ(x)ϕ(z) with

z = μ(x) − f (x∗)
σ (x)

) (18)

where x is a sample in the search space, μ(x) and σ(x) are
respectively the mean and uncertainty variance predicted by
the probabilistic GP metamodel, f (x∗) is the objective at
the current best solutions, and � and ϕ are respectively the
cumulative distribution function and the probability density
distribution of the standard normal distribution. Furthermore,
it is possible to handle multi-objective optimization in the
framework of the Bayesian optimization with the Expected
Hypervolume Improvement acquisition function [73]. It is
based on the concept of the hypervolume indicator in multi-
objective optimization which measures the volume of the
dominateddomain in the objective space [74].By introducing
this indicator, multi-objective optimization can be translated
into single-objective optimization.Moreover, in order to take
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Fig. 8 Illustration of the
Bayesian optimization for the
minimization of a simple 1D
function

advantage of the capability of the computational system to
run simulations in parallel, we opt for a batch version of
the acquisition functions ins this study. It allows to deter-
mine more than one candidate to be evaluated in the next
iteration before the metamodel is updated. Finally, the non-
negative nature of the objective functions used in this study
is carefully considered because a negative prediction by the
metamodel (including the uncertainty range) will exaggerate
the relevance of a solution and may mislead the sampling.
However, it is not trivial to directly apply these constraints to
the prediction of the GPmetamodel. The author solution is to
approximate and optimize instead the logarithm of the origi-
nal objectives so that the new objectives can take positive and
negative values. The fact that the logarithmic objective of an
ideal solution is equal to negative infinity is not a concern as
it is technically impossible to find in practice. Indeed, good
parameter sets are found for a logarithmic objective less than
-12 in this study.

Implementation

All identification procedures described in the previous sub-
section and summarized inFigs. 4, 6 and7 are implemented in
Python. The evaluation of material parameter sets is wrapped

in a Python function that automatically sets up, runs sim-
ulations, and post-processes the results by making use of
the Abaqus Scripting Interface. The evolutionary algorithm
CMA-ES and the Bayesian optimization are applied using
the pymoo [75] and Trieste [76] packages, respectively. Both
packages provide an Ask-Tell interface, allowing for exter-
nal evaluation of the objective function via Abaqus/Standard
calculations. In the case of multi-objective Bayesian opti-
mization, the Fantasizer function in Trieste is used to
implement the batch version of the acquisition functions. In
the above optimization procedures, the optimization loop is
stopped after 200 objective function evaluations. Concerning
the response surface methodology RSM, Gaussian Process
metamodels are trained using the “GaussianProcessRegres-
sor” class provided by the scikit-learn package [77].

Results and discussions

The three selected strategies for the identification of the
SGCP constitutive parameters are investigated in this sec-
tion. These strategies are first benchmarked using the same
reference data and objective function to ensure an unbiased
comparative assessment. The most effective strategy is then
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used to investigate the impact of other important identifica-
tion aspects, namely the number of reference data and the
choice of the objective function(s).

Comparison of optimizationmethods

For comparative evaluation, the three optimization methods
described in Section “Optimization algorithms” are applied
to solve the inverse problemdefined in Section “Inverse prob-
lem”, taking into account a minimal set of reference data.
Specifically, only two referencemacroscopic shear responses
corresponding to the two strip heights h = 8mm and 10mm
are involved in thepresent subsection.The reference response
corresponding to the strip height 15mm is not used for the
identification but is reserved for the validation of the identi-
fied parameters. The single-objective function given by Eq.
9 is used in the three optimization algorithms. To maintain
consistency in the comparison, a population size of λ = 5
is set for the CMA-ES algorithm and a batch size of 5 is
set for the Bayesian optimization. This implies that each
iteration of both algorithms involves the same number of
evaluations of the objective function. For the RSM, three
datasets of different sizes (50, 100 and 200) are used for train-
ing of the GPmetamodels. Data points are incrementally and
quasi-randomly added using the scrambled Sobol sequence
to generate datasets of various sizes. In order to quantify
the efficiency and performance of the optimization algo-
rithms under consideration, the Root Mean Squared Relative
Error (RMSRE) is employed as an evaluation metric. For a
given number of objective function evaluations, RMSRE is
computed as the square root of the objective function Eq. 9
corresponding to the best solution. This metric provides a
quantifiable measure of the mean discrepancy between sim-
ulation outputs and reference data.

Figure 9 presents the RMSRE evolution as a function of
the number of evaluations, obtained with the three optimiza-
tion strategies. For comparison purposes, results obtained
with no special optimization technique are also provided in
this figure. These results correspond to the best solutions
obtained fromvarious-sized quasi-randomdatasets. Remark-
ably, the three involved optimization procedures achieve
errors less than 1% within a span of 200 evaluations, a dis-
tinct improvement over the best result (> 7% error) observed
from a set of 200 quasi-randomly selected parameter com-
binations. This contrast not only underscores the importance
of formal optimization techniques but also serves to caution
against reliance on haphazard trial-and-error approaches for
parameter identification.

From a macroscopic point of view, the obtained optimiza-
tion results demonstrate the relevance and effectiveness of the
selected optimization strategies for material parameter iden-
tification within a gradient-enhanced framework. However,
upon closer inspection, the RSM and Bayesian techniques

Fig. 9 RMSRE versus number of evaluations by different approaches
for the case of one unique objective function

display superior effectiveness. Using fewer than 50 objective
function evaluations, all three strategies show comparable
performance, with RMSRE dropping rapidly as the number
of evaluations increases. Beyond 50 evaluations, the evolu-
tionary algorithmCMA-ES begins to exhibit large stagnation
plateaus at 2% and 1% errors. No further improvement is
observed after 130 evaluations. As will be discussed later,
although the obtained errors seem to be small, the corre-
sponding constitutive parameters may poorly predict size
effects (i.e., the response of a new strip configuration with a
different height), due to the limited number of reference data
used for the optimization. The CMA-ES stagnation prob-
lem has already been reported in the literature [78] and is
identified as a major limitation of population-based meta-
heuristic algorithms. This issue is particularly problematic
when dealing with computationally demanding models, like
those based on gradient-enhanced plasticity. On the contrary,
the RSM and Bayesian procedures show smoother RMSRE
evolution and provide better optimization results, achieving
less than 0.5% errors at 200 evaluations.

Although sharing similarities, the closely matched perfor-
mance levels obtained by the latter two procedures may seem
counter-intuitive. Specifically, one would expect that the
adaptive sampling strategy used in the Bayesian optimization
would outperform the quasi-random sampling used in RSM
optimization. This unexpected outcome can be attributed to
the differences in the choice of themetamodel output between
the two techniques. In the Bayesian optimization, the Gaus-
sian process (GP)metamodel is trained to directly predict the
final objective which has a complex form. This requires sub-
stantial training effort, although this is somewhat alleviated
by the use of adaptive sampling. In contrast, the objective
metamodel in RSM optimization is derived from individ-
ual stress metamodels, which are comparatively easier to
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construct even with quasi-random sampling, due to simpler
relationships between each stress and the material parame-
ters.

Figure 10 shows the macroscopic responses simulated
with the best constitutive parameters obtained after 200 eval-
uations, using the three optimization methods. The CMA-ES
obtained parameters reproduce accurately the two responses
corresponding to strip heights h = 8mm and 10mm, which
are used as reference data for the identification process,
explaining the obtained RMSRE of 1% at 200 evaluations.
However, a relatively poor prediction of the response corre-
sponding to h = 15mm is obtained, showing poor prediction
of size effects. Therefore, the reached RMSRE is not suf-
ficient to correctly capture these effects, considering the
minimal dataset of two responses used in the optimization
process. On the contrary, all the macroscopic responses asso-
ciated with the RSM and Bayesian methods are in very good
agreement with the reference results for both the strip con-
figurations used in the optimization process (h = 8mm
and 10mm) and the strip configuration used for validation
(h = 15mm). Figure 11 shows the plastic shear strain pro-
files along the strip thickness at the end of the loading stage,
obtained in the validation strip (h = 15mm) using the ref-
erence and identified material parameters. The parameters
identified by the CMA-ES algorithm are unable to repro-
duce accurately the reference distribution of plastic strains.
In contrast, the parameters identified by the RSM and the
Bayesian optimization are able to capture both the thickness
of the boundary layers developed in the vicinity of the top
and bottom boundaries and the maximum value of plastic
shear strain. These results are consistent with the previous
observations at the macroscopic level.

One may assume that the optimization algorithms have
successfully identified the reference parameters. However,
this is not the case as shown in Fig. 12, which displays the
material parameter sets obtained by the three optimization
techniques (the first seven axes). This figure also reveals that
a single optimization technique can yield different values of
optimized parameters, depending on the initial conditions.
Using different initial quasi-randomsamples, different sets of
material parameters are identified by the RSMmethod (green
curves in Fig. 12). It was verified that all these parameter sets
lead to an accurate prediction of the reference macroscopic
responses. Therefore, the inverse problem under considera-
tion admits more than one solution.

Examination of the different RSM-identified parameter
sets (green curves in Fig. 12) reveals that the identified first-
order parameters, namely the initial first-order dissipative
slip resistance Sπ0 and the first-order hardeningmodulus Hπ ,
are close to the reference ones, with no significant discrep-
ancies. However, spectacular variations are observed in the
higher-order parameters which are responsible for capturing
size effects. Detailed analysis of these variations uncovers

Fig. 10 Simulated macroscopic responses with the identified constitu-
tive parameters in comparisonwith the referencemacroscopic responses

inter-dependencies between these higher-order parameters.
For example, the products X0 lnen and Sξ0 l2dis remain nearly
constant across parameter sets (the last two axes in Fig. 12),
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Fig. 11 Plastic strain profiles along the strip thickness at the maximum
prescribed macroscopic strain Γ = 0.01 in the validation configuration
(h = 15mm) for different material parameter sets identified by CMA-
ES, GP-based RSM and Bayesian optimization

even when the individual parameters vary. Importantly, these
products closely match those calculated from the reference
parameters, suggesting that size effects in the model are gov-
erned more by these combinations of parameters than by
higher-order parameters individually. This observation sug-
gests avenues for optimizing the number of parameters in the
strain gradient crystal plasticity (SGCP) model used in this
work [5].

Overall, the present comparative study confirms the per-
tinence of the three selected optimization methods for
the identification of the material parameters of gradient-
enhanced models. Using only two reference responses to
accommodate the limited data at small scales, all methods
achieved less than 1% errors after a relatively low number
of objective function evaluations (less than 200 evaluations).

Fig. 12 Material parameter sets identified byCMA-ES,GP-basedRSM
and Bayesian optimization

This number of evaluations is quite reasonable in the context
of gradient-enhanced modeling. For comparison, the distor-
tion gradient plasticity model of Panteghini and Bardella
[17] required several tens of thousands of finite element
simulations to identify its parameters using Coliny evolu-
tionary algorithm. Among the tested methods, the RSM
and Bayesian approaches demonstrate superior optimization
capabilities with enhanced parameter identification. While
both of them stand out as promising candidates to solve
gradient-enhanced inverse problems, the Bayesian approach
gains distinct prominence by employing adaptive sampling.
Indeed, this allows for more effective optimization with no
prior knowledge of the required number of objective func-
tion evaluations. The performance of this method is further
investigated in the next subsection.

Bayesian optimization : influence of data and
objective function(s)

The above subsection highlights the good performance of
the Bayesian optimization for the identification of the SGCP
model parameters within relatively precarious conditions,
i.e., with a minimal set of two macroscopic reference results
and a single-objective function. The present subsection aims
at investigating how these conditions can influence the opti-
mization behavior of the method.

To investigate the impact of the quantity of reference
data, the following two scenarios are examined: (i) combin-
ing the previously considered macroscopic shear responses
and the associated plastic strain distributions, and (ii) adding
the macroscopic shear response of a third strip configura-
tion (another strip height). In the first scenario, the same
macroscopic responses of the two strip configurations used

Fig. 13 RMSRE versus number of evaluations by the Bayesian opti-
mization with and without considering the plastic strain distribution
during the identification
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for the identification in Section “Comparison of optimization
methods” (h = 8mm and 10mm) are used in combination
with the associated plastic strain distributions along the strip
thickness as reference data for the identification. For this
purpose, the objective function defined by Eq. 11 is used
(m = 2). Figure 13 compares the optimization results, specif-
ically in terms of macroscopic stress RMSRE, with those
previously obtained without accounting for the plastic strain
distribution. The new scenario yields slower convergence
rate, achievingmore than 1%errors on themacroscopic shear
stresses after 200 evaluations. This result may seem counter-
intuitive, as it can be expected that including the distribution
of plastic strains in the objective function would accelerate
the convergence. The decline in convergence rate is due to
increased complexity in the objective function, introducing
additional challenges and nuances that the optimization algo-
rithmmust navigate, thereby compromising the optimization
process. In a general manner, the objective function must be
as simple as possible tomaximize the performance. Figure 14
displays the simulated macroscopic stress responses and the
plastic shear strain profiles for the validation configuration
(h = 15mm) using the identified constitutive parameters
that take into account the reference plastic strain distribu-
tion. While there is an improved prediction of the maximum
plastic strain value (as shown in Fig. 14b), the overall plastic
shear strain distribution and themacroscopic stress responses
are relatively poorly predicted compared to the results shown
in Fig. 10c.

In the second scenario (2), themacroscopic shear response
associated with the strip configuration of h = 15mm, which
is previously used for the validation of the optimization
results, is now considered as part of the reference data. The
single-objective function is then evaluated from the responses
of three strip configurations (h = 8mm, 10mm and 15mm),
according to Eq. 9 withm = 3. Figure 15 compares the asso-

ciated optimization results with those previously obtained
considering two strip configurations (h = 8mm and 10mm).
Even with only one added reference result, a substantial
enhancement of the convergence rate is obtained. A level
of 0.5% error is obtained with less than 50 objective func-
tion evaluations. The sets of identified parameters obtained
with two and three reference data are compared in Fig. 16.
The addition of more reference data reduces the number
of possible solutions, leading to first-order (independent)
parameters closer to their reference counterparts. As for
higher-order parameters, due to inter-dependencies between
them as detected in the above subsection, only the products
X0lnen and Sξ0l2dis are accurately predicted. Individually, these
parameters still showdifferenceswith respect to the reference
ones.

Another crucial factor influencing optimization perfor-
mance is the definition of the objective function(s). Although
primarily designed for single-objective optimization prob-
lems, the Bayesian optimization has recently been extended
to handle multi-objective scenarios [73, 79]. Advanced
Bayesian versions are capable of optimizing multiple con-
flicting objectives simultaneously while accounting for the
trade-offs among them. The idea is to approximate the Pareto
front which is the set of non-dominated solutions, where
no objective can be improved without worsening another.
To assess the performance of these multi-objective versions
in identifying the SGCP model parameters, the two types
of multi-objective functions defined by Eqs. 13 and 14 are
tested. Figure 17 presents the associated optimization results
in terms of RMSRE evolution as a function of the number
of objective function evaluations. The result associated with
single-objective optimization is also given, for comparison.
Interestingly, the performance of multi-objective optimiza-
tion is highly dependent on the definition of the objec-
tives. Using multi-objective functions constructed based on

Fig. 14 (a) Macroscopic responses and (b) plastic strain profiles along the strip thickness in the validation configuration (h = 15mm) for material
set identified by the Bayesian optimization considering plastic strain distribution
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Fig. 15 RMSRE versus number of evaluations by the Bayesian opti-
mization using 2 and 3 reference macroscopic responses

the strip configurations, the RMSRE evolution stagnates
after approximately 50 evaluations, yielding poor solution
compared to single-objective approach. In contrast, multi-
objective optimization based on the representative stresses
Eq. 14 shows fast RMSRE convergence, surpassing its
single-objective counterpart. Here, errors less than 0.5% are
achieved after just 100 evaluations, compared to 200 in the
single-objective case.

The disparity in performance between the considered
types of multi-objective functions can be attributed to the
underlying physics of the inverse problem at hand. Par-
ticularly, the involved SGCP model aims to capture the
size effect, describing the dependence between material
behaviors and geometric dimensions. When objectives are
formulated based on individual strip configurations, the size
effects are not inherently integrated into each function. As

Fig. 16 Material parameter sets identified by theBayesian optimization
using 2 and 3 reference macroscopic responses

Fig. 17 RMSRE versus number of evaluations by Bayesian optimiza-
tion for the case of single-objective and the case of multi-objective with
two different objective definitions

a result, capturing these effects accurately necessitates the
concurrent minimization of all objectives. However, multi-
objective optimization algorithm can explore paths where
one objective is minimized while keeping another constant,
diverting the search away from the ideal solution. On the
contrary, when objectives are predicated upon each repre-
sentative stress across all configurations, they intrinsically
embed the size effects. This naturally prompts the algorithm
to consider these crucial effects during every iteration, steer-
ing the optimization processmore effectively toward themost
desirable solution. In this case, multi-objective optimization
can provide more accurate results with respect to its single-
objective counterpart, as size effects on each representative
stress can be more accurately reproduced (Fig. 17).

Conclusion

The present paper investigated the effectiveness of three
leading optimization techniques, including CMA-ES evolu-
tionary algorithm, response surfacemethodology (RSM) and
Bayesian optimization, in identifying thematerial parameters
of a Gurtin-type strain gradient crystal plasticity model used
to capture size effects. These techniques were tested using a
minimal set of synthetic reference data to accommodate the
scarcity of data at small scales.

The paper results show the effectiveness of the selected
optimization methods within a gradient-enhanced frame-
work. Good optimization results are obtained with relatively
few evaluations of the objective function. Nevertheless, cer-
tain differences in their performance have been identified.
TheCMA-ES algorithmencounters stagnation issues beyond
a certain number of evaluations. This poses a significant
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drawback, particularly in scenarios where computation cost
is a pivotal concern. The RSM and Bayesian optimization
emerge as superior alternatives. Each of these approaches
presents unique advantages. The RSM enables the study of
the overall landscape of the objective function and, thus, the
identification of multiple solutions admitted by the inverse
problem. Through the analysis of these solutions, it is possi-
ble to uncover sets of material parameters which act together
as a combination. This possibility suggests a new tactic for
optimizing the number of parameters in the strain gradient
crystal plasticity models. Moreover, in situations where the
objective functions are highly complex such that an effective
metamodel cannot be obtained within a reasonable amount
of data and the required number of objective function evalua-
tions is unknown, the Bayesian optimization is demonstrated
to be prominent thanks to the adaptive sampling strategy,
making it a strong candidate for tackling complex gradient-
enhanced inverse problems.

The interesting features of the Bayesian optimization
approach motivated further investigation of its performance
in relation with two key optimization aspects, namely the
quantity of reference data and the formulation of the objec-
tive function(s). This investigation shows that incorporating
strain field measurements into the identification process
increases the complexity of the optimization problem. In
contrast, adding more reference macroscopic data can con-
siderably enhance the convergence rate. This result suggests
the importance of the amount of experimental data for a con-
sistent identification of the material parameters.

Furthermore, the type of objective function(s), whether
single- or multi-objective, has a marked impact on opti-
mization outcomes.Multi-objective functions that inherently
capture underlying physics, like size effects, significantly
enhance performance. However, poorly chosen objective
functions can be detrimental, leading to less-performing
optimization results with respect to the single-objective
case.

In summary, the study highlights the promising fea-
tures of the selected optimization techniques, particularly
Bayesian optimization, in determining material parameters
of advanced gradient-enhanced models when constrained by
minimal data sets. Some versions of such advanced mod-
els are today sufficiently mature for industrial applications
but are hindered by the scarcity of data allowing for an
effective identification of their numerous parameters. The
development of effective material parameter identification
techniques tailored to these models helps overcome this lim-
itation and enables broader application of suchmodels in real
engineering scenarios, such as the formability of small-scale
components.
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