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usually observed, and in orthogonal loading the downward 
transition behavior of r-value is found besides the work-
hardening behavior [3, 4].

Accuracy of numerical simulation of sheet metal form-
ing process relies on an appropriate description of material 
behavior. Numerous studies are focused on the elastoplas-
tic constitutive equations that are applicable to variable-
path loading cases, containing anisotropic yield criterion, 
hardening law, and plastic flow rule. The hardening model 
is highlighted because it controls the evolution of yield 
surface during deformation, which is crucial to describe 
the stress and strain responses. Various hardening models 
including isotropic, kinematic, and mixed hardening have 
been proposed.

To capture the Bauschinger effect in reverse loading, lin-
ear kinematic hardening model [5] and nonlinear kinematic 
hardening model [6] are proposed by defining a back stress 
which denotes the position of yield surface. In these mod-
els, the yield surface translates according to the evolution of 
back stress without expansion. Later Chaboche [7] proposed 
a mixed isotropic–kinematic hardening model, allowing 

Introduction

During the process of sheet metal forming, especially the 
multi-stage sheet metal forming, material can experience 
a variable-path loading condition that leads to complex 
strain path change. The stress and strain responses under 
strain path change are different from those under monotonic 
strain path [1, 2]. For example, in reverse loading the work-
hardening characteristics including the Bauschinger effect, 
work-hardening stagnation, and permanent softening are 
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Abstract
This work is aimed at investigating the influence of hardening models on the prediction of plastic responses of sheet met-
als under strain path change conditions. An enhanced back-stress restoration evolution hardening model was proposed, 
considering that the back stress accumulated in preloading stages was restored gradually in the subsequent loading stage. 
A comparative study was conducted between the proposed model and other two hardening models, i.e. Chaboche com-
bined hardening model and Yoshida-Uemori hardening model, in terms of their prediction accuracy of work-hardening and 
r-value evolution behaviors under reverse and orthogonal loading conditions. The parameters in the models were deter-
mined by the experimental results of uniaxial tension and uniaxial compression-tension-compression tests using 6061O 
aluminum sheet. Associated with the Yld2000-2d yield function, these three hardening models were further employed to 
simulate a two-stage deep drawing process of a cylindrical cup. The predicted punch load-stroke curves, the height dis-
tribution of the drawn cup, and the split-ring springback were compared with the experimental ones. Obvious difference 
between the predictions was observed in the second drawing stage, which indicates the significant influence of hardening 
model on the prediction of plastic response under strain path change conditions. Among these three hardening models, 
the proposed hardening model presented a good prediction result which matched well with the experimental outcome.
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in Sect.  3. Section  4 presents the detailied comparative 
study of applying these three hardening models in a two-
stage deep drawing process.

Theoretical formula

Yld2000-2d yield function

A non-quadratic yield function proposed by Barlat et al. 
[17], i.e. the so-called Yld2000-2d yield function, is uti-
lized here to describe the anisotropy of metallic sheet. The 
Yld2000-2d function can be written as:

	 f = φ (η) − 2(σy0 + R)m = φ′ + φ′′ − 2(σy0 + R)m = 0� (1)

where the stress tensor η is defined as η = σ – α; σ is the Cau-
chy stress tensor; α is the back stress tensor; σy0 is the yield 
stress along the reference direction of the sheet; R is iso-
tropic hardening component of yield surface; the exponent 
m is recommended as m = 8 for face-centered cubic (FCC) 
metals and m = 6 for body-centered cubic (BCC) metals; and

	 φ′ = |X ′
1 − X ′

2|m � (2a)

	 φ′′ = |X ′′
1 + 2X ′′

2|m + |2X ′′
1 + X ′′

2|m � (2b)

where X ’
j  and X ’’

j  (j = 1, 2) are the principle values of X’ 
and X’’ which are two linearly transformed stress tensor of 
η. The linear transformations can be expressed as:

	 X′ = L′.η � (3a)

	 X′′ = L′′.η � (3b)

where L’ and L’’ are the coefficient matrixes of the linear 
transformation.

The abovementioned linear transformations can be 
rewritten in matrix notation as:
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The principle values of X’ and X’’ are:

both the expansion and translation of yield surface. The 
model is widely used in predicting the material behavior 
under strain path change conditions, and has been embed-
ded in many commercial finite element software. However, 
the Chaboche model is not capable of capturing the work-
hardening stagnation that appears in the reverse loading for 
some material such as mild steel. To overcome that, Yoshida 
and Uemori [8] proposed a two-surface model by assum-
ing the kinematic hardening of the yield surface within the 
bounding surface of mixed isotropic–kinematic hardening. 
The Yoshida-Uemori (YU) model and its derivatives have 
been recommended for predicting the deformation behavior 
and springback in sheet stamping process [9, 10]. Zhang et 
al. [11] proposed a mixed hardening model which consists 
of a restoration evolution rule of back stress and isotropic 
hardening for two-stage loading experiments. The model is 
characterized by describing the isotropic expansion of yield 
surface for the as-received sheet and the anisotropic expan-
sion of yield surface for the prestrained sheet. The above-
mentioned models define the evolution of back stress, which 
controls the translation of yield surface, to capture the work-
hardening behavior in strain path change conditions. How-
ever, their ability to describe the downward transition of 
r-value is rarely reported.

Barlat et al. [12] proposed a homogeneous anisotropic 
hardening (HAH) model, which does not refer to the con-
cept of back stress. The HAH model defines a stable com-
ponent to describe the isotropic expansion of yield surface 
and a fluctuation component to describe the distortion of 
the yield surface. The model and its derivatives can cap-
ture the Bauschinger effect, work-hardening stagnation, and 
permanent softening [13, 14] in variable loading cases. Qin 
et al. [15] and Zaman et al. [16] utilized the HAH model 
to predict the r-value transition of aluminum and advanced 
high-strength steel sheets under strain path change condi-
tions, and the results were reasonable. The complicated 
mathematical formula of the HAH model enables the good 
description ability for the stress and strain response, but also 
restricts its application in the practical forming processes.

In this work, an enhanced back-stress restoration evolu-
tion (enhanced-BRE) hardening model for arbitrary strain 
path change conditions was proposed, and the prediction 
ability in terms of describing stress and strain response 
was compared with that of Chaboche combined hardening 
model and YU hardening model. Theoretical formula of 
these three hardening models, associated with the Yld2000-
2d yield function, are introduced in Sect. 2. Uniaxial ten-
sion and uniaxial compression-tension-compression tests 
using 6061O aluminum sheet were utilized to determine the 
parameters in the abovementioned models. The experiment 
method, parameter identification process, and the stress and 
r-value results predicted by the identified models are shown 
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Chaboche combined hardening model

The hardening model proposed by Chaboche [7] consists of 
a kinematic hardening item and an isotropic hardening item. 
The kinematic hardening is defined as the evolution rule of 
back stress α, which controls the position of yield surface. 
By using multiple back stress components α(i) and assuming 
the Amstrong-Frederick rule (AF rule), the kinematic hard-
ening can be expressed as:

	
α =

n∑

i=1

α(i)
� (8)

	
dα(i) =

2
3
Cidεp − γiα(i)dp � (9)

where dp is the equivalent plastic strain increment; Ci and 
γi are material constants; Ci/γi determines the saturation 
value of back stress α(i), and γi controls the rate of satura-
tion; n is the number of back stress components. The use 
of multiple back stress components in the Chaboche model 
can improve the prediction accuracy comparing with the 
classical Armstrong-Frederick model with only one back 
stress component. However, it is not appropriate to use as 
many back stress components as possible; on the contrary, 
this will increase the uncertainty of parameter identification. 
The use of two to four back stress components is acceptable 
in the relevant studies [18–20]. In this work, the Chaboche 
combined hardening model with three back stress compo-
nents (n = 3) was employed due to the parameter identifica-
tion method adopted in the following Sect. 3.2.2.

The isotropic hardening, defining the expansion of yield 
surface, is written as:

	 R = Q1 [1 − exp (−b1ε̄
p)] + Q2 [1 − exp (−b2ε̄

p)]� (10)

where ε̄p is the equivalent plastic strain; Q1, b1, Q2, and b2 
are material constants.

Enhanced back-stress restoration evolution hardening 
model

Under the assumption that the back stress geometrically 
stands for the center from the uniaxial tension stress to the 
uniaxial compression stress on the yield surface, a restora-
tion evolution of back stress was observed during two-stage 
loading tests by Zhang et al. [11]. To extend the back-stress 
restoration evolution hardening model (BRE model) to arbi-
trary strain path change conditions which usually exist in 
practical forming processes, the concepts of accumulated 
back stress and active back stress were introduced in this 
work.
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The two coefficient matrixes of the linear transformation L’ 
and L’’ can be expressed as follows.
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where ak (k = 1 ~ 8) are the independent parameters related 
to the anisotropy of sheet metals. If all the parameters ak 
equal to 1, the yield function defined in Eq. (1) reduces to 
the isotropic expression.

Based on the assumption of associated flow rule, the 
plastic strain increment can be calculated by:

	 dεp = dλ
∂φ

∂η
= dλ

(
∂φ′

∂X′ · ∂X′

∂η
+

∂φ′′

∂X′′ · ∂X′′

∂η

)
= dλ

(
∂φ′

∂X′ · L′ +
∂φ′′

∂X′′ · L′′
)

� (7)

where dεp is the plastic strain increment; dλ is the plastic 
multiplier. Detailed expressions of Eq. (7) could be seen in 
the work of Barlat et al. [17],.

Hardening model

The hardening model defines the evolution of yield sur-
face which is important to the prediction of stress and 
strain responses. Three kinds of hardening models, i.e. 
Chaboche combined hardening model (Chaboche model), 
enhanced back-stress restoration evolution hardening model 
(enhanced-BRE model), and Yoshida-Uemori hardening 
model (YU model), were utilized in this work. Detailed for-
mulations are presented as bellow.
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If the back stress has multiple components, Eqs.  (11)-
(14) can be rewritten as:

	
dαa(i) =

2
3
Cidεp − γiαa(i)dp � (15)

	

αpre(i) = αa(i)

εppre = εp

}
, once the loading path changes

� (16)

	 α(i) = αpre(i) · kn(i)� (17)

	 kn(i) = pi + (1 − pi) exp
(
−qi

(
ε̄p − ε̄ppre

))
� (18)

	
α =

n∑

i=1

α(i)
� (19)

The scalar coefficient kn(i) denotes the change of each 
stress component α(i) in the loading stage after the strain 
path changes. According to the expression of kn(i) shown as 
Eqs. (17) and (18), the parameter pi stands for the saturation 
value of change ratio, i.e. α(i)/αpre(i), when the strain is large 
enough; the sign of the term (1- pi) represents the increase 
or decrease trend of the change, and the parameter qi reflects 
how fast the back stress component researches its saturation 
value. In the current version of enhanced-BRE model, the 
back stress components are not given clear physical mean-
ings, but their evolution trends construct the evolution of the 
total back stress. To ensure that the back stress α restores 
partially from αpre in the subsequent loading stage, a simple 
but effective restriction between the saturations Ci/γi and pi 
was proposed as:

	

n∑

i=1

Ci

γi
· pi > 0

� (20)

If the changed strain path is maintained for a period of 
strain range, kn gradually reduces with the increase of strain, 
resulting in the gradual decrease of back stress. If the strain 
path changes continuously, kn is always equal to 1, and thus 
α = αpre = αa, which means that in this case the restoration 
evolution rule of back stress reduces to the AF rule. The 
change of strain path is important to the restoration evo-
lution of back stress. The parameter cos(θ) proposed by 
Schmitt et al. [21] can be utilized to measure the strain path 
change according to a lot of research [22, 23].

The appearance of back stress is related to the microscale 
uniformity of plastic deformation. Therefore, the back stress 
should accumulate continuously throughout the deforma-
tion process. However, after the loading path changes, the 
back stress actually acting in the subsequent loading stage 
evolves under a combined influence of preloading and sub-
sequent loading stages, and thus might show the character-
istics of discontinuity. The continuously accumulated back 
stress against plastic deformation is called the accumulated 
back stress αa, and the back stress that actually works in the 
yield function is called the active back stress (also simply 
called back stress, α). The enhanced-BRE model assumes 
that in the subsequent loading stage the active back stress 
gradually restores from the accumulated back stress at the 
end of preloading stage. The back stress that can be obtained 
from experiments is the active back stress.

The evolution of accumulated back stress αa is defined 
by the AF rule:

	
dαa =

2
3
Cdεp − γαadp � (11)

The active back stress α consists of the part reflecting the 
contribution of preloading αpre, and the other part represent-
ing the restoration evolution mode of α in the subsequent 
loading kn:

	

αpre = αa

εppre = εp

}
, once the loading path changes

� (12)

	 α = αpre · kn� (13)

where εppre is the plastic prestrain, which equals to the plas-
tic strain at the moment of load path change; kn is a scaler 
function of the equivalent plastic strain in the subsequent 
loading stage:

	 kn = p + (1 − p) exp
(
−q

(
ε̄p − ε̄ppre

))
� (14)

where p and q are material constants. Equation (14) shows 
two characteristics of kn: (1) kn = 1 at the beginning of the 
subsequent loading stage, and (2) kn decreases gradually as 
the subsequent loading stage progresses. According to the 
experimental investigation, the back stress restores partially 
from the value αpre which equals to the accumulative back 
stress at the beginning of the subsequent loading stage, but 
never recovers. This requires that the saturation of kn is con-
strained to be larger than zero, i.e. 0 < p < 1 for Eq. (14).
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cyclic loading conditions, especially the work-hardening 
stagnation. In the two-surface model, the yield surface 
moves kinematically within a bounding surface; only the 
kinematic hardening is assumed for the yield surface, while 
the mixed isotropic-kinematic hardening is defined for the 
bounding surface.

Associated with the Yld2000-2d yield function, the yield 
surface can be expressed as:

	 f = φ (σ − α) − 2σy0
m = 0� (24)

The yield surface is utilized to calculate the plastic strain 
increment dεp under the assumption of associated flow rule 
shown as Eq. (8). The bounding surface is given by:

	 F = φ (σ − β) − 2(B + R)m = 0� (25)

where the back stress β denotes the center of the bounding 
surface; B and R are the initial size and isotropic hardening 
component of the bounding surface.

The back stress α of yield surface can be expressed by 
the sum:

	 α = α∗ + β � (26)

where α* denotes the relative kinematic motion of the yield 
surface with respect to the bounding surface. The evolution 
of α* is defined based on a modification of AF rule:

	
dα∗ = Ca

(√
2
3
dεp −

√
ᾱ∗

a
n∗dp

)

� (27)

where C is a material constant; ᾱ∗  is the equivalent value of 
α*; n* denote the unit tensor in the direction of α*:

	
cos (θ) =

dεp1 : dεp2
‖dεp1‖ · ‖dεp2‖ � (21)

where dεp1  and dεp2  are the plastic strain increments before 
and after current calculation step. When the strain path 
remains unchanged, cos(θ) = 1.

Figure  1a illustrates the evolution mode of back stress 
defined by the enhanced-BRE rule and AF rule in RD ten-
sion-compression tests. In the first loading stage, the back 
stress α defined by the enhanced-BRE rule equals to zero; in 
each of the subsequent loading stages, the back stress gradu-
ally decreases but never reaches zero. By contrast, the back 
stress αa in the AF rule grows in the first loading stage; in the 
subsequent loading stages, the back stress decreases with 
the increase of strain firstly, and then increases inversely 
after αa decreases to zero.

Figure 1b illustrates the relation of isotropic hardening 
rule and kinematic hardening rule. For the sheet without 
prestrain, the flow curve in the reference direction can be 
described by the Voce + Voce model:

	 σ̄ = σy0 + Q1 [1 − exp (−b1ε̄
p)] + Q2 [1 − exp (−b2ε̄

p)]�(22)

where Q1, b1, Q2, and b2 are material constants. For the 
sheet in variable-path loading cases, the isotropic harden-
ing rule R(ε̄p) can be defined as the difference between the 
flow stress (−

σ ) in the reference direction and the sum of the 
initial yield stress and equivalent back stress ᾱ :

	 R = σ̄ − (σy0 + ᾱ)� (23)

Yoshida-Uemori hardening model

Yoshida and Uemori proposed a two-surface model for 
describing the deformation characteristics under large-strain 

Fig. 1  Illustration of back stress 
evolution (a) and the relation 
of isotropic hardening rule and 
kinematic hardening rule (b) 
defined in the enhanced-BRE
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By applying the consistency condition to Eq. (32) and con-
sidering Eq. (34), there is

	
µ =

Γ − dr
r

and Γ =
1

2mrm−1

∂gσ

∂ (β − q)
: dβ

� (35)

The evolution of isotropic hardening stress r is defined as:

	

{
dr = hΓ, when dR > 0
dr = 0, when dR = 0 � (36)

where h (0 ≤ h ≤ 1) is a material constant that determines 
the rate of expansion of surface gσ. The initial value of r is 
assumed to be zero in this work.

In summary, three kinds of hardening models, i.e. Chab-
oche model, enhanced-BRE model, and YU model, were uti-
lized in this work. The ability of the models to describe the 
plastic response of sheet metals under variable-path loading 
conditions were investigated. Table 1 lists the parameters to 
be identified in these three models. Detailed identification 
process will be discussed later in Sect. 3.2.

Material experiments and parameter 
identification

To investigate the plastic response under variable-path load-
ing conditions, 3 mm thick 6061O aluminum sheet was used 

	
n∗ =

α∗

‖α∗‖ � (28)

The item a in Eq. (27) is expressed as:

	 a = B + R − σy0� (29)

The kinematic hardening of bounding surface is defined by 
the AF rule:

	
dβ = n

(
2
3
bdεp − βdp

)

� (30)

and its isotropic hardening is expressed as:

	 dR = n (Rsat − R) dp � (31)

where n and b are material constants; Rsat is the saturated 
value of the isotropic hardening stress R at infinitely large 
plastic strain.

To describe the work-hardening stagnation, a mixed 
hardening surface gσ is defined in the stress space.

	 gσ = φ (σ − q) − 2rm = 0� (32)

where q and r are the center and size of the surface gσ. It is 
assumed that the center of bounding surface β exists either 
on or inside of the surface gσ. The isotropic hardening of the 
bounding surface R takes place only when β stays on the 
surface gσ, namely

	





dR = m (Rsat − R) dp, if φ (β − q) − 2rm = 0 and

∂φ

∂β
: dβ > 0

dR = 0, otherwise �(33)

The center of the surface gσ is assumed to move in the direc-
tion of (β - q):

	 dq = µ (β − q)� (34)

Table 1  Parameters to be identified in three kinds of hardening models
Hardening model Parameters

Number Symbols
Chaboche model 11 σy0, Q1, b1, Q2, b2, 

Ci, γi (i = 1,2,3)
enhanced-BRE model 17 σy0, Q1, b1, Q2, b2, 

Ci, γi, pi, qi (i = 1,2,3)
YU model 7 σy0, B, Rsat, n, C, b, h

Fig. 2  Tension and compression 
experiments (a) testing method 
(b) dimensions of testing 
specimens
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small-scale gauge section of the specimen was designed, as 
seen in Fig. 2. No anti-buckling set-up was used. Secondly, 
for the unbroken specimens, the cuboid specimen was cut 
from the deformed gauge section area using wire-cut elec-
trical discharge machining, and further used as the specimen 
of the uniaxial compression test.

The uniaxial compression tests were conducted along 
RD for both the as-received sheet and the prestrained sheet 
experienced the compression-tension deformation. The 
cuboid specimen with the height of 5 mm was utilized, as 
seen in Fig. 2. During the uniaxial compression test, the sur-
faces of the upper and lower dies were mirror polished to 
minimize the influence of friction.

Figure 3 shows the stress-strain curves of different tests 
along RD, including the UT, CC, and UCTC tests. The 
tension stress-strain curve obtained from the CT speci-
men matched well with that measured from the standard 
UT specimen, as shown in Fig. 3a. Meanwhile, the stress-
strain response of 6061O sheet shows the characteristic of 
tension-compression symmetry. Table 2 lists the normalized 
yield stresses and r-values obtained from the UT tests along 
different directions. Note that the r-values were found to 
be nearly constant before the appearance of necking on the 
gauge sections of UT specimens, and therefore the r-values 
listed in Table 2 were equal to the mean r-values in the range 
of uniform deformation of the gauge sections.

Figure 3b shows the stress-strain curves of UCTC tests. 
The compression-tension specimens were firstly compressed 
to the plastic strain of -2.53%, and then stretched to differ-
ent strain levels, including to three tensile plastic strains 
of 1.96%, 5.10%, and 9.73%, and to rupture. The CC tests 

in this work. The in-plane uniaxial tension (UT), uniaxial 
compression-tension-compression (UCTC), and cuboid 
compression (CC) tests, as well as the though-thickness 
disk compression (DC) tests, were conducted to provide 
the stress-strain curves and r-values required for parameter 
identification. The identification process and result were 
presented in this section. Based on the identified models, 
the predicted yield surface evolution, stress-strain curves, 
and r-value vs. strain curves were discussed.

Material experiments

Figure 2 shows the testing method and the specimens uti-
lized in the material experiments. The UT tests were per-
formed in various directions from the rolling direction (RD) 
to transverse direction (TD) at an interval angle of 15°. The 
deformation data was recorded by digital image correlation 
(DIC) system. The uniaxial r-value was defined as the ratio 
of width strain rate dεw to thickness strain rate dεt in the UT 
tests:

	 r = dεw/dεt� (37)

The procedure of UCTC tests consisted of two parts. 
Firstly, the uniaxial compression-tension was conducted 
on the compression-tension (CT) specimen. All the speci-
mens were firstly precompressed to the displacement of 
-0.52 mm, and then stretched to different amounts of defor-
mation, including to the displacements of 0.76 mm, 1.3 mm, 
and 1.92 mm, and to rupture, respectively. To prevent the 
appearance of buckling during the compression process, a 

Table 2  Normalized yield stresses and mean r-values for 6061O sheet
Material Experimental result
6061O σ0 σ15 σ30 σ45 σ60 σ75 σ90 σb

1 0.9888 0.9694 0.9618 0.9591 0.9632 0.9657 1.0423
r0 r15 r30 r45 r60 r75 r90 rb
0.6960 0.6223 0.5480 0.4891 0.5548 0.6588 0.7380 1.0139

Fig. 3  Stress-strain curves of 
different tests along RD, (a) 
uniaxial tension (UT) and uni-
axial compression (UC) tests (b) 
uniaxial compression-tension-
compression (UCTC) tests
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the prestrain in the previous tension loading. Note that the 
1st compression stress-strain curves matched well with the 
curve converted from the UT stress-strain curves, which 
suggests that the buckling effect could be neglected during 
the 1st compression process.

To identify the parameters in Yld2000-2d function, the 
though-thickness DC tests were performed using 15  mm 
diameter disk specimens. The disk specimens were com-
pressed to different amounts of thickness reduction. The 
normalized yield stress σb is list in Table 2. The diameters 
both parallel to RD and TD of the sheet and the thickness 
were measured prior to and after the deformation. The vari-
able rb was defined as:

	 rb = dε90/dε0� (38)

where dε0 and dε90 denote the strain rates along RD and TD, 
respectively. Figure 4 shows the experimental strain along 
RD (ε0) vs. strain along TD (ε90) under different thickness 
reduction. The experimental value of rb was calculated as 

were further conducted on the cuboid specimens cut from 
the above unbroken specimens. The stress-strain curves 
in the final compression loading were offset according to 

Table 3  Identification results of parameters in the yield function and hardening models
Model Parameter
Yld2000-2d
yield model

m a1 a2 a3 a4 a5 a6 a7 a8
8 0.9420 0.9998 0.7679 0.9986 1.010 0.9474 0.9195 1.254

Chaboche model σy0
(MPa)

Q1
(MPa)

b1 Q2
(MPa)

b2 C1
(MPa)

γ1 C2
(MPa)

γ2

125.9 66.2 7.812 56.39 28.43 175.5 35.10 172.3 26.19
C3
(MPa)

γ3

97.44 0.01
enhanced-BRE model σy0

(MPa)
Q1
(MPa)

b1 Q2
(MPa)

b2 C1
(MPa)

γ1 p1 q1

125.9 17.73 87.18 136.5 11.76 285.6 46.54 -32.37 21.38
C2
(MPa)

γ2 p2 q2 C3
(MPa)

γ3 p3 q3

382.7 37.95 38.48 29.86 464.8 31.05 -12.65 44.49
YU model σy0

(MPa)
B
(MPa)

Rsat
(MPa)

n C b
(MPa)

h

125.9 151.6 115.5 10.34 59.08 18.80 0.1128

Fig. 5  (a) Tensile yield stresses 
normalized by RD tensile yield 
stress, and (b) r-values

 

Fig. 4  Strain along RD (ε0) vs. strain along TD (ε90) under different 
thickness reduction in the disk compression tests
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prestrained sheet are responsible for the identification. In the 
1st compression stage of the UCTC experiment, the applied 
compression stroke was kept small to avoid the buckling 
effect. This leads to that only one level of the 1st compres-
sion strain was obtained (i.e. -0.0253 as seen in Fig. 3). The 
identification of parameters Ci and γi depends on the pre-
loading stage according to Eqs.  (15)-(19). Therefore, the 
result of the 2nd tension tests, which involves only one level 
of precompression strain, was not suitable for determining 
the parameters Ci and γi alone. As for the 3rd compression 
tests, multiple prestrain levels were introduced beforehand; 
meanwhile, the plastic behavior in the 3rd compression 
stage contains the impact of the former two loading stages. 
These two features would keep the identification result more 
reliable. Therefore, the back stress vs. strain curves calcu-
lated from the 3rd compression of UCTC tests were utilized 
to identify the parameters in the kinematic hardening.

In the enhanced-BRE model, the back stress is assumed 
to stand for the geometrical center from the uniaxial ten-
sion stress to the uniaxial compression stress on the yield 
surface, according to Eq. (23) and Fig. 1b. The back stress 
is calculated as the half of the difference between the flow 
stress of the as-received and preloaded sheets in the ref-
erence direction. It should be noted that this calculation 
method is not suitable for other hardening models, such as 
the Chaboche or YU model, because the definition of back 
stress is not identical. Figure 6a and b show the equivalent 
stress-strain curves of UCTC tests and the calculated back 
stress vs. strain curves, respectively. For the 3rd compres-
sion of UCTC tests, the prestrain contains the 1st compres-
sion and 2nd tension. In the uniaxial loading condition, the 
accumulated back stresses at the end of 1st precompression 
(Point A in Fig. 6a) αA

a(i) and the 2nd pretension (Point B in 
Fig. 6a) αB

a(i) are calculated as:

	
αA
a(i) = −Ci

γi
[1 − exp (−γiε̄

p
A)]

� (39)

	
αB
a(i) =

Ci

γi
+

(
αA
a(i) − Ci

γi

)
exp (−γi (ε̄

p
B − ε̄pA))

� (40)

According to Eqs.  (39) and (40), the parameters Ci and γi 
were identified through the least squared method by using 
the values of back stresses once the strain path changes, i.e. 
at Points A and B in Fig. 6a. During the 3rd compression 
stage, the active back stress restores from αB

a(i):

	
α =

n∑

i=1

α(i) =
n∑

i=1

αB
a(i) [pi + (1 − pi) exp (−qi (ε̄

p
B − ε̄p))]

�(41)

To determine the parameters pi and qi, Eq. (41) was utilized 
to fit the experimental back stress vs. strain curves in the 

the slope of linear fit for the relation between ε0 and ε90, and 
the value was equal to 1.0139.

Parameter identification

Parameters in yield function

The determination of eight coefficients ak (k = 1–8) in the 
Yld2000-2d yield function requires at least eight experi-
mental characteristics. The yield stresses and r-values in UT 
tests along RD, 45° and TD (i.e. σ0, σ45, σ90, r0, r45 and r90), 
as well as the yield stress and r-value in through-thickness 
DC test (i.e. σb and rb) were employed here. By introducing 
these values in the yield function and calculation formula of 
r-value, a set of eight non-linear equations were obtained. 
The coefficients can thus be determined by solving the equa-
tions numerically. Figure 5 shows the experimental normal-
ized yield stresses and r-values, as well as those predicted 
by Yld2000-2d function using the identified coefficients as 
listed in Table 3.

Parameters in hardening models

The UT and UCTC stress-strain curves were utilized here to 
identify the parameters in the three hardening models. For 
the Chaboche model, a global optimization approach using 
the non-inferior sorting genetic algorithm NSGA-II was uti-
lized to determine the parameters. For the three back stress 
components, each of them is defined to individually control 
a certain segment of the hysteresis curve according to Bari 
and Hassan [24] and Rahman et al. [25]. Therefore, differ-
ent segments of the UCTC stress-strain curves were utilized 
to determine the parameters in different back stress compo-
nents. Detailed identification process could be referred to 
the work of Zhang et al. [26]. The final optimal values of 
the parameters in the Chaboche model are listed in Table 3.

For the YU model, the procedure of parameter identifica-
tion is introduced in the work of Yoshida and Uemori [8]. 
The parameters σy0, B, Rsat, n, and b, which have physical 
meanings, could be determined directly according to the 
corresponding segments of UT and UCTC stress-strain 
curves. The rest two parameters C and h were determined 
through the optimal fitting method using NSGA-II. The 
minimization of sum of square differences between the 
experimental and predicted UCTC stress-strain curves was 
set as the objective of optimization. The result of parameter 
identification is listed in Table 3.

As for the enhanced-BRE model, the parameters in the 
Voce + Voce flow stress extrapolation equation were deter-
mined using the least square fitting between Eq.  (22) and 
the UT stress-strain curve. As for the parameters in the 
kinematic hardening, the back stress vs. strain curves of the 
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contrast, the isotropic and kinematic hardening components 
in Chaboche model, as well as the mixed hardening surface 
for work-hardening stagnation and the mixed hardening 
bounding surface, are coupled with each other. An iterative 
optimization method has to be employed for determining 
the involved parameters. Special attention needs to be paid 
to the search of the optimal result.

3rd compression of UCTC tests through the least squared 
method. Fitting result is shown as Fig. 6b, and the values of 
involved parameters are listed in Table 3.

In summary, the parameters in the enhanced-BRE model 
can be identified step by step using the experimental results, 
and the mathematical expressions used for the identification 
are explicit. Meanwhile, the input value of the back stress is 
convenient to be obtained. The least squared method which 
has good convergence ability can be easily applied. By 

Fig. 7  Stress-strain curves of UT and UCTC tests predicted by different hardening models. (a) Chaboche model, (b) enhanced-BRE model, and 
(c) YU model

 

Fig. 6  (a) Equivalent stress-
strain curves of UT and UCTC 
tests (b) Experimental back 
stress vs. strain curves in the 
3rd compression of UCTC 
tests and those predicted by the 
enhanced-BRE model
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TD. Zhang et al. [11] carried out the TD uniaxial tension 
for the as-received and RD prestretched 6061O sheet. The 

Predicted stress and r-value curves against strain

The stress-strain curves of UT and UCTC tests predicted by 
different hardening models are compared with the experi-
mental curves, as shown in Fig.  7. Different back stress 
evolution modes are defined in the models, leading to that 
the yield surfaces evolve differently as shown in Fig. 8. In 
Chaboche model, the center of yield surface moves along the 
current loading direction, and meanwhile the size of yield 
surface increases as the equivalent plastic strain grows. In 
contrast, the enhanced-BRE model defines the restoration of 
back stress, leading to the center of yield surface translates 
backwards with respect to the current loading direction. 
The predicted initial yield stress of each subsequent loading 
stage is lower than that predicted by the Chaboche model, 
and meanwhile the expansion of yield surface is larger. In 
YU model, the yield surface moves along the loading direc-
tion without expansion. This results in that the initial yield 
stress in each subsequent loading is quite small.

The three hardening models, which are calibrated by the 
RD uniaxial tests, were further applied to predict the stress 
and strain responses along other directions, for instance the 

Fig. 9  Normalized TD tension stress-strain curves of the as-received 
and RD prestretched 6061O sheet predicted by Yld2000-2d yield func-
tion and different hardening models

 

Fig. 8  Yield surface evolution 
in UCTC tests predicted by 
Yld2000-2d yield function and 
different hardening models. 
(a-c) Chaboche model, (d-f) 
enhanced-BRE model, and (g-i) 
YU model
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In addition to the stress-strain relation under variable-
path loading conditions, different evolution modes of yield 
surface controlled by hardening models have a significant 
influence on the plastic deformation under the associated 
flow rule. In the abovementioned two-stage loading experi-
ment, the r-values of as-received and RD prestretched sheets 
in RD and TD tension tests are shown as a function of strain 
in Fig. 11. For the as-received sheet, the r-values in RD and 
TD tension tests (r0 and r90) could be treated as constants 
as the tensile strain increased. When a RD pretension strain 
was applied on the sheet, r0 in the subsequent RD tension 
remained constant except for small fluctuation, because the 
strain path was unchanged in this case. By contrast, r90 in 
the subsequent TD tension was large in the beginning of 
deformation, then decreased rapidly as the tensile strain 
increased, and finally reached to a saturation value which 
was larger than its original level.

Numerical predictions of the r-values using the Yld2000-
2d yield function and three hardening models are also pre-
sented as lines in Fig. 11. For the as-received sheet, r0 and 
r90 predicted by Chaboche and YU models increased with 
increasing tensile strain due to the definition of the transla-
tion of yield surface. In the enhanced-BRE model only the 
isotropic expansion of yield surface was taken place in the 
1st-stage deformation. Therefore, the r0 and r90 were pre-
dicted to be constant, which conforms to the experimental 
result. As for the RD prestretched sheet, all the three harden-
ing models could predict the downward evolution trend of 
r90 based on the translation and the potential expansion of 
the yield surface. The YU model defined a large translation 
of yield surface, which leads to the overestimation of r90 at 
the beginning of and in the process of the subsequent TD 
tensile deformation. The Chaboche model underestimated 
the initial value and the decrease rate of r90. The restora-
tion evolution of back stress defined by the enhanced-BRE 
model enabled the translation of yield surface toward the 
origin and the expansion of yield surface at the same time, 
resulting in a rapid decrease rate of r90 in the subsequent TD 
tension. The r-value curves against strain predicted by the 
enhanced-BRE model had the best match with the experi-
mental curves for both as-received and prestrained sheets.

corresponding stress-strain curves normalized by the initial 
yield stress σy90 are shown in Fig. 9a, as well as the curves 
predicted by the three hardening models. All the three mod-
els could provide a proper prediction result for the TD ten-
sion of the as-received sheet. However, for the TD tension 
stress-strain curve of RD prestretched sheet, the prediction 
of enhanced-BRE model matched well with the experimen-
tal result. In contrast, the initial yield stress predicted by 
the YU model was very small, and the hardening rate pre-
dicted by Chaboche model was lower that the experimental 
outcome.

The reason that causes the difference between the pre-
dicted stress-strain curves lies in the different evolution 
modes of yield surface controlled by the three hardening 
models in the RD tension followed by TD tension tests. As 
seen in Fig.  10, the evolution modes are drawn based on 
the corresponding simulation result. The solid red and blue 
arrows denote the stress evolution in the RD pretension and 
the subsequent TD tension, respectively. Compared with 
the Chaboche model, the enhanced-BRE model predicted 
a smaller initial yield stress at the beginning of the subse-
quent TD tension. As the TD tension strain grew, the back 
stress recovered gradually, leading to that the yield surface 
directly moved toward the origin of principle stress coordi-
nate while it expands. As a result, the stress predicted by the 
enhanced-BRE model increased faster than that predicted 
by the Chaboche model. The initial yield stress predicted 
by the YU model in the subsequent TD tension was much 
smaller, and the back stress grew fast, leading to the rapid 
increase in the stress-strain curve as depicted in Fig. 9.

If the focus is paid on the comparison between the exper-
imental results and the predictions from the enhanced-BRE 
model, it can be found that the prediction results are not 
ideal in small strain level, but become much better at large 
strains. One reason might be that the distortion of yield sur-
face induced by the preloading was not considered in this 
work. According to the works of Tozawa [27], Khan et al. 
[28, 29] and other researchers, the distortion of yield sur-
faces forming a corner in the front of preloading direction 
and a flat zone in the rear was observed in metals. In the 
subsequent loading after preloading, the distortion restored 
within a small range of strain but never completely recov-
ered. If the distortion of yield surface caused by preloading 
and its evolution in the subsequent loading was considered, 
the predicted stresses at small strains would be larger than 
that predicted here in Fig. 9, which would be closer to the 
experimental curves. As the deformation grew, the distor-
tion restored gradually, and the effect of distortion was 
smaller. This explains why the prediction could be close to 
the experimental result at large strains even if the distortion 
was not considered. Fig. 10  Yield surface evolution in RD tension-TD tension tests pre-

dicted by Yld2000-2d yield function and different hardening models. 
(a) Chaboche model, (b) enhanced-BRE model, and (c) YU model
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drawing stage were repeated at least five times to investigate 
the reproducibility. The cylindrical cups obtained from each 
drawing stage were scanned using ATOS-SCAN machine to 
measure the geometry of the cups. The measurement accu-
racy is 0.01 mm.

Figure 12b shows the numerical models of the two-stage 
deep drawing process. The simulation was performed in 
commercial software ABAQUS/Explicit. One-fourth geo-
metric models were utilized to improve the computation 
efficiency. Shell elements with four nodes and reduced inte-
gration (S4R) were utilized to mesh the one-fourth of the 
circular blank. The total number of elements was 3414. Five 
integration points were defined through the thickness. The 
penalty contact method was adopted and the friction coef-
ficient was set as 0.10. The elastoplastic deformation was 
assumed for the sheet. Three hardening models, together 
with Yld2000-2d yield function, were taken to define the 
plastic response. The models were compiled into VUMAT, 
by employing a semi-implicit integration using the radial 
return method to update stress, strain, and other state 
variables.

Application in two-stage deep drawing 
process

To investigate the performance of three hardening models in 
a practical multi-stage forming process, the two-stage deep 
drawing of a cylindrical cup was carried out here. Parallel 
simulation was conducted using the Yld2000-2d yield func-
tion and different hardening models. Numerical predicted 
punch load, geometry of drawn part, and split-ring spring-
backwere compared with experimental results.

Experimental and numerical modeling

Figure 12a shows the illustration of the two-stage deep draw-
ing process. A circular billet with a diameter of 110 mm cut 
from the 6061O sheet was drew firstly into a cylindrical cup 
with the diameter of 85.6 mm and secondly into a cup with 
the diameter of 63.4 mm. Considering the original thickness 
of the sheet (t0 = 3 mm), the blank holder was not used. The 
clearance between the drawing punch and die was set to be 
1.1t0. The drawing process was carried out on the platform 
designed by Zhu et al. [30]. The drawing device was fixed 
at the connecting ends of a universal testing machine, which 
moved at a speed of 10  mm/min during the experiments. 
The workpiece was lubricated with zinc stearate. Each 

Fig. 12  (a) Cylindrical cups and 
key tools, and (b) finite element 
models of the two-stage deep 
drawing process

 

Fig. 11  R-values in RD and 
TD tension of the as-received 
6061O sheet (a) and RD 
prestretched 6061O sheet (b) 
predicted by Yld2000-2d yield 
function and different hardening 
models
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conformed to the circumferential compression according to 
Fig. 13b and c. It should be noted that in the experimental 
drawing process, the circumferential compression deforma-
tion would lead to an obvious thickening at E3, and after E3 
flowed into the clearance of the die and punch, a thinning in 
thickness happened at the end of each drawing stage. How-
ever, because the shell element was utilized in this work, the 
thinning deformation at E3 could not be simulated.

Punch Load-stroke curves

The experimental punch load as a function of punch stroke 
in each stage of deep drawing process is presented in 
Fig.  14. During the each stage of deep drawing process, 
circumferential contraction was taken place on the flange 
area firstly. The work hardening resulted in the punch load 
increasing with the increase of punch stroke. Meanwhile, 
as the material continued to flow into the cavity of the die, 
the volume of the material participating in the circumferen-
tial contraction decreased gradually, which would lead to 
the trend that the punch load decreased with the increase of 
punch stroke. When a balance between these two mecha-
nisms was achieved, the load reached the maximum as 
shown in Fig.  14. Thereafter, the load decreased with the 
increase of stroke until the thickened flange material began 
to flow into the clearance between the punch and die. Sim-
ulation result shows that, for the 1st stage the numerical 
load-stroke curves predicted by three hardening models 
were close to each other. Obvious difference between the 
predicted load-stroke curves was found in terms of the peak 
load of 2nd stage. Among these three hardening models 

Strain path evolution

For the two-stage deep drawing process, local material 
would experience complex change of strain path. Taking the 
numerical result predicted by the enhanced-BRE harden-
ing model together with Yld2000-2d yield function as an 
example, the drawing process is shown in Fig. 13a. Three 
elements, i.e. E1, E2, and E3, were chosen in the areas con-
tacted with the fillets of two punches and near the outer edge 
of billet to present the evolution of their strain paths. Since 
the shell elements with five integration points through thick-
ness were utilized in the simulation, two groups of strain 
paths corresponding the bottom and top surfaces of the billet 
were outputted, respectively, as shown in Fig. 13b and c.

At the position of element E1, the bottom surface which 
was exposed to free air thinned obviously, while the top sur-
face contacting with the two punches had the tendency of 
thickening. As for the element E2, the evolution of strain 
path was complex. In the 1st drawing stage, E2 contacted 
with the fillet of the punch, leading the thinning tendency on 
the bottom surface and the thickening tendency on the top 
surface. In the 2nd drawing stage, E2 located at the flange 
area, and its deformation history could be generally divided 
into three stages, i.e. the beginning of 2nd drawing A to B, B 
to C, and C to the end of drawing as seen in Fig. 13b and c. 
The thickening or thinning tendency of each side of the sur-
face was related to whether the surface was in contact with 
the tools or not. For example, during the deformation B-C, 
the bottom surface contacted with the die and showed the 
tendency of thickening, while the free top surface had the 
tendency of thinning. The deformation at element E3 always 

Fig. 13  Numerical result of 
two-stage deep drawing process 
(a); the strain path evolution of 
integration points on the bottom 
surface (b) and the top surface 
(c) of the billet
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shew its superiority in predicting the earing phenomenon. 
Since that the r-value did not remain constant when strain 
path changes, it can be implied that the proposed hardening 
model was capable of describing the evolution of r-value 
during the forming process.

The split-ring test is a convenient method to evaluate the 
residual circumferential stresses at the sidewall of the deep 
drawn cups [31]. It consists of the cut of a ring specimen 
from the cup, the split of the ring, and the measurement 
the springback caused by the release of residual stresses 
after splitting. In this work, a 15 mm-height ring was cut at 
10 mm from the top of the cup. The ring was then split along 
the axial direction in RD to allow the opening up, as seen 
in Fig. 16a. Three repeated experiments were operated and 
the opening gaps Δs were obtained as bellowing: 4.16 mm, 
4.20 mm, and 4.07 mm with the averaged value 4.14 mm. 
The simulation of split-ring test was realized by using the 
*Model change option in Abaqus/Standard. The stress 
release processes caused by the removal of the drawing 
tools, the cut of the ring, and the split of the ring, were mod-
elled, as seen in Fig. 16b. The comparison of experimen-
tal and numerical opening gaps (Δs) is shown as Fig. 17. 
The gaps of the simulated split-rings with the Chaboche 
and the enhanced-BRE hardening models were closer to the 
experimental data comparing with the YU model. The result 
is compatible with that the Chaboche and enhanced-BRE 

the enhanced-BRE model has the best prediction accuracy 
concerning the load-stroke curve. It should be noted that 
since the shell element, which eliminates the influence of 
thickness change on numerical calculation, was utilized for 
meshing the workpiece, the simulation did not reproduce 
the increase of load caused by the thinning of the thickened 
flange.

Height distribution and split-ring springback of 
drawn cup

To compare the prediction accuracy concerning the geom-
etry of the cups, the height distribution of the final cup, 
as well as the springback when splitting a ring cut from 
the cup, was utilized. Figure  15a shows the experimental 
heights measured in Gom Inspect 2016 software, and the 
numerical heights predicted by the three hardening models 
associated with Yld2000-2d yield criterion. The thinning of 
the flange near the end of drawing process, which cannot 
be reflected by the shell elements, would cause the increase 
of cup height. Therefore, all the predicted heights were less 
than the experimental outcome. After the height data was 
normalized by the height value in RD, the obtained nor-
malized height distribution can denote the earing profile 
of the drawn cup, which reflects the planar anisotropy in 
sheet metal. As seen in Fig. 15b, the enhanced-BRE model 

Fig. 15  Comparison of experi-
mental and numerical height 
distribution of the final cylindri-
cal cup, (a) the real height, and 
(b) the normalized height

 

Fig. 14  Experimental load-
stroke curves in the two-stage 
deep drawing process and the 
numerical ones predicted by 
Yld2000-2d yield function and 
different hardening models. (a) 
1st stage, and (b) 2nd stage
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was observed in this stage, which indicates the significant 
influence of hardening model on the prediction of plastic 
response under multi-stage forming process. The predicted 
punch load-stroke curves and height distribution of drawn 
parts by the proposed hardening model was closer to the 
experimental outcome. The springback analysis of the split-
ring test shew the good prediction accuracy of the proposed 
model with respect to the residual stress distribution in the 
cup formed by the two-stage deep drawing process.

The developed hardening model was validated by the 
plastic response in the UCTC tests and the RD tension 

models predicted more obvious planar anisotropy distrib-
uted in the final cup as seen in Fig. 15b. The planar anisot-
ropy would cause the inconsistent elongation in different 
radial directions, leading to non-uniform distribution of 
circumferential stress in the sidewall of drawn cup. Thus a 
more obvious earing profile predicted by the Chaboche or 
enhanced-BRE model corresponds to a larger springback in 
the split-ring simulation.

Conclusions

An enhanced back-stress restoration evolution hardening 
model was proposed in this work to describe the stress and 
strain response in strain path change conditions. Compara-
tive study was conducted between the proposed hardening 
model, Chaboche combined hardening model, and Yoshida-
Uemori hardening model, in terms of their predict ability of 
work-hardening and r-value behavior in reverse and orthog-
onal loading cases, as well as in a practical two-stage deep 
drawing process. The following conclusions can be drawn 
from the analysis:

(1) The predictions of work-hardening and r-value behav-
iors in orthogonal loading by the proposed hardening model 
matched well with the experimental results, comparing with 
Chaboche and Y-U models. Among these three hardening 
models, the proposed model was preponderant in predicting 
the early reyielding and permanent softening effect, as well 
as the r-value transition in the loading conditions beyond 
those used for parameter identification.

(2) In the two-stage deep drawing process, strain path 
changed markedly in the second stage. Obvious difference 
between the prediction results of the three hardening models 

Fig. 17  Comparison of the experimental and numerical opening gaps 
Δs in the split-ring test (the percentages in brackets after the numerical 
prediction data represent the relative errors between the numerical and 
experimental values.)

 

Fig. 16  Process of the split-ring 
tests (a) Experiment (b) Finite 
element simulation
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