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studies have reported that the 5182-O aluminum alloy is 
negative strain rate sensitivity at room temperature, while 
the strain rate sensitivity becomes positive with increasing 
temperature [6, 7]. The complex strain rate sensitive behav-
ior of 5182-O aluminum alloy at different temperature and 
strain rate ranges is considered to be the greatest challenge in 
modeling the observed stress-strain response [8]. Therefore, 
reliable and safe characterization of post-necking material 
behavior is crucial to improve the prediction accuracy of 
finite element (FE) simulations [9].

The accurate description of the hardening character-
istics of the sheet metal is the theoretical basis for the FE 
simulation of the high temperature and high speed forming 
process, and it is also the key to rationally optimizing the 
process parameters. The most common method to obtain the 
hardening curve is to theoretically calculate the experimen-
tal data of the uniform deformation before necking from 
uniaxial tension, but the strain obtained in this way is usu-
ally lower than the effective result in the forming process 
especially at high temperature. Therefore, it is meaningful 
to properly identify the hardening information of materials 
at large deformation. There are two approaches to describe 
large deformation up to fracture according to the effect of 

Introduction

Aluminum alloys are considered to be the most ideal light-
weight materials to replace advanced high-strength steels to 
improve energy efficiency [1]. The widespread application 
of Al-Mg alloys (5xxx series) is due to their high specific 
strength, good corrosion resistance and recycling poten-
tial. However, moderate strength and dynamic strain aging 
(DSA) result in lower formability of Al-Mg alloys compared 
to highly formable steel sheets [2]. The DSA effect is essen-
tially caused by the interaction between solute atoms and 
dislocations [3]. Negative strain rate sensitivity only occurs 
within a certain temperature and strain rate range due to the 
diffusion motion of solute atoms. High temperature [4] and 
high speed [5] forming technology is applied to improve 
sheet forming ability to overcome these limitations. Many 
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loading conditions on the hardening behavior: (a) different 
types of experiments were introduced to overcome the limi-
tations of uniaxial tension, such as the biaxial tensile tests, 
shear tests, and multi-layered upsetting tests [10–12], and 
(b) advanced constitutive model combined with effective 
data analysis method can extract the hardening characteris-
tics of uniaxial tensile test after necking [13–15]. The shear 
test has the advantage of inducing high plastic strains due to 
the approximately zero hydrostatic pressure and plane strain 
states. Traphöner et al. [11] introduced a new specimen with 
a specially shaped groove and a new incremental method, 
which enables very high strains for ductile materials.

The post-necking behavior of plastic materials is usually 
derived from the pre-necking data measured by conven-
tional experiments and then extrapolated according to the 
hardening laws. The predicted stress-strain curves of differ-
ent hardening laws at large strains are very different after 
necking strain, so this extrapolation method is considered 
unreliable and potentially unsafe. In the past decade, vir-
tual field method (VFM) and finite element model update 
(FEMU) are widely utilized to make the simulation results 
gradually approach the experimental results through itera-
tive optimization [16]. The former is an explicit method 
based on DIC technique that can accurately measure the 
full-field strain [17]. The latter is a well-known implicit 
approach through FE analysis, which makes the experimen-
tal results as close as possible to reproduce the hardening 
behavior after necking in the simulation by continuously 
adjusting the parameters of the constitutive model. In most 
studies, the hardening behavior is accurately described by 
matching post-necking force-displacement data, especially 
for fracture prediction. Peirs et al. [18] proposed a method 
involving the identification of constitutive model parame-
ters for FE simulation and extraction of hardening behavior. 
Mechanical behaviors related to strain rate and temperature 
are extracted from the shear and tensile test results. Lou et 
al. [19] calibrated the Swift-Voce hardening law and pres-
sure coupled Drucker function by inverse engineering to 
accurately simulate the strength between different stress 
states from yield to fracture. Denys et al. [20] showed that 
different from the progressive identification strategy, the 
global identification strategy can accurately describe the 
strain hardening behavior after necking. Zhang et al. [21] 
obtained the experimental full-field strain fields through 
DIC technology, and inversely identified the strain harden-
ing behavior beyond the maximum uniform strain.

The dynamic response of metallic materials is essen-
tial for deformation analysis under different temperatures 
and strain rates. The phenomenological and physics-based 
constitutive models are proposed to analytically character-
ize the coupling effect. However, most traditional constitu-
tive models are difficult to accurately describe the dynamic 

response at different conditions. Machine learning provides 
an alternative method to achieve data-driven nonlinear 
mapping based on the principles of human brain organiza-
tion. Jenab et al. [22] proved that the feed-forward neural 
network can accurately predict the rheological behavior of 
the 5182-O aluminium alloy material in different material 
directions. In order to consider the significant effect of DSA, 
Li et al. [23] introduced the effective aging time as an addi-
tional state variable into the hardening law of the artificial 
neural network (ANN) model. The back propagation algo-
rithm based on Bayesian regularization is employed to train 
the neural network and then it is used to describe the stress-
strain response associated with the temperature and strain 
rate of polypropylene [24]. The above results show that the 
machine learning method can be trained by experimental 
data and then establish the nonlinear mapping relationship 
from strain rate, temperature and plastic strain to the flow 
stress.

In the present work, the dogbone specimens and notch 
specimens of 5182-O aluminum alloy are performed to ten-
sile tests in the temperature range of 300 K ~ 523 K and the 
strain rate range of 0.001/s ~ 1/s. Then the FEMU procedure 
is used to extract the stress-strain of the notched specimen 
at large strains. In the process, the calibration errors of the 
two hardening models are compared, and then the input set 
of the ANN model is determined according to the calibra-
tion errors. The trained ANN model predicts the large strain 
behavior of the notched specimen at different conditions. 
The ANN model is implemented into the ABAQUS/Explicit 
to numerically describe the reaction force of the notched 
specimen at large strains.

Experiments

The material selected for the experiment is 5182-O alumin-
ium alloy in the form of sheets with a size of 500 × 500 mm. 
The sheets were drawn-over-mandrel until the thickness is 
1.25 mm and received in a fully annealed state. Two types 
of specimens are manufactured along the rolling direction 
using laser cutting with the dimensions shown in Fig. 1. The 
orthogonal test consisting of six temperatures and four strain 
rates is carried out to comprehensively consider the strain 
rate and thermal dependence of the material. The six sets of 
temperatures are spaced at 50 K intervals. Lou and Huh [25] 
suggested to perform numerical simulation to ensure that 
different loading speeds can meet the requirements of cor-
responding strain rates. Corresponding four strain rates are 
set to compare the strains obtained from the two specimens. 
The crosshead speeds are controlled at 1.8, 18, 180 and 
900 mm/min, respectively, so that the loading rates of the 
dogbone specimens could be guaranteed to reach 0.001/s, 
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0.01/s, 0.1/s and 0.5/s. In order to ensure that the notched 
specimens are stretched at strain rates of 0.001/s, 0.01/s, 
0.1/s and 1/s, the crosshead speeds are controlled at 0.9, 9, 
90 and 900 mm/min, respectively. Since the dogbone speci-
men cannot reach the strain rate of 1/s due to the limitation 
of the experimental equipment, the hardening behavior of 
the dogbone specimen at 0.5/s is compared with the harden-
ing behavior of the notched specimen at 1/s. At least four 
repeats are performed for each experimental condition, so a 
total of 192 experiments are carried out.

The specimen surfaces uniformly covered by the white 
paint are randomly sprayed with black spots so that the 
displacement field is captured by the 3D XTOP DIC sys-
tem. The resolution of the two cameras is 2448 × 2050 and 
the acquisition frequency is adjusted according to differ-
ent loading speeds to ensure that each set of experiments 
can effectively record 100–200 images during deformation. 
The force by the load sensor and the stroke by the video 
extensometer are carried out simultaneously. The distance 
between points A and B in Fig. 1 represents the initial gauge 
length for specimens. The heating phase lasts for about 
30 min to the target temperature. Then the temperature is 
kept at the target temperature for about 90 s before starting 
the test. There could be impact on microstructure especially 
at high temperature. The effect of microstructure change 
on flow curves is measured by experimental responses 
and considered by the constitutive models and ANN pre-
diction implicitly, even though the microstructure effect is 
not explicitly investigated in this study. The purpose is to 
achieve the desired temperature as much as possible and 
make the specimens uniformly heated.

The true stress-plastic strain curves are analytically com-
puted by the force-stroke curves of the dogbone specimens 
before the maximum force because the deformation is not 
uniform after necking at the maximum force. The computed 
flow curves are compared under different conditions of tem-
perature and strain rate in Fig. 2. It is observed that the flow 
stress at room temperature gradually decreases with the 
strain rate, indicating that the material exhibits a negative 

strain rate sensitivity. Moreover, the effect of the strain rate 
on the flow stress in the test range is different at 373 and 
423 K. The flow stress at 0.01/s obviously exceeds the other 
three strain rates at 373  K. The flow stress becomes the 
highest for 423 K at a strain rate of 0.1/s, and its strength is 
1.17 times that at a strain rate of 0.001/s. The comparison of 
results shows that the positive strain rate influence gradually 
increases with the temperature. The strain rate strengthening 
effect is significant up to 473 K. In addition, the difference 
in flow stress between the four sets of strain rates gradu-
ally becomes larger as the temperature increases. The above 
experimental results show that the effects of temperature and 
strain rate on flow stress are nonlinearly coupled. Numerous 
studies have shown that the negative strain rate sensitivity 
is due to the effect of DSA, which is essentially the result of 
the interaction of moving dislocations and diffusing solute 
atoms [26]. Fewer vacancies are created during stretching at 
low strain rates, so it takes longer for solute atoms to diffuse 
into moving dislocations than at high strain rates. Because 
the prolonged aging time causes more solute atoms to dif-
fuse around the dislocation, the interaction force between 
the dislocation and the diffusing solute atoms increases. The 
higher interaction force at low strain rate results from the 
diffusion of more solute atoms around the dislocation due 
to the prolonged aging time [27]. In addition to the nega-
tive strain rate sensitivity, another characteristic feature of 
the DSA effect is that the tensile curve is no longer smooth 
but some types of serrations appear. The large C-type serra-
tions appear in the latter part of the plastic deformation. The 
different serration types appear on the stress-strain curves 
only when the pinning effect of the solute atomic gas on the 
dislocation is large enough [28]. Experimental results with 
dogbone specimens are used to analytically compute the 
flow curves when the deformation is uniform at the gauge 
before the maximum force. However, the flow curves can-
not be analytically computed when the deformation is local-
ized after necking especially at high temperature. In this 
study, the experimental force-stroke curves of notched spec-
imens in Fig. 1 is adopted to characterize the strain harden-
ing behaviour up to large strain after necking by the inverse 
engineering approach [19]. In the inverse engineering 
approach, the flow curve is optimized so that the numerical 
predicted force-stroke curve matches with the experimen-
tal result with the least difference. The force-stroke curves 
of dogbone specimens are not suggested to be used in the 
inverse engineering approach because necking of dogbone 
specimens is affected both by the material properties and the 
geometric defects of the gauge during manufacturing of the 
specimens. But for the notched specimens, material prop-
erties are the main reason for the necking in the designed 
geometric defect of the notched specimens. Therefore, the 

Fig. 1  Dogbone specimen and notched specimen geometries
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extraction strain. For example, the necking strain is only 
0.018 at 573 K with a strain rate of 0.001/s, which is much 
lower than other conditions. Mirone et al. [29] showed that 
inertial and material rate-dependence delay the necking ini-
tiation at high strain rates. There is not enough time for dis-
locations to annihilate and rearrange at high strain rate. The 
movement of dislocations is easier due to the temperature 
softening effect, so the stress at 573 K is lower and necking 
occurs earlier than at other temperatures. Thus the necking 
strain observed at 573 K with a strain rate of 0.001/s is the 

repeatability of the notched specimens is much better than 
that of the dogbone specimens after necking.

In order to specifically reflect strain rate effects on the 
flow behavior of the investigated materials, the correspond-
ing true stresses are extracted at three representative strain 
levels for all six temperatures as compared in Fig.  3. In 
order to cover a large deformation range, the strain values 
of 0.002, 0.05 and 0.1 are selected for 5182-O aluminum 
alloy. The necking strain under some conditions is relatively 
small, so no results are shown in Fig. 3 for the corresponding 

Fig. 2  Experimental true stress-plastic strain curves from tensile testing of dogbone specimens at different strain rates and temperatures: (a) 300 K, 
(b) 373 K, (c) 423 K, (d) 473 K, (e) 523 K and (f) 573 K
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indicate the significance of the strain rate dependence for 
the accurate description of the DSA related phenomena.

The experimental results of notched specimens under 
different conditions are compared in Fig. 4. The specimens 
necked before failure at room temperature and the necking 
became more prominent with the increase of temperature. 
The necking occurs at a displacement of 0.28 but cracks 
appear until the displacement is 8.43 at 573 K with a strain 
rate of 0.001/s. The 5182-O alloy is manufactured under 
annealing conditions, which reduces the strength but the 
failure strain (total elongation) increases with temperature 
[30]. The effect of higher temperature is to activate more 
dislocation mobility, higher dislocation entanglement and 
greater storage potential to improve ductility. In conclu-
sion, the 5182-O alloy deformed greatly under the coupling 
effects, and the hardening curves of uniaxial tensile test 
are limited due to necking. Therefore, the FEMU method 
should be introduced for uniaxial tensile test to obtain the 
hardening behavior of 5182-O sheet metal under large 

lowest compared to all other strain rates. From the compari-
son of the results in Fig. 3, it can be found that under the 
same strain, the amplitude of the stress at the six tempera-
tures gradually decreases with the increase of the strain rate. 
The difference in stress between the different temperatures 
is the greatest at the strain rate of 0.001/s for the three strain 
levels. For example, the amplitude of stress in Fig. 3(a) is 
54.03 MPa and 19.44 MPa at the strain rate of 0.001/s and 
0.5/s, respectively. At the same strain rate, the amplitude of 
stress at six temperatures also increases gradually with the 
increase of strain. For the strain rate of 0.1/s, the range of 
stress increases from 23.75 MPa to 112.06 MPa as the strain 
increases. It is expanded by 4.72 times through the range 
of strain indicating that the effect of strain reinforcement is 
significant. Moreover, the negative strain rate effect can be 
observed at 300 K. It can be observed that the maximum 
stress at 373 and 423 K is at strain rate of 0.01/s and 0.1/s, 
respectively. The stress after 473 K is positively correlated 
with the logarithm of the strain rate. These observations 

Fig. 3  (a) True stress-plastic strain curves for different temperatures and loading speed; (b), (c) and (d) The distribution of the true stress over strain 
rate determined from uniaxial tensile tests at different plastic strain levels
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Finite element modeling and inverse 
engineering approach

General frame work

The flowchart in Fig. 6 illustrates the inverse engineering 
process based on the FEMU method. The basic task is to 
minimize the difference between the experimental mea-
surements and the numerical calculation results of the FE 

deformation. Figure  5 shows the effective surface strain 
fields of the dogbone and notch specimens measured by 
DIC at maximum force for different strain rates of 573 K. 
It is clearly observed that the necking strain increases with 
the strain rate at a high temperature such as 573 K, which 
indicates that high speed can improve the formability of the 
material.

Fig. 4  Experimental force-displacement curves from tensile testing of notched specimens: (a) 300 K, (b) 373 K, (c) 423 K, (d) 473 K, (e) 523 K 
and (f) 573 K
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adjusting these parameters according to the experimental 
results, the difference with the numerical calculation results 
gradually decreases until the optimal parameters are iden-
tified. If you want to further confirm the accuracy of the 

simulation by adjusting the parameters of the selected plas-
tic model. Initial guess values are given to the parameters 
of the constitutive model, and then FE simulations under 
different experimental conditions are carried out. While 

Fig. 6  The iterative process of inverse engineering

 

Fig. 5  The effective surface strain fields measured by DIC at the maximum force of the dogbone and notched specimens for different strain rates 
of 573 K
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In this study, two typical hardening models are selected to 
characterize the experimental results of 5182-O aluminum 
alloy, and the predictions after necking are significantly dif-
ferent according to the structural properties of the respective 
models. The Swift-Voce model and the p-model are selected 
to calibrate the hardening curves. As suggested by Sung 
et al. [33], the hardening curve is fitted by the Swift-Voce 
model, which is a linear combination of exponential and 
power model. In addition, the p-model [36] can simulate 
the hardening behavior before and after necking by flexibly 
adjusting the value of the parameter p. Then the simulation 
result after necking is closer to the hardening type of the 
voce model with a larger value of p. The expressions of the 
two hardening models and the physical meanings of the 
related parameters are as follows:

	 σeq =
1
2

[
K

(
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+
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where σeq is equivalent stress, ɛmax is maximum uniform 
strain, the parameters K, ɛ0 and n are identified through the 
available pre-necking data, p is post-necking strain harden-
ing parameter and K, Q, A, B, and C are material constants. 
As such, the p-model enables a variety of post-necking 
hardening behaviors to be described whilst retaining the 
accuracy in the pre-necking region. In order to achieve a 
smooth transition from pre-necking to post-necking hard-
ening rate in Eq.  (3), the relationship between Q and p is 
derived from the equality of the first derivatives of the two 
hardening regimes at ɛmax.

	
Q=

K · n(ε0 + εmax)n−1

p
� (4)

Comparison of calibration results of the two models

The local material behavior can be effectively recovered by 
correcting the force-displacement responses in a single sim-
ulation with the FEMU procedure. Therefore, the inverse 
engineering is extended to modify the properties of the 
input material during multiple simulations. The first-order 
solid elements (C3D8R from the ABAQUS library) of the 
specimen are used with an element edge length of 0.4 mm 
in the critical region, and the detailed FE meshes is shown 
in Fig.  7. The FE model has three elements in the thick-
ness of the sheet, and a quarter symmetric model is adopted 
with symmetric boundary conditions to save running 
time. The element size sensitivity is studied to balance the 

simulation results, you can compare the estimated local 
strain field of the sample cross section with the displace-
ment field obtained by the DIC method.

Specifically, the iSight software integrated with the 
SIMULIA execution engine is used to create a simulation 
process consisting of a series of automatic FEA simulation, 
data matching and optimization processes. Several optimi-
zation methods are tested for the same task, including gradi-
ent descent method, conjugate gradient method, downhill 
simplex method, and so on. The downhill simplex method 
with an initial simplex size of 0.1 and a maximum number of 
iterations of 40 is selected. Different combinations of initial 
guesses are tested and the results show that the convergence 
time and convergence value are not significantly affected.

	
errnotched =

∑n

i=1

(
F exp

i − F num
i

F exp
ave

)2

� (1)

where n is the number of samples, F exp
i  and F num

i  is the 
experimental and numerical simulated load values cor-
responding to the i sample, and F exp

ave  is the average load 
values of the experimental force-stroke curves. Finally, the 
differences of the calculated results are normalized accord-
ing to the experimental force to reduce the influence of the 
different load-bearing capacity according to Eq.  (1). The 
optimization algorithm iterates until the error is less than 
expected, and the last updated variables are regarded as the 
optimization parameters of the hardening model.

Identification procedure

The FEMU is applied to inversely identify different phe-
nomenological constitutive models in order to accurately 
characterize the flow behavior of materials during metal 
forming [31]. Different models are combined according to 
the characteristics to describe the strain hardening behav-
ior before and after necking more flexibly [32]. Sung et 
al. [33] proposed a multiplicative phenomenological con-
stitutive model to accurately describe the strain hardening 
behavior with temperature under high strain. The accu-
racy of the model is verified by extensive experiments and 
simulations that take into account the temperature increase 
during stretching. Roth and Mohr [34] show that a plastic 
model with a Johnson–Cook type of rate and temperature-
dependency and a combined Swift–Voce strain hardening 
law can be used to accurately describe the local strain field 
at large deformations. Recently, Pham et al. [35] introduced 
the Kim-Tuan hardening model combined with two yield 
functions to successfully describe the anisotropic plastic 
behavior of the bulge test. Alternatively, Knysh et al. [13] 
implemented a cubic function to identify the hardening 
response before and after necking in a fully coupled manner.
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the hardening model is selected according to the specific 
calibration results at different temperatures and strain rates.

The flow curves of the two hardening models are 
extracted from the numerical simulations by the red ele-
ments in Fig.  7. They are compared with experimental 
calculations for dogbone specimens under 24 loading con-
ditions in Fig. 9. It is found that the stress-strain curves of 
the notched specimen extracted by the FEMU procedure 
before necking is roughly the same as that calculated by the 
dogbone specimen. But as the temperature increases, the 
maximum strain of flow curves calculated by the dogbone 
specimen becomes smaller. Therefore, extrapolation of pre-
necked data to diffuse necking results is completely disor-
dered without the constraints of a well-calibrated hardening 
model. It becomes very important to calculate and modify 
the stress-strain curves by the FEMU procedure. The cali-
bration results of the two hardening models need to be eval-
uated so that the simulated stress-strain curves are much 
closer to the experimental results than the direct method.

The calibration errors of the two hardening models calcu-
lated by Eq. (1) are shown in Fig. 10. It can be found that at 
low temperature, the calibration results of the two hardening 
models have little difference by analyzing the error distribu-
tion diagram, but the prediction accuracy of the Swift-Voce 
model is slightly higher than that of the p-model. The cali-
bration accuracy of the p-model is significantly better than 
that of the Swift-Voce model in the temperature range of 
423 to 573 K. Moreover, the Swift-Voce model cannot accu-
rately calibrate the experimental curves with a strain rate of 
0.001/s at 523 and 573 K, and the p-model can only cali-
brate the results up to a strain of 1.0. It shows that it is still 
very difficult to accurately calibrate the hardening curves 
under the condition of very early necking at high tempera-
ture and low strain rate. In summary, the advantages of the 
p-model are very obvious especially at a higher tempera-
ture than 423 K. Therefore, the Swift-Voce model is finally 
determined to calibrate the 5 sets of experiments at 300 and 
373 K, and the p-model is selected to calibrate the remain-
ing 19 sets of experiments. The parameters of the different 
models are listed in Appendix A.

Finally, the selected combination is used to characterize 
the true stress-true strain behavior of the notched specimen. 
The maximum reliable strains of flow curves identified by 
inverse engineering approach for the notched specimen tests 
are compared with the necking strains of the dogbone speci-
men are shown in Fig. 11. It can be found that the necking 
strains of the dogbone specimen are roughly distributed 
between 0.1 and 0.2. However, the strains distribution range 
of the notched specimen is relatively large, the minimum 
strain is 0.35 at 373 K with a strain rate of 0.1/s and the 
maximum strain is 1.69 at 573 K with a strain rate of 0.1/s. 
Combined with the ratio histogram on the right, it is found 

requirements of high precision and low computation cost. 
The reaction force and strain distribution have basically 
converged when there are 3 elements in the thickness direc-
tion. Therefore, a FE model with three elements in the thick-
ness direction is adopted. The inverse FE analysis results 
calculated by the two hardening models for notched speci-
men are shown in Fig. 8. It can be seen from the comparison 
that at relatively low temperatures such as room tempera-
ture, the Swift-Voce model is suitable for the uniform strain 
range. The Swift-Voce model is an ingenious form of transi-
tioning strain hardening from a power-law form to an expo-
nential form. But as the temperature increases, especially at 
573 K, the necking phenomenon becomes more prominent. 
The p-model can easily describe the hardening characteris-
tics at medium strain rates, which fully reflects the advan-
tages of the piecewise function. The Swift hardening law 
can accurately describe the pre- necking hardening for dif-
ferent temperatures and strain rates. More importantly, the 
p-model can flexibly describe various hardening behaviors 
after necking while maintaining the accuracy of the pre-
necked region. The p-model can describe different post-
necking hardening behaviors by adjusting the parameter p. 
If p is small, Swift type hardening is retrieved. The larger 
value of the post-necking hardening parameter p makes the 
Voce hardening take up a larger proportion and the harden-
ing curve becomes saturated. This above means that the pre-
diction accuracy of the phenomenological hardening model 
should be evaluated at all hardening stages. Therefore, com-
bining the characteristics of the two representative models, 

Fig. 7  Detailed solid element meshes of dogbone specimen and 
notched specimen
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The more prominent ratio reached nearly 60 times at 573 K 
with a strain rate of 0.001/s. It can be seen that accurate 
characterization at large strains is of great significance to the 

that the strain ratio of the notched specimen and the dogbone 
specimen before 423 K is roughly between 1 and 4, but the 
ratio has a wide range of fluctuations at higher temperatures. 

Fig. 8  Calibration results of Swift-Voce model and p-model by inverse engineering method for notched specimens: (a) 300 K, (b) 373 K, (c) 423 K, 
(d) 473 K, (e) 523 K and (f) 573 K

 

1 3

1  Page 10 of 20



International Journal of Material Forming (2023) 16:1

Machine learning

The experimental results show that the mechanical behav-
ior of 5182-O alloy is highly nonlinear. It exhibits negative 
strain rate sensitivity at low temperature but strong posi-
tive strain rate sensitivity at high temperature. However, 
most traditional constitutive models cannot accurately 
describe the coupling effect. These models lack flexibility 
because they have fewer parameters to empirically describe 

reliability of the FE simulation results. The strain in Fig. 11 
is generally at the center of the specimen, not on the speci-
men surface, while the strain as Fig. 5 is the effective sur-
face strain fields measured by DIC at the maximum force of 
the dogbone and notched specimens for different strain rates 
of 573 K. So the strain in Fig. 11 is larger than the strain in 
Fig. 5.

Fig. 9  Comparison of true stress-strain curves of notched specimens extracted by inverse engineering with experimental results of dogbone speci-
mens: (a) 300 K, (b) 373 K, (c) 423 K, (d) 473 K, (e) 523 K and (f) 573 K
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BP neural network optimized by particle swarm 
optimization algorithm

Although the back propagation (BP) network has the abil-
ity of strong nonlinear mapping, it is easy to obtain local 

hardening behavior. Therefore, it is the best choice to choose 
ANN model to analytically describe the coupling effect on 
the flow curve at large strains.

Fig. 11  Comparison of the strain extracted from two specimens

 

Fig. 10  Comparison of calibration errors of two hardening models
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Chaotic search process

In order to avoid falling into the local optimum in the early 
search process, chaos theory and PSO algorithm are used in 
combination. This chaotic search process can be described 
as follow:

	● Step 1. Initialization of parameters.

The average distance D(t) and fitness variance σ2 are cal-
culated according to Eqs.  (6)-(7) until D(t) <α or σ2<β is 
satisfied.

	
D (t) =

1
N · L

·
N∑

i=1

√∑N

d=1
(pid − pd)

2 � (6)

	
σ2=

N∑

i=1

(
fi − favg

f

)2

� (7)

where N represents the population size of particles, L stands 
for the diagonal maximum length in searching space, D 
stands for the dimension of the solution space. pid

 is the 
dth dimension coordinate value of particle i and pd  is the 
average coordinate value of the dth dimension. The vari-
able fi  represents the fitness value of particle i, favg  is the 
average fitness value of all particles and f  is normalization 
scale factor.

	● Step 2. Perform the chaotic search.

A set of chaotic sequences is generated according to the ini-
tialized variable y0. If chaos iteration n>M, the particles are 
randomly replaced with the best point. This is then used to 
verify the end conditions of the PSO process.

Neural network model identification

The stress-strain curves of the notched specimens extracted 
by the FEMU procedure are used as the input data set for the 
ANN model describing the coupling effect. There are three 
inputs: plastic strain, plastic strain rate and temperature. 
The variables in the input vector 

[
εeq
pl , log10 (ε̇) , T

]
 of the 

neural network correspond to the intervals [0, 0.25], [-3, 0], 
[298, 573], respectively. The final model structure of strain 
rate and temperature effect is shown in Fig. 13. In order to 
achieve the optimal combination between the prediction 
accuracy and the calculation time of numerical simulation, 
it is necessary to comprehensively consider the structure 
and parameters settings of the neural network model [37]. 
The number of neurons in the first hidden layer has a domi-
nant influence on the prediction accuracy. In addition, too 

extreme values and the convergence speed is slow. In order 
to improve the BP algorithm, the particle swarm optimiza-
tion algorithm (PSO) is introduced to optimize the initial 
weights to speed up the convergence of the BP network. The 
comprehensive PSO-BP network can give full play to the 
extensive nonlinear mapping ability of BP network and the 
global search ability of PSO algorithm [37, 38]. The weights 
and thresholds of the BP neural network are represented by 
a randomly generated population particle. Each particle cor-
responds to a fitness value determined by the objective func-
tion in order to minimize the prediction error of the neural 
network. The optimization algorithm flow of PSO-BP net-
work is as follows:

	● Step 1. Determination of encoding mode.

The random position and velocity of a particle swarm is ini-
tialized and the BP neural network topology is constructed 
according to the number of input and output parameters.

	● Step 2. Fitness function.

σ̄pred  represents the predicted value corresponding to each 
experimental value calculated by the trained ANN model. 
The fitness value of each particle is calculated based on the 
reciprocal of the mean squared error (MSE).

	
MSE =

1
N

N∑

i=1

(σ̄exp − σ̄pred)
2� (5)

	● Step 3. Determination of extremum.

The individual extremum and group extremum of the par-
ticles are updated according to the new fitness value. In 
each iteration, the particle updates its own speed and posi-
tion through individual extreme values and global extreme 
values.

	● Step 4. Convergence condition.

The weights and thresholds are assigned and saved until the 
BP network reaches the performance target. Pbest is the posi-
tion where each particle’s best fitness value is calculated 
based on its historical motion, and gbest is where the best fit-
ness value is calculated for all particles in the global histori-
cal motion. The PSO-BP calculation process is summarized 
in Fig. 12.

1 3

Page 13 of 20  1



International Journal of Material Forming (2023) 16:1

parameters (the sum of weights and thresholds) reaches a 
value. The accuracy of prediction does not improve greatly 
with the further complexity of the network structure, but 
the calculation time of FE increases proportionally with 

few neurons will lead to the loss of input information, while 
too many neurons will increase the burden of FE calcula-
tion without much effect on improving the accuracy. And 
the prediction error reaches a plateau after the number of 

Fig. 13  The structure of ANN model 

Fig. 12  PSO-BP calculation process
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rate is adjusted between 0.01 and 0.1 depending on the situ-
ation. After the structure and parameters are set, the weights 
and thresholds are iteratively updated by the Levenberg-
Marquardt optimization algorithm. The experimental data 
are randomly divided into 90% for training and 10% for 
testing. Therefore, 2413 sets of data are extracted from the 
FEMU procedure and finally 2172 sets of data are used for 
the training.

The performance of the above PSO-BP model can be 
evaluated according to the predicted results in Fig. 14. The 

the number of parameters. After the same network structure 
is optimized by the PSO, the prediction error can quickly 
reach a low level. Therefore, the PSO-BP network with a 
single hidden layer of 16 neurons is chosen to fully exploit 
the potential of high prediction accuracy and low com-
putation time. The tansig (hyperbolic tangent function) is 
regarded as the activation function of the hidden layer, and 
purelin (linear function) is regarded as the activation func-
tion of the output layer. The best combination of the number 
of epochs and momentum is 3000 and 0.9, and the learning 

Fig. 14  The stress-strain curves extracted by the FEMU procedure are calibrated by the ANN model: (a) 300 K, (b) 373 K, (c) 423 K, (d) 473 K, 
(e) 523 K and (f) 573 K
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423 K, which becomes more obvious with the increase of 
temperature. It can reproduce almost all the characteristics 
at large strains perfectly, such as the fracture strain reaches 
1.8 with a strain rate of 0.1/s at 573  K. The ANN model 

results show that the ANN model can not only correctly 
calibrate the negative strain rate effect at low tempera-
ture. Moreover, it can accurately reflect the positive strain 
rate effect when the temperature is greater than or equal to 

Fig. 15  The FE results of the ANN model are compared with the experimental results and the calibration results by inverse engineering methods of 
notched specimens at different temperatures and different strain rates: (a) 300 K, (b) 373 K, (c) 423 K, (d) 473 K, (e) 523 K and (f) 573 K
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experimental data, and then determine the parameters of the 
ANN model. Finally, these parameters are input into the 
ANN model implemented in VUMAT of ABAQUS/Explicit 
written in Fortran. The FE meshes of the quarter symmet-
ric model for inverse engineering and validation are shown 
in Fig. 7. Different initial temperatures are set and then the 
temperature remains constant throughout the simulation. 
The corresponding loading speeds are set according to dif-
ferent strain rates. For all specimens, the displacement his-
tory and loading temperature are applicable to all nodes on 
the FE meshes. The ANN model assumes a von Mises yield 
surface and isotropic hardening.

The ANN model trained by FEMU procedure is used to 
predict the tensile force-displacement curves of the notched 
specimen. The comparison between the FE simulation 
results and the experimental results under different loading 

can also accurately calibrate the high nonlinearity shown by 
four groups of different strain rates at 523 K. In general, the 
deformation resistance increases with the equivalent plastic 
strain at a certain strain rate and temperature. It is worth 
noting that the curves predicted by the ANN model are 
still exceptionally smooth despite the large range of train-
ing data. In summary, the predictions of ANN model under 
different temperatures and strain rates have high accuracy 
compared with experimental data.

Comparison of experimental and numerical 
simulation results

The calibrated ANN model is embedded into ABAQUS/
Explicit to simulate the force-stroke curves of notched 
specimens. The toolbox of matlab is called to calibrate the 

Fig. 16  Experimental and simulation results of notched specimens: 
(a) the force-displacement curves, (b) the effective strain field calcu-
lated by DIC, (c) and (d) the effective strain fields of the ANN model 

calibrated by data obtained from the notched specimens and the dog-
bone specimens respectively at the last load step
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(1)	 Experiments show that the difference in hardening 
behavior and fracture strain under different loading con-
ditions is very obvious. The strain rate effect is negative 
at room temperature, but the strain rate effect becomes 
positive as the loading temperature increases. Thus, the 
strain rate and thermal effect is strongly coupled. The 
displacement of fracture becomes smaller with increas-
ing strain rate at the same temperature. Even as the tem-
perature increases, the necking strain is smaller but the 
fracture strain is larger.

(2)	 Suitable constitutive models for different loading condi-
tions are selected in order to obtain higher calibration 
accuracy as much as possible. The segmented p-model 
can accurately describe the pre- and post-necking hard-
ening behavior compared to the Swift-Voce model. The 
FEMU technique is applied during uniaxial tensile test-
ing to inversely identify the post-necking strain harden-
ing behavior.

(3)	 The appropriate parameters and structure are selected 
for ANN model in order to ensure the prediction accu-
racy and the calculation time. The extracted 24 sets of 
stress-strain are used as the input set to train the ANN 
model. Finally, the determined ANN model is applied to 
ABAQUS/Explicit. The method proposed in this paper 
can accurately predict the large strain response.

(4)	 It can be found that this method greatly improves the 
strain range of 5182-O aluminium alloy from the com-
parison between the strain obtained by the inverse cal-
culation of the notched specimen and the necking strain 
of the dogbone specimen. Moreover, the FE can almost 
accurately simulate the large strain behavior of the 
notched specimen under different loading conditions.

Appendix A. Calibrated parameters of two 
hardening models

Swift-Voce model
K ɛ0 n A B C

300 K 0.001/s 329.22 0.0058 0.3736 536.80 207.16 9.5117
0.01/s 321.38 0.0044 0.3639 508.96 189.88 11.349
0.1/s 296.09 0.0093 0.3839 496.86 193.09 13.310
1/s 357.43 0.0073 0.3300 449.75 171.46 12.587

373 K 0.001/s 464.62 0.0069 0.2738 426.85 146.09 6.5699
0.01/s 410.64 0.0047 0.3470 468.72 201.30 9.5559
0.1/s 245.75 0.0296 0.2927 502.22 192.86 11.565
1/s 604.78 0.0082 0.2680 227.76 109.34 29.467

423 K 0.001/s 529.02 0.0066 0.4110 276.39 194.67 13.007
0.01/s 324.22 0.0035 0.3531 458.41 241.24 7.5186
0.1/s 335.81 0.0073 0.3844 448.96 203.29 12.791
1/s 303.95 0.0085 0.3884 442.91 199.66 15.045

conditions is shown in Fig. 15. The ANN model can accu-
rately capture the negative strain rate effect of this material 
at 300  K. Moreover, highly nonlinear dynamic hardening 
behavior such as positive correlation before 0.1/s strain rate 
and negative correlation after 0.1/s strain rate at 423 K can 
also be accurately characterized by the ANN model. The 
positive strain rate effect becomes more obvious when the 
test temperature is greater than 473 K. The predictions of 
the ANN model for the positive strain rate effect at high 
temperature are in good agreement. Although at high tem-
peratures such as 573 K, the prediction results of the ANN 
model deviate a little from the inverse results. The rapid 
necking at high temperature results in the inflection point 
of necking strain that cannot be predicted very accurately. 
The comparison results show that the nonlinear coupling 
effect of thermal softening and strain rate hardening at large 
strains can be accurately reproduced by the calibrated ANN 
model.

Another ANN model is trained with the stress-strain 
curves of the dogbone specimens as the input data set. It is 
further used to simulate the hardening behavior of notched 
specimens at different temperatures and strain rates. Fig-
ure 16 (a) shows the comparison of the prediction results of 
the two ANN models with the experimental results at 423 K 
with a strain rate of 0.01/s. The ANN model calibrated by 
the data extracted from dogbone specimens at high temper-
ature is found to be only roughly correct in the predicted 
trend before necking. However, the post-necking prediction 
is significantly incorrect, and the deformation resistance 
does not even increase monotonically with the equivalent 
plastic strain. Figure  16 (b) is the DIC calculations with 
stroke of 2.694, and Fig. 16 (c) and (d) are the results of the 
FE simulation of the above two ANN models, respectively. 
The comparison shows that not only the strain distribution 
around the local area is close to the predicted value of simu-
lation a, but the equivalent strain value is also very close to 
the result of simulation a. Therefore, the prediction results 
of the ANN model calibrated by the data extracted from the 
dogbone specimens are very different from the experimental 
results.

Results and discussion

The large strain response of 5182-O aluminium alloy is 
investigated for uniaxial loading. The effective combina-
tion of the inverse engineering method and the ANN model 
accurately identifies the post-necking hardening response of 
rate- and temperature-dependent metals. The following con-
clusions are summarized:
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