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Abstract
Laser additive manufacturing (LAM) technology is based on three-dimensional digital models, using laser as an energy 
source to melt metal materials layer by layer to form target parts. LAM technology can produce metal parts with complex 
structures, but the residual stress generated during the LAM process causes deformation. Therefore, in order to facilitate 
wide application of LAM parts in industry, it is of great significance to improve the dimensional accuracy and reduce the 
deformation of the LAM parts. This paper summarizes the factors affecting the residual stress and deformation of LAM 
parts, introduces the methods commonly used to detect the residual stress and deformation of LAM parts, and compares their 
applications, advantages and disadvantages, expounds five methods for predicting the deformation of LAM parts, introduces 
the deformation compensation method based on the reverse compensation principle, and puts forward the deformation detec-
tion method that may be employed to LAM parts in the future.

Keywords Laser additive manufacturing · Residual stress detection · Deformation detection · Deformation prediction · 
Deformation compensation

Introduction

Laser Additive Manufacturing (LAM) technology, which 
is based on three-dimensional digital models, melts metal 
materials (powder or wire) by laser and forms target metal 
parts layer by layer [1]. LAM technology has the character-
istics of direct forming in three-dimensional space and can 
be used to form complex structures which cannot be manu-
factured by traditional processes, greatly reducing or even 

eliminating structures reserved for process and structures for 
assembly. In addition, fabrication of new types of alloy parts 
can be achieved by changing the composition of the metal 
powder or wire [2–4]. The fusion of metal wire in LAM 
is called Laser and Wire Additive Manufacturing (LWAM) 
technology, and the fusion of metal powder mainly includes 
Selective Laser Melting (SLM), Laser Deposition Manufac-
turing (LDM) and Direct Metal Laser Sintering (DMLS). 
SLM, also called Laser Powder Bed Fusion (L-PBF), uses 
laser as heat source to scan the metal powder bed layer by 
layer according to the path planned in the CAD slice model. 
The scanned metal powders are molten and solidified, and 
finally the required metal parts can be obtained [5]. LDM, 
also called Laser Directed Energy Deposition (LDED), uses 
high-energy laser beam as heat source to melt and deposit 
synchronously fed metal powders layer by layer to realize 
the manufacture of metal parts [6]. DMLS uses high-energy 
laser beam to fuse the powders at specified locations in each 
layer of the powder bed, binds the metal particles together 
through liquid phase sintering, and scans layer by layer until 
the part is fabricated [1].

In LAM, laser beam melts metal material to form a 
molten pool. After the laser beam scanning is completed, 
the molten pool rapidly solidifies and fuses with the previous 
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layer, and the material in the molten pool shrinks when it is 
cooled. As the number of layers increases, the material near 
the molten pool is subjected to repeated thermal cycling, 
resulting in alternate expansion and contraction [7–11]. 
Thermal gradients and thermal cycles in the layer-by-layer 
manufacturing process lead to the accumulation of inter-
nal stress. If the internal stress does not exceed the yield 
strength of the part, residual stress will be generated inside 
the formed part. Otherwise, the part will deform or crack. 
Deformation will reduce the dimensional accuracy of the 
part, and cracking will destroy the integrity of the part and 
reduce the macro-mechanical properties of the part [12, 
13]. At present, some researchers have summarized and dis-
cussed the residual stress or deformation in the SLM process 
[14, 15]. Besides SLM, discussions of residual stress and 
deformation in other metal LAM processes, such as LDM 
and DMLS, are included in this article.

Factors affecting residual stress 
and deformation of LAM metal parts

Repeated heating and cooling in the LAM process causes 
temperature gradients in the parts, generating residual stress. 
Formed parts may deform or even crack, and severe defor-
mation or crack may render the part unusable. In order to 
control the residual stress and deformation of parts fun-
damentally, it is necessary to study the factors that affect 
the deformation of parts manufactured by LAM. Process 
parameters are one group of the important factors affect-
ing the residual stress and deformation of LAM, including 
laser power, scanning speed, powder layer thickness, hatch 
spacing and preheating temperature, etc. Ali et  al. [16] 
studied the effect of different combinations of laser power 
and exposure on residual stress while keeping the energy 
density unchanged. It was found that the combination of 
low laser power and high exposure reduced the tempera-
ture gradient and cooling rate, resulting in the decrease of 
residual stress in SLM fabricated Ti6Al4V parts. At the 
same time, the effect of powder layer thickness on residual 
stress was explored, and it was concluded that the tempera-
ture gradient decreased with the increase of layer thickness, 
so increasing the layer thickness would lead to a decrease 
of residual stress. Mugwagwa et al. [17] studied the effect 
of process parameters on the deformation of SLM parts, 
and found that the increase of the scanning speed would 
increase the temperature gradient and cooling rate, resulting 
in the increase of the deformation of the cantilever beam 
part. At the same time, it was found that the deformation 
increased with the decrease of the porosity of the canti-
lever beam part. The porosity of the part was greater at a 
layer thickness of 45 µm compared to a layer thickness of 
30 µm, so increasing the layer thickness could reduce the 

deformation of the SLM cantilever beam part. Jiang et al. 
[18] studied the effects of substrate preheating and scanning 
speed on the residual stress of SLM fabricated AlSi10Mg 
parts, and found that when the substrate was preheated to a 
certain temperature, the temperature gradient between the 
substrate and the molten pool was reduced, which reduced 
the residual stress in the part. Increasing the laser scanning 
speed could increase the cooling rate of the molten pool and 
reduce the temperature gradient of the part, thereby reducing 
the residual stress of the part. Malý et al. [19] studied the 
effect of process parameters on residual stress and defor-
mation of Ti6Al4V parts formed by SLM, and found that 
the increase of preheat temperature or laser power would 
reduce the deformation of SLM parts, and increasing the 
laser scanning speed and real delay would increase the defor-
mation of SLM parts. Because the reduced scanning speed, 
increased preheat temperature, and reduced waiting time 
could reduce cooling rate, thereby reducing the temperature 
gradient, residual stress and deformation of the part. Levku-
lich et al. [20] studied the factors that affected the residual 
stress and deformation of SLM formed Ti6Al4V parts. The 
results show that the residual stress on the top surface of the 
part decreases with the increase of the deposition height, 
and the residual stress on the bottom surface of the substrate 
increases with the increase of the deposition height. Lower-
ing the scanning speed and increasing the laser power can 
reduce residual stress on the top surface of the part and the 
bottom surface of the substrate.

There are some seemingly contradictory conclusions in 
the above literatures about the effects of laser power and 
scanning speed on the residual stress and deformation of 
parts. Xiao et al. [21] studied the stress evolution process 
during the SLM process of Ti6Al4V parts. The residual 
stresses under different scanning speeds and laser pow-
ers were measured when the hatch spacing was 0.1 mm 
(Fig. 1a), and the residual stresses under different hatch 
spaces and laser powers were measured as well when the 
scanning speed was 1000 mm/s (Fig. 1b). The results show 
that with the increase of laser power, scanning speed and 
hatch spacing, the variation of residual stress is different, 
and it is not a monotonous increase or decrease.

In addition to the above factors, another important fac-
tor that affects the residual stress and deformation of LAM 
parts is the laser scanning strategy. Similar to the process 
parameters, it is believed that the scanning strategy affects 
the residual stress and deformation of the part by affect-
ing the heat input distribution. Commonly used scanning 
strategies include unidirectional line scanning, reciprocat-
ing line scanning, helical line scanning, island scanning and 
interlayer rotation scanning strategies (take 90° rotation as 
example), as shown in Fig. 2.

Cheng et al. [22] studied the residual stress and defor-
mation of SLM manufactured Inconel 718 parts under the 
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strategies of island scanning, 0° and 45° reciprocating scan-
ning, 45°, 90° and 67° interlayer rotating scanning, and out-
in and in–out helical scanning. It was found that the parts 
manufactured by the in–out helical line scanning strategy 
had the largest residual stress perpendicular to the deposi-
tion direction, and the parts manufactured by the 45° recip-
rocating line scanning strategy had the smallest residual 
stress perpendicular to the deposition direction. The parts 
manufactured by the in–out helical line scanning strategy 
had the largest deformation in the deposition direction, and 
the parts manufactured by the 45° reciprocating line scan-
ning strategy have the smallest deformation in the deposition 
direction. Ali et al. [23] studied the influences of 45° and 90° 
interlayer rotation scanning, 2 mm × 2 mm, 3 mm × 3 mm 
and 5 mm × 5 mm island scanning, and 5 mm × 5 mm island 
scanning strategy of 45° and 90° adjacent partition rotation 
on the residual stress of Ti6Al4V parts formed by SLM. 
The residual stress could be reduced by rotating scanning 
on adjacent sections, and the effect of rotating 90° was more 
obvious. However, the residual stress of parts manufactured 
by 90° interlayer rotation scanning strategy was the small-
est. Song et al. [24] studied the influences of reciprocating 
line scanning strategy and 15° and 90° interlayer rotation 
scanning strategy on the residual stress of Ti6Al4V parts 
formed by SLM. It was found that the residual stress of parts 
manufactured with 15° interlayer rotation scanning strategy 
was the minimum. Wang et al. [25] studied the influence of 

reciprocating line scanning strategy and three scanning strat-
egies which were independently developed (normal partition 
strategy (Fig. 3a), oblique line and layer-staggered divisional 
strategy (Fig. 3b), spiral divisional strategy (Fig. 3c)) on 
SLM formed 316L parts. The results show that the parts 
manufactured by the layer-staggered divisional strategy have 
better performance, and the formed parts obtain 99.37% den-
sity, which effectively improves the distribution of residual 
stress and alleviates the deformation of the parts.

For the island scanning strategy, the scanning order of 
all sub-sectors also affects the residual stress and defor-
mation of the part besides the factors of the length and 
direction of the scanning vector. Mugwagwa et al. [26] 
studied the effects of island (sub-sectors were scanned 
randomly),successive (sub-sectors were scanned one 
after the other), successive chessboard (sub-sectors with 
horizontal scan vectors were scanned sequentially before 
the scanning of vertical-vector partitions) and least heat 
influence (the next partition to scan was as far away as 
possible from the current sub-sectors) scanning strategies 
on residual stress and deformation of SLM parts, the scan-
ning sequence was shown in Fig. 4. The vector directions 
between adjacent islands were shown in Fig. 5. The results 
show that the continuous scanning strategy obtains the 
smallest average residual stress and the smallest defor-
mation as well. Mugwagwa et al. [26] concluded that the 
higher heat accumulation of the successive chessboard 

Fig. 1  Relationship between 
residual stress and process 
parameters (a) hatch spacing 
was 0.1 mm; (b) scanning speed 
was 1000 mm/s [21]

Fig. 2  Common scanning strategies (a) unidirectional line scanning; (b) reciprocating line scanning; (c) helical line scanning; (d) island scan-
ning; (e) interlayer rotation scanning (take 90° rotation as example)
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scanning strategy compared to the least heat influence and 
island scanning strategy helped to reduce the temperature 
difference between adjacent sub-sectors, thereby reducing 
the resulting stress.

Residual stress detection of LAM metal parts

Accurately obtaining the residual stress and deformation 
data of parts is the key to objectively studying the residual 
stress and related deformation of LAM parts. The detect-
ing methods for residual stress of LAM parts are divided 
into destructive methods and non-destructive methods. 

Fig. 3  Self-developed scanning 
strategy (a) normal partition 
strategy; (b) oblique line and 
layer-staggered divisional 
strategy; (c) spiral divisional 
strategy [25]

Fig. 4  Scanning strategies for different scan orders (a) 
island(approximation); (b) successive; (c) successive chessboard; (d) 
least heat influence [26]

Fig. 5  Scan vector direction between adjacent partitions [26]
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Destructive methods include hole-drilling method and 
contour method, etc., and non-destructive methods include 
X-ray diffraction method and neutron diffraction method, 
etc. These residual stress measuring methods are listed in 
Table 1.

Hole‑drilling method

The measurement principle of hole-drilling method is shown 
in Fig. 6. A small hole with a diameter of 2a is drilled at the 
position to be measured. The residual stress around the small 
hole is released, and the material undergoes a slight morpho-
logical change. According to the measured strain released, 
the residual stress at the measured location can be obtained 
[27]. The calculation formula is as follows.

In the formula, �1 , �2 , and �3 are the released strain in 
three directions. A and B are the release coefficients; θ is 
the angle between the principal stress �1 and strain �1 ; �1 
and �2 are the principal residual stresses. Heigel et al. [28] 
established a coupled thermal–mechanical model of LDM 
parts to predict the temperature and stress of Ti6Al4V parts 
during the LDM process. The hole-drilling method was used 
to measure the residual stress and laser displacement sensors 
were used to measure the deflection of parts. The model can 
predict the stress accurately.

Contour method

According to contour method, the workpiece is cut along 
the specific target plane (usually by electric spark wire cut-
ting), the residual stress perpendicular to the cutting surface 
is released without the constraint of the workpiece itself, 
resulting in the deformation of the cutting surface, and the 
deformation is proportional to the residual stress perpen-
dicular to the target plane. According to the Bueckner super-
position principle, the original stress field of the target plane 
can be derived by using finite element modeling, and the 
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residual stress of the workpiece perpendicular to the cutting 
plane can be obtained [29]. The measurement principle is 
shown in Fig. 7.

Vrancken et  al. [30] measured the residual stress of 
Ti6Al4V manufactured by SLM by the contour method and 
drew a two-dimensional strain diagram in order to study the 
influence of residual stress of SLM parts on their mechanical 
properties. Ahmad et al. [31] measured the residual stress of 
Ti6Al4V and Inconel 718 parts manufactured by SLM in the 
deposition direction by the contour method, and verified the 
numerical model proposed to predict residual stress.

X‑ray diffraction method

The measurement principle of X-ray diffraction method 
(XRD) is shown in Fig. 8. When there is residual stress in 
the sample, the crystal plane spacing changes. The diffrac-
tion peak generated moves accordingly when Bragg diffrac-
tion occurs, the moving distance is related to the stress. The 
residual stress can be obtained by irradiating the sample with 
X-ray with wavelength λ and measuring the correspond-
ing diffraction angle 2θ [32, 33]. Due to the properties of 

Table 1  Comparison of LDM part stress measurement methods

Method Category Precision Application Features

Hole-drilling method Semi-destructive testing High Surface measurement Inexpensive equipment, operate easily
Contour method Destructive testing High Large components Measure stress in vertical cross-sections
X-ray diffraction method Nondestructive testing High Surface measurement Non-contact
Neutron diffraction method Nondestructive testing High Internal measurement Penetration is much deeper than X-rays

Fig. 6  Schematic diagram of hole-drilling method
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X-rays, X-ray diffraction method is suitable for measuring 
residual stresses in fine grained crystalline materials, such as 
ceramics, metals and intermetallic compounds, and certain 
composite materials, etc. [34] The depth of penetration of 
X-rays depends on the anode, material and angle of inci-
dence, and the measured strain is essentially an average of 
several micrometers of depth below the surface of the speci-
men. If the material grains are too coarse or the roughness of 
the surface to be measured is too high, the X-ray diffraction 
measurement accuracy will be affected greatly [35].

Simson et al. [36] measured the residual stress on the 
top and the side of 316L parts formed by SLM with X-ray 
diffraction method, and studied the generation of residual 
stress and influence of residual stress on SLM parts. The 
experimental results show that the residual stress of the part 
is related to the structural density. Kumaran et al. [37] used 

X-ray diffraction method to measure residual stress of parts 
and evaluate the residual stresses of 316L parts in SLM and 
LDM processes.

Neutron diffraction method

Neutron diffraction method employs neutron stream as 
an incident beam to irradiate the sample, and the diffrac-
tion peak is obtained when Bragg diffraction occurs on the 
crystal surface of the sample. Its measurement principle is 
similar to that of X-ray diffraction method, but compared 
with X-ray, neutron has stronger penetration ability and is 
more conducive to measuring residual stress inside materials 
or parts [38–40]. Wang et al. [41, 42] proposed a coupled 
thermo-mechanical model to predict the residual stress of 
LDM manufactured Inconel 625 thin-wall parts, and used 
neutron diffraction method to measure the residual stress to 
verify the model. Subsequently, in-situ neutron diffraction 
method was used to measure the residual stress of Ti6Al4V 
parts manufactured by LAM and conventional machining 
at 600℃ and 700℃, and the stress relaxation behavior and 
mechanism were studied. Kemerling et al. [43] proposed a 
finite element model for predicting residual stress of 304L 
parts manufactured by DMLS. Neutron diffraction method 
was used to measure the residual stress to verify the model, 
and the influence of laser scanning strategy on the residual 
stress of 304L parts formed by DMLS was studied.

Among the commonly used residual stress measure-
ment methods for LAM parts, hole-drilling method has the 
characteristics of low cost and small measurement depth, 
so it can only measure the residual stress on the surface 
of the parts instead of the residual stress inside the parts 
[27]. Contour method can be used to measure residual stress 
inside the parts with large thickness. But contour method 

Fig. 7  Basic principle and pro-
cedure of residual stress meas-
urement by contour method (a) 
Cutting the part along target 
plane; (b) Measuring the con-
tour of the cutting surface; (c) 
Finite Element Modeling; (d) 
Residual stress distribution

Fig. 8  Schematic diagram of X-ray diffraction method
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can only measure the residual stress perpendicular to the 
cutting section [27, 29]. At present, X-ray diffraction method 
is widely used because of its high measurement accuracy 
and its ability to non-destructively macroscopic macro-
scopic and microscopic residual stresses. X-ray diffraction 
is suitable for measuring fine-grained materials. And like the 
drilling method, X-ray diffraction method can only measure 
the residual stress on the surface of the material due to its 
small X-ray penetration depth. If the residual stress inside 
the part needs to be measured, synchrotron radiation X-ray 
diffraction method or neutron diffraction method is suitable. 
Neutrons can penetrate a large depth of the sample and have 
great advantages in the measurement of the residual stress 
inside the sample.

Deformation detection of LAM metal parts

The deformation of LAM can be detected by three-coordi-
nate measuring machine, X-ray computer tomography, laser 
displacement sensor, digital image correlation method and 
so on.

Coordinate measuring machine

Coordinate measuring machine (CMM) is used to obtain the 
coordinates of each measuring point on the measured object 
which is placed in the space of the CMM. According to the 
spatial coordinate values of these points, the geometric size, 
shape and position of the measured object are calculated 
[44]. Dunbar et al. [45] simulated the deformation process 
with a finite element model and measured the deformation of 
the formed parts with a three-coordinate measuring machine, 
in order to verify whether rotational scanning mode and 
constant scanning mode affect the deformation of SLM 
parts. It was found that there was little difference between 
the deformation of the fabricated part with the rotational 
scanning mode and that of the constant scanning mode. 
Ning et al. [46] proposed a deformation prediction model of 
SLM parts, and used this model to predict the deformation of 
SLM formed Ti6AL4V double cantilever beam parts. At the 
same time, a three-coordinate measuring machine was used 
to measure the deformation of the parts, and the prediction 
results were consistent with the measured results.

X‑ray computed tomography

X-ray Computed Tomography (XCT) uses an X-ray tube to 
emit X-ray beams, the sample to be tested rotates around a 
fixed axis, the detector collects projection images of the sam-
ple at different angles, and then uses a computer to restore 
the three-dimensional structure of the object model. This 
measurement method can clearly, accurately and intuitively 

display the internal structure, composition, material and 
defect status of the detected object [47, 48]. The principle 
is shown in Fig. 9.

Samei et al. [49] conducted in-situ uniaxial tensile tests 
on Cu-4.3Sn alloys fabricated by SLM, and used X-ray 
computed tomography to visualize the pore growth dur-
ing part deformation. Choo et al. [50] used high-resolution 
synchronous X-ray computed microtomography to study the 
tensile-plastic deformation and fracture behavior of 316L 
parts fabricated by SLM.

Laser displacement sensor

Laser displacement sensor (LDS) can accurately measure 
the position and displacement of the target object in a non-
contact manner by laser technology [51]. The laser displace-
ment transmitter shoots the laser onto the surface of the 
object, and a series of reflections present on the surface of 
the object. One of the reflected rays returns to the laser dis-
placement sensor. According to the angle of light reflection 
and the distance of laser displacement sensor, the position 
and displacement of the object can be measured, etc. [52] 
The measurement principle is shown in Fig. 10.

Denlinger et al. [53] used laser displacement sensors to 
measure the deformation process of parts in situ, and inves-
tigated the effect of interlayer interval on the residual stress 
and deformation of LDM formed Ti6Al4V and Inconel 625 
parts. Corbin et al. [54] used laser displacement sensors to 
monitor the deformation of parts on site. The effects of sub-
strate thickness, deposition thickness and substrate initial 
temperature on the deformation of LDM formed Ti6Al4V 
parts and the effects of substrate thickness and substrate pre-
heating on substrate deformation were investigated.

Fig. 9  Schematic diagram of X-ray computed tomography measure-
ment
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Digital image correlation

Digital Image Correlation (DIC) usually uses a CCD camera 
to capture images of natural speckle or artificial speckle on 
the surface of the object before deformation and after defor-
mation, and then the computer detects the displacement by 
searching for the matching points of the two images [55, 56]. 
Biegler et al. [57] established a coupled thermal–mechani-
cal model to predict the deformation behavior of LDMed 
316L parts. The model was verified by measuring the 3D 
in-situ deformation of the part online with 3D digital image 
correlation method. Balit et al. [58] studied the effect of 
process parameters on the microstructure and properties of 
LDM manufactured 316L materials. In order to characterize 
the non-uniform strain and local strain in the microstruc-
ture of the parts during the in-situ tensile experiments, in-
situ observations were carried out with scanning electron 
microscopy, combining digital image correlation method 
and electron backscatter diffraction pattern. Wu et al. [59] 
studied the effect of microstructure of Ti6Al4V cellular solid 
with a cuboctahedron structure made by SLM on compres-
sive deformation behavior and fracture mechanism. The 
deformation and fracture process during the mechanical test 
were observed by digital image correlation method.

Coordinate measuring machine has high measurement 
accuracy and can obtain the coordinate values of any point 
of the measured part [44]. However, due to the limitation of 
its measurement principle, the full-field deformation data of 
the part cannot be obtained quickly. Computed tomography 
technology can visually exhibit the deformation of parts in 
the form of images [47, 48]. Laser displacement sensor has 
high measurement accuracy, but its application environment 
is relatively strict. Digital image correlation is a new type 
of non-contact optical measurement method, which has the 
advantages of non-contact, full-field measurement, simple 

data acquisition process, high measurement accuracy, and 
low measurement environment requirements. Digital image 
correlation can measure and characterize the full-field defor-
mation of parts, so it has become more and more widely 
used in related research in recent years.

Residual stress and deformation prediction 
of LAM metal parts

The deformation of LAM parts adversely affects the dimen-
sional accuracy and forming quality of the parts, and in 
severe cases it affects the use of the parts. Therefore, pre-
dicting the residual stress and deformation of LAM parts 
is crucial. Many methods have been developed to predict 
residual stress and deformation of LAM parts, including 
coupled thermal–mechanical model methods, multiscale 
modeling methods and modified intrinsic strain methods, 
reduced-order models and machine learning, etc.

Coupled thermal–mechanical model

In a coupled thermal–mechanical model for LAM, two phys-
ical fields of stress and temperature interact. That is, while 
the temperature change affects the stress deformation, the 
stress deformation also affects the temperature. However, 
the overall coupled thermal–mechanical characteristics of 
the LAM process are very complex, and the coupled ther-
mal–mechanical analysis of multiple scans using a fine mesh 
model is often very time-consuming. Zhao et al. [60] estab-
lished a coupled thermal–mechanical model to simulate the 
thermal history and residual stress during the DMLS process 
of Ti6Al4V parts. The evolution of residual stress was ana-
lyzed, and the influence of substrate preheating temperature 
on residual stress was studied. Yang et al. [61] studied the 

Fig. 10  Schematic diagram 
of laser displacement sensor 
measurement
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microstructure, hardness, residual stress and deformation of 
large-scale SLM parts. A transient coupled thermal-metal-
lurgical model was established to predict the microstructure 
and hardness of large-scale SLMed 4140 steel parts, and 
a coupled thermal–mechanical model was established to 
predict the residual stress and deformation of large-scale 
SLMed Inconel 718 parts. And the reliability of the predic-
tion model was verified by experiments. Zhang et al. [62] 
established a one-way coupled thermal–mechanical model 
to simulate the DMLS process to predict the deformation 
and cracking of DMLS parts. Nazami et al. [63] established 
a three-dimensional transient coupled thermal–mechani-
cal model to predict the residual stress and deformation of 
AlSi10Mg parts during the DMLS process, and discussed 
the effect of laser spot overlap on the residual stress of 
the parts. Mukherjee et al. [64] combined a 3D transient 
heat transfer and fluid flow model with a coupled ther-
mal–mechanical model to calculate the temperature field, 
residual stress and deformation of the LDM, and predicted 
the residual stress and deformation of Ti6Al4V and Inconel 
718 parts fabricated under different process parameters.

Multiscale modeling methods

Although the macroscopic model of LAM part deforma-
tion has the advantage of a small amount of calculation, 
it is difficult to reflect the microscopic mechanism of part 
deformation. Due to the limitation of computer power and 
modeling workload, it is unrealistic to use microscopic mod-
els to simulate complex structural parts. Therefore, there is 
a need for a computational model that can simulate both 
local microscopic changes and macroscopic deformations of 
parts. Multiscale model can be used to study the properties 
of materials at different lengths and time scales, providing a 
bridge to connect models at different scales, allowing mod-
els applicable at different scales to communicate with each 
other to study different properties of materials. Li [65–67] 
et al. developed a multi-scale modeling method to rapidly 
predict the residual stress and deformation of SLM parts, by 
integrating micro-scale laser scanning model, meso-scale 
layer filling model and macro-scale part model to quickly 
predict part deformation. The deformation of part fabri-
cated with different scanning strategy was measured and 
the model was experimentally validated. On the basis of 
this method, two multiscale methods based on temperature-
thread and stress-thread were developed and compared, and 
it was found that the deformation predicted by the multiscale 
method based on temperature-thread is closer to the meas-
ured result. Subsequently, a multi-scale modeling method 
based on temperature-thread was used to predict the residual 
stress and deformation of double cantilever beam parts, and 
the maximum deformation error was 28%.

Modified intrinsic strain method

Intrinsic strain method is widely used in welding problems. 
The inherent strain is the source of residual stress and weld 
cracks. If the inherent strain is known, the residual stress 
and deformation can be calculated by thermal elastic–plastic 
finite element analysis. Since the thermal deformation of 
AM is similar in principle to that of welding, the inherent 
strain method has been applied to additive manufacturing 
field. However, if the traditional intrinsic strain theory is 
directly applied to AM, the residual stress and deformation 
of the part cannot be predicted accurately. Liang and Chen 
[68–71] from the Department of Mechanical Engineering 
and Materials Science of the University of Pittsburgh, con-
ducted a lot of research on the deformation prediction of 
LAM based on the inherent strain method. Based on the 
traditional intrinsic strain method, the modified intrinsic 
strain theory was proposed, which was applied to DMLS 
thin-walled parts and double-cantilever beam parts, and the 
stress prediction and dimensional deformation prediction of 
large-scale parts were realized. Subsequently, the improved 
intrinsic strain method was extended to the deformation 
simulation of large-scale SLM part fabricated with thin-
walled support structures, and combined with asymptotic 
homogenization method to obtain equivalent mechanical 
properties including anisotropic elastic modulus and intrin-
sic strain. Lyu et al. [72] modified the traditional intrinsic 
strain method, calculated the intrinsic strain by simulating 
the thermo-mechanical process at a small scale, and con-
sidered the physical state of the deposited material in the 
simulation, and then applied the extracted intrinsic strain to 
double- cantilever beams and gears to predict the residual 
stress and deformation of the SLM parts. Setien et al. [73] 
established a mathematical model based on the intrinsic 
strain method to predict the residual stress and deforma-
tion of SLM large-scale Ti6Al4V parts. The model was 
validated experimentally by fabricating double-cantilever 
parts with different scanning strategies and measuring their 
deformations.

Reduced‑order model

The deformation simulation of LAM parts is generally 
described by differential equations, and the dimensions 
of the equations are usually relatively high, which brings 
great challenges to engineers. The reduced-order model is 
a low-dimensional approximate description of the multi-
dimensional physical process that changes with time, which 
can reduce the calculation amount and save the calculation 
time. The reduced-order model possesses a faster calculation 
speed, especially in the case of more degrees of freedom, 
but less information is retained in the original system and 
the model accuracy will be lowered. Ha et al. [74] proposed 
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two-dimensional and three-dimensional finite element mod-
els considering solidification effects, in order to analyze the 
effect of temperature gradient and sequential solidification 
on residual stress in a single bead that was cooled rapidly 
during the LDM process. A reduced-order model was also 
proposed, which successfully predicted the residual stress 
during the deposition of a single bead during sequential 
solidification in LAM. Ghnatios et al. [75] proposed a cou-
pled thermal–mechanical model and its associated reduced-
order model to evaluate part deformation. This model was 
used to predict the maximum deflection of LAM formed 
stainless steel 316L cantilevered plate and the predicted sim-
ulated results were in excellent agreement with the experi-
mental measurement value.

Machine learning

Machine Learning (ML) is a study of computer algorithms 
that can automatically improve data analysis models through 
huge data sets and continuous training. In ML, models are 
continuously trained to discover patterns and correlations 
from large amounts of data, and then make optimal decisions 
and predictions based on the results of data analysis. The 
prediction accuracy increases with the increase of data. Deep 
Learning (DL) is a method of ML and called "deep" because 
the technique uses multiple layers of neural networks and 
large amounts of complex, disparate data. Francis et al. [76] 
developed a DL model to predict distortion by considering 
the local heat transfer for pointwise distortion prediction. 
The model was used to predict the deformation of Ti6Al4V 
parts manufactured by LAM, and the results showed that 
the model could accurately predict the deformation of the 
parts. Zhu et al. [77] proposed a DL method based on con-
volutional neural network to predict the geometric deviation 
of SLM parts with different shapes and process parameters. 
A data augmentation technique was introduced to gener-
ate samples for network training with a small amount of 
data. This method could effectively predict the geometric 
deviation of cylindrical shape and square shape parts. Mehr-
pouya et al. [78] developed a ML prediction tool based on 
artificial neural network to predict the transformation tem-
perature and sample width of NiTiHf alloys with different 

process parameters, in order to study the effect of different 
process parameters on the transformation temperature and 
size deviation of SLM formed parts. The results predicted 
by the model were in good agreement with experimental 
measurements.

In the residual stress and deformation prediction of LAM 
parts, in order to obtain satisfying prediction accuracy, the 
simulation method requires a huge amount of calculation, 
and the ML method requires a large amount of data for train-
ing, which greatly reduces the work efficiency. Multiscale 
modeling and reduced-order model can reduce the calcula-
tion amount of the prediction model, but the models also 
need to ensure sufficient prediction accuracy, so the effect of 
shortening the calculation time is not ideal in some cases. In 
recent years, some researchers have begun to use reduced-
order models combined with ML to reduce computational 
costs [79, 80], and more research can be invested in this area.

Deformation compensation of LAM metal 
parts

The deformation of LAM parts has a great impact on the 
size and quality of the parts. In order to eliminate or mitigate 
this effect, efforts have been taken to compensate for the 
deformation of the parts. Based on the deformation predic-
tion for LAM, the deformation of the part can be inversely 
compensated to the initial geometry of the manufactured 
part to eliminate or reduce the deformation of the part, as 
shown in Fig. 11.

Biegler et al. [81] compensated the deformation inversely 
to the initial geometry of part, and used a coupled ther-
mal–mechanical model to simulate the shape of the LDM 
formed 316L thin-walled curved turbine blade after defor-
mation compensation. Then experiments proved that this 
compensation method could also be applied to other large-
scale parts. Babkin et al. [82] established a two-dimensional 
coupled thermal–mechanical model for predicting the defor-
mation of LDM large-scale axisymmetric Ti6Al4V cylinder 
parts. The deformation predicted by the model was reversely 
compensated to the initial geometry of the part, and then 
the model was used again to predict the shape and size of 

Fig. 11  Distortion inversion 
compensation concept (a) part 
to be formed; (b) part after 
deformation; (c) formed part 
after reverse compensation
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the formed part after compensation. The simulation results 
were in good agreement with the experimental results. 
Zhang et al. [83] adopted a mathematical model based on 
intrinsic strain to predict the deformation of DMLS parts, 
and applied nonlinear least squares NURBS surfaces con-
struction to compensate for the part geometry. The original 
and compensated geometries were imported into the model 
and the deformation results before and after compensation 
were compared. The flatness error and cylindricity error of 
the two test parts were measured respectively, and it was 
found that the cylindrical error and flatness error of the com-
pensated parts were significantly reduced. Afazov et al. [84] 
developed a deformation compensation method based on 
3D optical scanning data, conducted deformation predic-
tion for SLM manufactured Inconel 718 turbine blades and 
impeller parts, and then compensated the original geometry. 
The experiments showed that the compensation reduced the 
deformation of blades and impellers from about 300 μm to 
about 65 μm. Subsequently, Afazov et al. [85] improved 
the mathematical model proposed by Afazov [84] to pre-
dict the deformation of the LDM manufactured Inconel 718 
manifold structure. The experiments demonstrated that the 
improved method reduced the deformation of the manifold 
structure from around 400 µm to around 100 µm.

Conclusion and prospect

In this paper, the research status of residual stress and defor-
mation for LAM parts is reviewed. The main factors affect-
ing the deformation, the commonly used residual stress and 
deformation measure methods, and the deformation predic-
tion and compensation methods of LAM parts are summa-
rized. The following conclusions are drawn.

(1) Due to the multiple thermal cycles in the LAM pro-
cess, the residual stress and deformation of the parts 
vary non-linearly with process parameters and other 
factors. When only single-scan is investigated, and the 
process parameters may tend to have different effects 
on residual stress and deformation of metal parts manu-
factured by LAM.

(2) In recent years, with the development of measuring 
method for residual stress and deformation of metal 
parts manufactured by LAM, in order to avoid damage 
to the test piece, non-destructive testing method has 
been paid more and more attention and used widely 
by researchers. Among them, the optical measurement 
method is used most widely due to its non-contact and 
other advantages.

(3) In terms of residual stress and deformation predic-
tion of LAM metal parts, the calculation amount of 
simulation and the amount of data required by ML are 

relatively large. To significantly reduce computational 
costs and improve work efficiency, efforts can be taken 
to investigate methods that combine reduced-order 
models with ML.

(4) Through the pre-deformation analysis of the part, the 
deformation of the part is reversely compensated to 
the initial geometric position of the manufactured part, 
which can better reduce the final deformation of the 
part. The method can improve the dimensional accu-
racy of LAM, and has a good application prospect.

In the researches on residual stress and deformation of 
LAM parts, no breakthrough has been made in the full-field 
deformation detection during the manufacturing process 
of LAM parts. Prediction will be the main research direc-
tion in the next few years. In the existing literatures on the 
detection of deformation process of LAM, the widely used 
method is the digital image correlation method. Due to the 
principle of the digital image correlation method, the digital 
image correlation method before requires creating speck-
les on the surface of the manufactured part, and measuring 
the deformation of the part with the speckle pattern. The 
deformation of LAM parts at the beginning of manufactur-
ing cannot be measured. In recent years, the research and 
application of binocular vision measurement method has 
gradually increased. This method has the advantages of high 
efficiency, simple structure, non-contact measurement, etc., 
and can be applied to deformation detection during the LAM 
process. However, the accuracy of binocular vision measure-
ment is not high enough currently, which is a key problem 
that needs to be overcome in the future research.
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