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Abstract
In this work, a recently proposed anisotropic Drucker function is implemented with non-associated flow rule (non-AFR) to 
predict the earing profile during cup drawing. The finite element formulation under non-AFR is developed for the precise 
simulation of the deep drawing process with a strong anisotropic aluminum alloy of AA2090-T3. The comparison between 
the simulation and experimental results reveals that the earing profile numerically predicted by the anisotropic Drucker func-
tion under non-AFR is in good agreement with the measured profile from experiments. It’s also reveal that the improvement 
of accuracy of prediction for r-values does not always mean the synchronously improvement in prediction the earing profile 
for strong anisotropic phenomena of deep drawing for AA2090-T3. The computation efficiency of the anisotropic Drucker 
function is also investigated and compared with the Yld2004-18p function, which shows that 40% reduction of computational 
cost can be reached. The influence of different shapes of yield and potential on earing prediction is also investigated by 
combining the anisotropic Drucker function and Yld2004-18p function under non-AFR, which demonstrates that a proper 
shape of plastic potential is very important to predict the small ear around 0º for AA2090-T3. It also proves that both the 
yield and plastic potential functions strongly influence the height and earing profile in the simulation of cup deep drawing. 
It’s also should be mentioned that the r-value does not keep constant in the simulation in the uniaxial tension of a single cubic 
element, but varies with the increase of plastic deformation in directional uniaxial tension, which may raise the difficulty for 
accurately prediction in metal forming.

Keywords Stress invariant · Anisotropy · Non-Associate flow rule · Earing · Cup deep drawing · Sheet metal forming

Introduction

Anisotropic plastic behavior is closely related with the deforma-
tion and formability of sheet metal. A proper yield function is 
very important to describe and predict the anisotropic plastic 
deformation with satisfactory accuracy. Various anisotropic 
yield functions have been proposed to model the anisotropy for 
sheet metals. After the first anisotropic yield function proposed 
by Hill [18], many non-quadratic anisotropic yield functions 
in forms of principal stresses [1, 2, 4–10, 13, 19, 21, 28, 31, 
32], homogeneous polynomials [20, 41, 43] or stress invari-
ants [11, 12, 30, 33, 40, 54, 55] were developed. Due to the 
simplicity of derivatives and easy implementation, the stress 
invariants based yield functions are very competitive with 
respect to computational costs compared to those based on the 
principal stresses in simulation of metal forming [30]. These 
phenomenological functions are generally used to predict the 
directional yield stresses and R-values simultaneously with the 

 * Saijun Zhang 
 mesjzhang@scut.edu.cn

 Yanshan Lou 
 ys.lou@xjtu.edu.cn

 Jeong Whan Yoon 
 j.yoon@kaist.ac.kr; j.yoon@deakin.edu.au

1 Guangdong Provincial Key Laboratory of Precision 
Equipment and Manufacturing Technology, School 
of Mechanical and Automotive Engineering, South China 
University of Technology, Guangzhou 510640, China

2 School of Mechanical Engineering, Xi’an Jiao Tong 
University, 28 Xianning Road, Xi’an 710049, Shaanxi, China

3 Department of Mechanical Engineering, Korea 
Advanced Institute of Science and Technology (KAIST), 
291 Daehak-Ro, Yuseong-Gu, Daejeon 305-701, 
Republic of Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s12289-023-01749-0&domain=pdf


 International Journal of Material Forming (2023) 16:25

1 3

25 Page 2 of 11

same function under associate flow rule (AFR). However, it is 
difficult to accurately describe the directionality of both yield 
stresses and R-values of materials with strong anisotropy due to 
limited number of parameters. In these cases, very complicated 
yield functions with more parameters such as Yld2004-18p [8] 
and CPB06-ex2 [13] are required to describe all the measured 
anisotropic quantities under AFR.

Another approach that can effectively model anisotropic 
plastic behavior is to use non-associated flow rule (non-
AFR), which eliminates the restriction that plastic yield-
ing and flow directions are controlled with same function. 
In non-AFR, two different functions or two separate sets of 
anisotropic coefficients with the same function are adopted to 
represent yielding and plastic potential respectively. There-
fore, simple and efficient constitutive models under non-AFR 
can be used to describe the anisotropy with the same order 
of accuracy as obtained from the complicated models with 
AFR. For instance, the Hill48 [18] quadratic function under 
non-AFR were successfully utilized by different research-
ers, such as Stoughton [44], Cvitanic et al. [16], Stoughton 
and Yoon [46], Mohr et al. [35] and Taherizadeh et al. [47], 
to describe the anisotropic response for different materials. 
Another popular non-AFR model is based on Yld2000 func-
tion [7], which can correctly describe the highly anisotropic 
plastic behavior [17, 34, 36, 37, 51]. Besides, the strength 
differential effect can also be accurately modeled by the pres-
sure sensitive non-AFR model proposed by Stoughton and 
Yoon [45] and Yoon et al. [54]. Detailed review of aniso-
tropic yield function development can be found in Banabic 
et al.[3].

In the last decade, anisotropic hardening functions 
attracted a lot of attentions. Many analytically anisotropic 
hardening functions were proposed, such as Stoughton and 
Yoon [46], the coupled quadratic-non-quadratic functions 
by Park et al., [37], Lee et al. [29], Hu et al. [26], Hu and 
Yoon [25], Hu et al. [27], Hou et al. [22–24], Chen et al. [14] 
and Lou et al. [34]. These anisotropic hardening functions 
dramatically improve the modeling accuracy of anisotropic 
hardening behaviors with respect to plastic strain.

Earing is very common in cup drawing process of sheet 
metal and is widely used to evaluate and verify anisotropic 
plasticity models. Most of the anisotropic models mentioned 
above have been implemented into the finite element codes 
under AFR to predict the earing during cup drawing pro-
cess [49–51]. Yoon et al. [52], Soare and Barlat [42] and 
Vrh et al. [48] applied advanced yield functions, such as 
Yld2004-18p [8], BBC2008 [15], homogeneous polynomials 
[43], to predict six or eight ears in the circular cup drawing 
of strong anisotropic materials. Earing prediction was also 
performed based on non-AFR including Yoon et al. [53], 
Park and Chung [36] and Safaei et al. [38] who successfully 

got more than four ears in their numerical simulations for 
AA2090-T3 and AA5042.

In this paper, the newly proposed anisotropic Drucker 
function [30] is briefly reviewed and calibrated to model 
the directional yield stresses and R-values for AA2090-T3 
under non-AFR. Then this function is implemented into 
ABAQUS/Explicit with semi-implicit integration algo-
rithm under non-AFR, which is verified for uniaxial tension 
simulations of a single element in different orientations. 
The simulation of cup drawing of AA2090-T3 is performed 
and compared with the experiments to evaluate the perfor-
mance of the anisotropic Drucker function. The computa-
tion cost relative to the Yld2004-18p is also investigated. In 
addition, the influences of the shapes of yield and potential 
surface on earing prediction is further investigated and dis-
cussed by combining the anisotropic Drucker function and 
Yld2004-18p function under non-AFR.

Anisotropic Drucker function

The following function was proposed by Lou and Yoon [30] 
by summing up n-components of the anisotropic Drucker 
function in a form of

Linear transformations are applied to each component of 
the function to capture the material anisotropy. It should be 
noticed that HCP materials that exhibit the strong strength-
differential effect cannot be accurately described by this 
symmetrical yield function. In that case, the asymmetrical 
yield functions [12, 54] are suggested to be used for the 
proper modeling of the strength differential effect of HCP 
metals.

In Eq. (1), both the second invariant J
�(m)

2
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Since the coefficient c is recommended to be a constant in Eq. (1), there 
are six parameters in �(m) for each component of this yield function. Among 
the six parameters, four parameters ( c(m)

1
 , c(m)
2

 , c(m)
3

 , c(m)
6

 ) are used to describe 
the in-plane anisotropic behavior. The other two parameters can be assumed 
to be identical with c(m)

6
 since the out-of-plane properties are difficult to be 

determined experimentally for sheet metals. Usually, the flexibility of the 
yield function can be enhanced by increasing the component number n or 
employing non-AFR. In non-AFR, plastic flow is not necessary to be the 
normal of yield surface, the yield and potential surface can be defined with 
different coefficients of the same function, or different functions.

The anisotropic Drucker function is then applied to illustrate the 
anisotropic plastic behavior of AA2090-T3. The anisotropic mechan-
ical properties of this material are referred in Yoon et al. [52] as listed 
in Table 1. Considering that c is set to a constant of two for the FCC 
alloy of AA2090-T3, there are totally 16 anisotropic parameters to 
be calibrated by experimental data points. Eight of the 16 param-
eters of the yield function are determined by eight experimental yield 
stresses, �0 , �15 , �30 , �45 , �60 , �75 , �90 and �b . The rest eight param-
eters of the potential are calibrated by experimental R-values, r0 , r15 , 
r30 , r45 , r60 , r75 , r90 and rb . The anisotropic coefficients are obtained 
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with optimization method and listed in Table 2. The coefficients of 
the Yld2004-18p (from [52] model are tabulated in Table 3 for the 
comparison purpose. The loci of yield and plastic potential surface 
for AA2090-T3 are shown in Figs. 1 and 2 respectively, while Fig. 3 
compares the directional normalized initial yield stresses and R-val-
ues. These figures show that the anisotropic Drucker function under 
non-AFR can capture the directional yield stresses and R-values of 
AA2090-T3 with high accuracy.

Numerical implementation under non‑AFR

Under non-AFR, the onset of yielding and the direction 
of plastic flow are controlled by different functions, as 
described in Eqs. (6) and (7) respectively.

(6)f = �̃�y(�) − 𝜌
(
𝜀
p)

= 0

(7)d�p = 𝛾
𝜕�̃�p(�)

𝜕�

Table 1  Normalized initial 
yield stresses and R-values of 
AA 2090-T3

yield stress �0∕�0 �15∕�0 �30∕�0 �45∕�0 �60∕�0 �75∕�0 �90∕�0 �
b
∕�0

1.0000 0.9605 0.9102 0.8114 0.8096 0.8815 0.9102 1.0350
r-values r0 r15 r30 r45 r60 r75 r90 r

b

0.2115 0.3269 0.6923 1.5769 1.0385 0.5384 0.6923 0.67

Table 2  Parameters of the 
anisotropic Drucker yield 
function and anisotropic 
Drucker potential function of 
AA 2090-T3 ( n = 2, c = 2)

c
(1)

1
c
(1)

2
c
(1)

3
c
(1)

6
c
(2)

1
c
(2)

2
c
(2)

3
c
(2)

6

Yield function 3.1638 -4.5130 3.8821 3.4384 0.5926 1.6020 0.3498 1.1341
Plastic potential case A 2.6452 -6.4631 2.4831 -3.3413 -0.3876 -0.6747 0.5612 0.5870

case B -4.4859 1.9722 3.1135 2.8282 1.1742 1.8926 -0.2472 1.4131
case C -1.0985 4.2583 -0.8129 2.3019 3.5430 -1.1833 -1.4279 1.8006

Table 3  Anisotropic parameters 
of Yld2004-18p function of AA 
2090-T3 (a = 8)

�1 �2 �3 �4 �5 �6 �7 �8 �9

-0.0698 0.9364 0.0791 1.0030 0.5247 1.3631 1.0237 1.0690 0.9543
�10 �11 �12 �13 �14 �15 �16 �17 �18

0.9811 0.4767 0.5753 0.8668 1.1450 -0.0792 1.0516 1.1471 1.4046



 International Journal of Material Forming (2023) 16:25

1 3

25 Page 4 of 11

where �̃�y(�) is the yield function, �̃�p(�) is the plastic poten-
tial, �

(
�
p) is a function that describes the hardening behavior 

relative to the equivalent plastic strain �p , � is the plastic 

multiplier and d�p is the plastic strain increment vector. The 
relationship between the equivalent plastic strain increment 
d�

p and � under non-AFR is determined according to the 
principal of equivalent plastic work,

where �̃�p(�) is a first order homogenous function.
For a given strain increment Δ�n+1 at the current time 

step, the trial stress can be calculated by assuming that all 
the deformation is elastically recovered:

where �T
n+1

 is the trial stress state, �n is the stress state at 
previous time step and � is the tensor of elastic moduli. 
Plastic deformation takes place if
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(9)�
T
n+1

= �n + �Δ�n+1

Fig. 1  The yield locus at �
xy
= consts (which equal to the shear 

stresses of uniaxial tension along 0◦, 15◦, 30◦, 45◦, 60◦, 75◦and 90◦ ) 
for AA2090-T3. The lines at the hollow circles show the normal of 
yield surface

Fig. 2  The loci of plastic potential (case A) at �
xy
= consts 

(which equal to the shear stresses of uniaxial tension along 
0◦, 15◦, 30◦, 45◦, 60◦, 75◦and 90◦ ) for AA2090-T3. The lines at the 
hollow circles show the direction of plastic flow

Fig. 3  Comparison of AA 2090-T3 predicted by anisotropic Drucker 
function under non-AFR (case A) and Yld2004-18 function under 
AFR: (a) normalized tensile yield stresses; (b) R-values
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The predictor–corrector scheme can be solved with New-
ton–Raphson method to update the state variables to satisfy 
the consistency condition. For the k-th iteration, the incre-
ment of plastic multiplier can be obtained by linearization 
of the consistency condition:

where

According to the chain rule,

with

By combining Eqs. (11–16), the increment of plastic 
multiplier is obtained

where

Then the plastic multiplier and equivalent plastic strain 
can be updated as follows:

(10)fn+1 = �̃�y
(
�
T
n+1

)
− 𝜌

(
𝜀
p

n

)
> 0

(11)d
(
�n+1

)(k+1)
= −

(
fn+1

)(k)
(

�fn+1

��n+1

)(k)

(12)
(
𝜕fn+1

𝜕𝛾n+1

)(k)

=

(
𝜕�̃�y

(
�n+1

)
𝜕𝛾n+1

)(k)

−

(
𝜕𝜌

(
𝜀
p

n+1

)
𝜕𝛾n+1

)(k)

(13)

𝜌
(
𝜀
p

n+1

)
= 𝜌

(
𝜀
p

n

)
+ Hn+1d𝜀

p

n+1
= 𝜌

(
𝜀
p

n

)
+ 𝛾n+1Hn+1

�̃�p
(
�n+1

)

�̃�y
(
�n+1

)

(14)
𝜕�̃�y

(
�n+1

)
𝜕𝛾n+1

=
𝜕�̃�y

(
�n+1

)
𝜕�n+1

𝜕�n+1

𝜕𝛾n+1

(15)

𝜕𝜌(𝜀p
n+1)

𝜕𝛾
n+1

= H
n+1

�̃�
p(�n+1)

�̃�
y(�n+1)

+ 𝛾
n+1Hn+1(

1

�̃�
y(�n+1)

𝜕�̃�
p(�n+1)
𝜕�

n+1

𝜕�
n+1

𝜕𝛾
n+1

−
�̃�
p(�n+1)

�̃�2
y (�n+1)

𝜕�̃�
y(�n+1)
𝜕�

n+1

𝜕�
n+1

𝜕𝛾
n+1

)

(16)
𝜕�n+1

𝜕𝛾
= −�

𝜕�̃�p
(
�n+1

)
𝜕�n+1

(17)

d
(
𝛾n+1

)(k+1)
=

(
fn+1

)(k)
(
gyp + Hn+1

�̃�p(�n+1)
�̃�y(�n+1)

+
𝛾n+1Hn+1

�̃�y(�n+1)

(
�̃�p(�n+1)
�̃�y(�n+1)

gyp − gpp

))(k)

(18)

gyp =
𝜕�̃�y

(
�n+1

)
𝜕�n+1

�
𝜕�̃�p

(
�n+1

)
𝜕�n+1

, gpp =
𝜕�̃�p

(
�n+1

)
𝜕�n+1

�
𝜕�̃�p

(
�n+1

)
𝜕�n+1

(19)
(
�n+1

)(k+1)
=
(
�n+1

)(k)
+ d

(
�n+1

)(k+1)

The increment of plastic multiplier can be solved with 
the semi-implicit algorithm, which ensures the consistency 
condition. The integration algorithm and the anisotropic 
functions are implemented into ABAQUS/Explicit via the 
user-defined material subroutine. Numerical simulations 
are performed for uniaxial tension of a single cubic ele-
ment in every 15ºfrom RD. It should be mentioned that 
the R-value does not keep constant during the uniaxial 
tension in numerical simulations with both yield func-
tions. It is observed to vary with the equivalent plastic 
strain as shown in Fig. 4. Figure 5 depicts the variation of 
R-values at the initial yielding and at a certain equivalent 
plastic strain of 20% in different orientations. The R-values 
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𝜀
p
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(
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(
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�̃�y
(
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)
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Fig. 4  R-value evolutions during the uniaxial tension predicted by 
different numerical models. (a) anisotropic Drucker function under 
non-AFR (case A); (b) Yld2004-18 function under AFR



 International Journal of Material Forming (2023) 16:25

1 3

25 Page 6 of 11

are consistent with the theoretical prediction at the ini-
tial yielding, and obvious deviations can be observed at 
large plastic deformation in some orientations as marked 
in Fig. 5. The magnitudes of the deviations depend on the 
plastic flow directions and tensile directions. The accuracy 
of the predicted R-values at the initial yielding is deter-
mined by the potential function. It should be noted that the 
r-values are evaluated in the uniaxial tension of a single 
cubic element, the deviation occurs both under AFR and 
non-AFR. The reason of the R-values changing with the 
increase of plastic deformation may be due to the shape 
of the yield surface, the angle between the loading direc-
tion and the normal direction of the yield surface, and the 
predictor–corrector algorithm, which makes it difficult to 
accurately determine the relative movement of yield points 
even in proportional loading and isotropic hardening con-
dition. During the calculation and returning process of 

elastic-prediction and plastic-correction, the guess stress 
and guess strain of each incremental step are related to 
the loading direction, and the guess strain needs to deter-
mine the values of the elastic strain increment and the 
plastic strain increment by the plastic algorithm, and the 
calculation of the plastic strain increment is related to the 
normal direction of the yield point and the used returning 
algorithm. It should be noted that, for many yield func-
tions, such as Yld2004 and Drucker functions, the loading 
direction and the normal direction at the yield point are 
likely to be inconsistent in unidirectional tension, so the 
stress state obtained after convergence by elastic predic-
tor-plastic correction iteration is not exactly proportional 
to the previous stress state, but falls around the expected 
point depending on the used returning algorithm and the 
curvature of the yield surface near the point. That means 
the yield surface actually located after convergence is not 
the same as the yield surface obtained by the proportional 
expansion of the original yield surface, which will make 
the normal at the yield point of the two consecutive incre-
mental steps change, which may results in a small change 
of the R-value. This change accumulates with further load-
ing and the increment of plastic strain, resulting in signifi-
cant changes in the R-values in some directions. So the 
angle between the loading direction and the flow direction 
may not keep constant, but vary as the plastic deformation 
increases. This variation of R-values may cause the dif-
ficulty in accurately predicting the anisotropic behavior 
in metal forming, such as earing prediction. It should be 
noted that, the exact mechanism of the change of R-values 
during different unidirectional tension is not clear, and the 
causes and influencing factors need to be further analyzed.

Cup drawing simulations of AA2090‑T3

The numerical simulation of cup drawing test for AA2090-
T3 is carried out to evaluate the performance of the aniso-
tropic Drucker function. The dimensions of the tools are 
given in details by Yoon et al. [52]. In this study, 3D solid 
elements are employed in the numerical simulation of cup 
deep drawing. Taking the advantage of axis symmetry of the 
model, a quarter part of the cup is analyzed with enforced 
symmetric boundary conditions. The swift hardening law 
�̃� = 646 ×

(
0.025 + 𝜀

)0.227
MPa . The coefficient of friction is 

set to be 0.1 for all the contact surfaces under Coulomb model. 
The blank holding force is 5.5kN for the quarter model.

The final geometry and corresponding Drucker equivalent 
stress distribution of the drawn cups are shown in Fig. 6. The 
comparison of cup height profile between 0º and 90º pre-
dicted by the anisotropic Drucker and Yld2004-18p function 
is shown in Fig. 7. Both models agree well with the earing 
profile measured from experiments. Particularly, the small 

Fig. 5  The variation of R-value at initial yielding and at a constant 
value of equivalent plastic strain. The solid curve is the results of the-
oretical evaluation. (a) anisotropic Drucker function under non-AFR 
(case A); (b) yld2004-18p under AFR
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ear around 0º and the height difference between 0º and 90º 
are well predicted by the anisotropic Drucker function.

The computation time of the numerical simulations 
for these two models is also compared in Table 4, which 
shows that about 40% of the computation efficiency can 
be improved with the anisotropic Drucker function. Lou 
and Yoon [30] reported that, compared with the Yld2004-
18p function,60% of computation cost can be reduced 
with the Drucker function for some simple tension case 
without contact, which is 20% higher than the percent of 
computation cost reduction in this study. This is because 

there is no need for the computation of contact in the 
numerical simulation of simple tensile test in Lou and 
Yoon [30], while it takes a lot of time to solve the contact 
problem in the simulation of cup deep drawing in this 
study.

Discussions

It is generally accepted that prediction for six or eight ears in cup 
deep drawing for strong anisotropic metals requires advanced 
yield and potential functions that can accurately describe the 
directional yield stresses and R-values. In spite of the yield stress 
and R-value directionalities, the shapes of yield and potential 
surface also influence the prediction of earing profile for cup 
deep drawing.

As mentioned above, one of the effective methods to enhance 
the flexibility of yield function is to use non-AFR where the 
yield and potential function can be different. Usually, the ani-
sotropic coefficients can be determined by the optimization 
method according to the experimental yield stresses and R-val-
ues respectively. As the number of parameters increases, the 
calibration becomes more and more difficult. The optimized 
anisotropic parameters are different for different initial guess 
points. Taking the isotropically calculated values as the initial 
guess, a local optimization result may be reached. So a series 
of initial values produced with experimental design methods 
is used to evaluate the influence of parameter calibration. In 
this study, three sets of parameters representing different 

Fig. 6  The deformed configura-
tion of completely drawn cups 
using the anisotropic Drucker 
function under non-AFR for 
AA2090-T3

Fig. 7  The cup height profiles predicted by the anisotropic Drucker 
function under non-AFR and Yld2004-18p under AFR

Table 4  Comparison of 
computational cost between the 
Yld2004-18p and anisotropic 
Drucker function

Software Abaqus 6.14–4 Explicit/Double Precision/1 cpu
System 64-bit
Processor Intel(R) Core(TM) i5-2430 M CPU@2.40 GHz
Algorithm Semi-implicit
Computation time Yld2004-18p Anisotropic Drucker Reduction of computational cost

04:37:16 02:47:29 40%
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shapes of the anisotropic Drucker plastic potential are analyzed 
for AA2090-T3, denoted as case A, B and C with anisotropic 
parameters summarized in Table 2. Figures 8 and 9 show the 
directional R-values and the corresponding plastic potential 
shapes predicted from the anisotropic Drucker plastic potential 
function for the three sets of parameters respectively. Three sets 
of plastic potential functions coupling with the same Drucker 
yield function are used to predict the earing of cup drawing for 
AA2090-T3. The predicted cup height profiles for different plas-
tic potential are shown in Fig. 10. It should be noticed that the 
small ear around 0º can only be predicted for case A. Both case 
B and case C fail to predict the small ear, although the theoretical 

R-values obtained in both cases are more consistent with the 
experimental results than that in case A. So the improvement 
of accuracy of prediction for r-values do not mean the synchro-
nously improvement in prediction the earing profile for strong 
anisotropic phenomena of deep drawing for AA2090-T3. This 

Fig. 8  The directional R-values predicted by the anisotropic Drucker 
function with different anisotropic coefficients

Fig. 9  Comparison of plastic potential shapes predicted by the 
Drucker function with different anisotropic coefficients

Fig. 10  Comparison of the cup height profiles predicted by different 
potential functions

Table 5  Four models by combining the anisotropic Drucker function 
and Yld2004-18p function under non-AFR (parameters are listed in 
Tables 2 and 3)

Yield function Plastic potential function

Yld2004-Yld2004 Yld2004-18p Yld2004-18p
Drucker-Yld2004 Anisotropic Drucker Yld2004-18p
Yld2004-Drucker Yld2004-18p Anisotropic Drucker (case 

A)
Drucker-Drucker Anisotropic Drucker Anisotropic Drucker (case 

A)

Fig. 11  Comparison of the cup height profiles predicted by the 
Drucker and Yld2004-18p functions under non-AFR
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needs further investigation but cannot be explained currently due 
to the complex stress state in cup deep drawing.

To further investigate the influences of different shapes of 
yield surface and plastic potential surface on earing prediction, 
four cases combined from the anisotropic Drucker function and 
Yld2004-18p function under non-AFR are performed as listed 
in Table 5. The comparison of the cup height profiles predicted 
by these models are shown in Fig. 11, which shows that all the 
four models can predict the small ear around 0º. The earing pro-
files can be divided into two groups according to different plas-
tic potentials: one group corresponds to the anisotropic Drucker 
plastic potential, and the other is corresponding to the Yld2004-
18p plastic potential. The cup height predicted by the anisotropic 
Drucker plastic potential is higher at the interval between 0º and 
15º and lower around 90º than that predicted with the Yld2004-
18p plastic potential. Using Yld2004-18p as the plastic potential 
function, the different yield functions only changes the local cup 
height, such as at 15º and 90º, without changing the overall cup 
height. For the anisotropic Drucker plastic potential function, 
the overall cup height is obviously lowered when Yld2004-18p 
function is used as the yield criterion. The comparison of earing 
profiles predicted by different combination of the Drucker and 
Yld2004-18 functions under non-AFR proves that, in spite of the 
uniaxial tensile yield stresses and R-values, both the yield surface 
and plastic potential locus affect the predicted earing profile. In 
comparison with the yielding function, the potential function has 
stronger influence in accurately predicting the earing profile, and 
the prediction accuracy can be significant improved by reason-
able selection for potential functions.

Conclusions

The recently proposed anisotropic Drucker function based 
on stress invariants under non-AFR is implemented into 
the finite element software ABAQUS/Explicit with semi-
implicit algorithm. The numerical application of anisotropic 
Drucker function is verified with uniaxial tensile simula-
tion of a single element. The comparison of the cup draw-
ing simulation shows that the earing profile of AA2090-T3 
predicted by the Drucker function is consistent with experi-
mental measurement. About 40% computation time can be 
reduced with the Drucker function under non-AFR compared 
with the Yld2004-18p function under AFR.

Comparison of the earing profile predicted by different 
anisotropic Drucker potential functions reveals that a proper 
shape of plastic potential is very important to predict the 
small ear around 0º for AA2090-T3. Numerical simulation 
with various combination of the yield and potential func-
tions reveals that the height and earing profile in the cup 
drawing simulation can be strongly influenced by the shapes 
of yield and potential surfaces.

Appendix: Derivatives of the anisotropic 
Drucker function

The derivatives of the anisotropic Drucker function in 
Eq. (1) can be calculated as below:

where
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