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Abstract
This paper concerns shear testing of a quasi-unidirectional non-crimp fabric used for wind turbine blades. In this context
“quasi” refers to the fact that the majority of the reinforcement is oriented along the longitudinal direction with a small
amount acting as a stabilizing backing layer in the ±80◦ direction. The bias-extension test is used to investigate the in-plane
shear kinematics of the fabric, i.e. whether a pure or simple shear kinematic is more suitable. Further, an expected outcome
of the test is a maximum applicable shear angle. Such information is highly important when simulating the draping of the
fabrics in a blade mold. The investigation shows that the fabric deforms mostly in pure shear for the shear angles relevant
for wind turbine blade production.
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Introduction

Wind turbine blades are made from a fiber-reinforced
composite material, which ensures a light, yet strong
structure. A part of the production consists in placing
courses of fiber plies in the mold, mainly stitched non-
crimp fabric (NCF), followed by the resin infusion process.
The NCF plies come in a variety of architectures, e.g. uni-
or multi-axial configurations with different areal densities,
roving sizes, stitching patterns, etc. The unidirectional (UD)
plies are widely used because they enable the fibers to be
aligned with the principal loading directions. To improve
the handling of the UD plies, a small amount of stabilizing
backing material is sometimes added in the transverse
direction, held in place with the stitching, thereby forming a
so-called quasi-UD.

To be able to predict the outcome of the fiber layup
or draping process on double-curved surfaces e.g. in
terms of fiber angles and possible wrinkle defects, various
simulation models have been developed. The models
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range in complexity from the simple kinematic models
to more advanced nonlinear, dynamic finite element (FE)
models. To this end, an understanding of the deformation
kinematics and in particular the in-plane shear kinematics
is highly important as this deformation is governing for the
draping abilities of the fabric and thereby crucial for the
modeling [5].

Basically, a fabric deforms kinematically in either pure
or simple shear as illustrated in Fig. 1. Pure shear or trellis
shear can in many cases accurately describe the behavior
of woven fabrics as long as the shear angles are moderate
in magnitude. Here, the interwoven rovings simply rotate
at their cross-over points. On the other hand, pure UD
reinforcements are commonly considered to behave in
simple shear, i.e. with the rovings being able to slide relative
to each other [17]. In reality, the two deformations are barely
distinguishable up to a shear angle of 10◦ [22]. Hereafter,
the fabric will tend to behave as either pure or simple
shear or in a combination of the two. Simple shear is also
sometimes referred to as inter-tow slip or intra-ply slip
and is considered an unwanted effect in an otherwise pure
shear-dominated deformation.

For the kinematic models, both pure and simple shear
formulations exist and it is thus necessary to determine
what kinematic behavior describes the fabric better. The
majority of the developed FE simulation models are based
on woven or biaxial fabrics with two fiber families, as
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Fig. 1 Pure and simple shear kinematics of fabrics

this type of reinforcement traditionally is used more in
the composite industry but also dedicated UD models exist
[4]. To accurately model the fabric behavior, the shear
stress vs. shear strain characteristic must be input to the
material model. Lastly, for any model it is relevant to
know the maximum shear angle the fabric can attain. The
above discussion calls for experimental test methods to
characterize the shear behavior.

Two tests are commonly used to characterize the shear
behavior of fabrics: the picture-frame test and the bias-
extension test. The picture-frame test relies on clamping
the fabric in a square frame hinged at the corners. During
testing, the frame is deformed to a rhomboid to impose a
condition of pure shear. However, as noted by Potter [21],
the test is less suitable if the fabric’s shear kinematics are
not known. For this reason, the present study has applied
the bias-extension test. In the test a rectangular specimen
with the fibers oriented at ± 45◦ is extended to produce
a distinct deformation field in which a shear region exists
under certain assumptions. While the test is simple to
perform, the processing of the raw test data to a shear stress
vs. shear angle curve for the material is more involved. A
common data processing procedure is based on a pure shear
assumption [5].

Multiple researchers have applied the bias-extension test
for shear testing of NCF. Potter [21] tested a glass-carbon
hybrid UD crossply prepreg, in which the plies were only
held together by the resin. The global deformation was
shown to follow the pin-jointed net (PJN) assumption well
in terms of global longitudinal and transverse strains. PJN
implies that the fibers are in-extensible and can rotate at
the cross-over points without sliding, i.e. pure shear. Local
discrepancies were, however, observed, e.g. in terms of
out-of-plane buckling.

Bel et al. [1] tested a 0/90◦ carbon NCF with a
tricot stitch using the bias-extension test. The optical
shear measurements revealed that the shear angles were
approximately 30% below the kinematic pure shear
angles. The difference in absolute terms became large at

approximately 20◦ of shear. The authors concluded that this
discrepancy was due to inter-tow slip which mainly took
place at the interface between the un-sheared and sheared
regions of the test specimen.

Schirmaier et al. [24] tested the draping behavior of a
carbon UD with a small amount of transverse backing glass
fiber. They concluded that the pure shear assumption was
invalidated with the material. The results can, however, be
used as an aid to parameterize simulation models. See also
the related study by Trejo et al. [26].

Pourtier et al. [22] studied a biaxial NCF with both pure
and simple shear kinematic assumptions and with different
specimen sizes. Measurements of inter-fiber angles were
done on the specimens that enabled the distinction between
pure and simple shear. The authors concluded that a large
specimen would match the pure shear assumption better
compared to a smaller specimen which would deform more
in simple shear.

The fact that larger specimens match the pure shear
kinematics better was also noted by Harrison et al. [9]
in a study on woven fabrics which can also experience
intra-ply slip. The phenomenon comes down to specimen
integrity, i.e. that a larger specimen has more cohesion
than a smaller specimen, which thus limits intra-ply slip.
Another remark from that study on woven fabrics was,
that large specimens tend to wrinkle out-of-plane earlier
in the test. This effect can for instance be mitigated using
transparent anti-wrinkle plates mounted on either side of the
specimen [10].

In Harrison et al. [8] the intra-ply slip occurring during
a bias-extension test of a woven fabric was studied and
related to the width of the specimen at the half height.
Thus, by measuring the width during the test, the slip can
be quantified and thus enhance the credibility of the test
kinematics up to higher angles of shear.

In summary, the applicability of the bias-extension test
and the corresponding data processing to NCF, depends on
the architecture of the material. Biaxial NCF with certain
stitching patterns will tend to behave like woven fabrics
to some extent, but the intra-ply sliding or simple shear
deformation can be significant [3]. On the other hand, UD
NCF’s are more unpredictable in their nature and will in
general not deform in pure shear. Naturally, the right test
conditions must be found, i.e. a proper specimen size and
a shear angle acquisition method, but this also applies for
woven fabrics. To this end, the question arises whether a
quasi-UD can be tested and modeled as a biaxial or UD
material or perhaps something in between.

In the present study, the bias-extension test is applied
to a quasi-UD NCF material to quantify the type of
shear kinematic experienced during the test and ultimately
determine a shear stress vs. shear strain curve that can
be used in a numerical simulation. Different specimen
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sizes and geometries are tested and the corresponding data
processing evaluated. Furthermore, the use of anti-wrinkle
plates to suppress out-of-plane wrinkling on the quasi-
UD material is also tested in an effort to find the best
practice for bias-extension testing of the material. The
rest of the paper is organized as follows: “Experimental
setup” introduces the quasi-UD material, the experimental
test setup, and the data processing. “Experimental results”
presents the obtained shear test results. “Comparison with
FE model prediction” describes a numerical verification of
the experimental approach in the form of a bias-extension
test simulation. Lastly the paper is ended with the sections
“Discussion” and “Conclusion”.

Experimental setup

This section includes details of the quasi-UD material and
the test rig with the corresponding data acquisition and
processing.

Material

The quasi-UD material is shown in Fig. 2 and consists
of UD glass fibers in the 0◦-direction, stabilized with a
layer of ±80◦ glass backing fibers. Notice, that in reality
the backing fibers exhibit significant in-plane waviness.
The areal densities of the UD layer and the backing layer
are respectively 1322 g/m2 and 60 g/m2. The fibers are
held together with a tricot-chain type stitching made from
polyester. The total thickness is approximately 1 mm. The
fiber mat is coated with a binder material which facilitates
pre-consolidation.

The bias-extension test

The standard bias-extension test for biaxial fabrics is based
on a rectangular specimen with the fibers oriented at

±45◦ to the edges as sketched in Fig. 3. With the quasi-
UD material in this study, the UD rovings are used for
orientation reference. The hypothesis is that the material
can be considered as a biaxial fabric on a macroscopic
level, i.e. with the backing fibers acting as an effective 90◦
family of fibers. The specimen is installed in a universal
testing machine with the lower edge clamped while the
upper edge is displaced upwards with δ. If the height is at
least two times the width and the fabric follows the pin-
jointed net assumption, i.e. pure shear, a pure shear zone
will theoretically exist in the center of the symmetrically
deforming specimen. This zone is denoted C in Fig. 3.
Zone A in the figure does not experience shear due to
all fibers in that zone being fixed by the clamping while
zone B experiences shear with half the shear angle of zone
C [16]. If instead the fabric deforms in simple shear, the
same three zones can be observed although the specimen
deformation is anti-symmetric as sketched to the right in
Fig. 3. Furthermore, while zone B is half-sheared, the fiber
orientations are not consistent with pure-shear kinematics
[22]. From Fig. 3 it can also be observed, that at the same
elongation, δ, a specimen undergoing pure shear has a
smaller mid-height width and a smaller inter-fiber angle, α,
compared to a specimen undergoing simple shear. The shear
angle is computed based on the inter-fiber angle:

γ = 90◦ − α (1)

Which is valid for both kinematic theories. For this reason, a
specimen in pure shear has a larger shear angle for the same
specimen elongation, δ.

As discussed in the introduction to this paper, smaller
specimens can suffer from loss of cohesion which can
also lead to intra-ply slip or simple shear deformation. A
larger specimen can of course be tested if the width of the
grips is increased accordingly but another approach is to
let the specimen width extend beyond the grips [20, 27]. In
this study, a standard rectangular specimen of 120 mm ×

Fig. 2 The quasi-UD NCF material with the backing side folded over. The edge stitching is visible on the right side. Notice the significant
waviness of the backing fibers

1485Int J Mater Form (2021) 14:1483–1495



Fig. 3 Kinematics of the
bias-extension test. Left:
undeformed. Middle: pure shear.
Right: simple shear. CstPS and
CstSS indicate the distances that
remains constant during
respectively pure shear and
simple shear cf. Figure 1. The
UD rovings run from left to right

270 mm is used as the baseline. To test the effect of a
larger specimen, a diamond shaped specimen with the same
grip-to-grip distance, H0, as the standard specimen is used,
see Fig. 4. The diamond shape has the advantage of easier
cutting from the roll of fabric and also less material waste.
Lastly, a large diamond specimen cut with the full roll
width (grip-to-grip distance: 590 mm) is tested to investigate
possible size effects. Both the small and large diamond
specimens have the edge stitching of the roll on one side
with the opposite side having no edge stitching. In this way,
the impact of the edge stitching on the specimen cohesion
can be investigated. The edge stitching is not expected to
have any impact on the specimen deformation apart from
the cohesion, but a more detailed investigation could clarify
this matter. In Fig. 4 is also indicated the different shear
zones of the diamond specimens. These shear zones were
determined by a kinematic analysis using a sketch tool in a
CAD program.

Fig. 4 Specimens cut from the roll of fabric with indication of grip
locations: (1): Standard specimen, (2): diamond, (3): large diamond.
The different shear zones in the diamond specimens are indicated with
letters A, B, C

During the initial testing, it was found that the un-
tensioned corners of the diamond specimens, i.e. the non-
gripped A-zones, would fold out-of-plane during testing.
For this reason it was decided to apply the anti-wrinkle
plates on the small diamond specimens. The anti-wrinkle
plates are made from rectangular transparent acrylic with
a thickness of 4.8 mm. They are mounted to the lower,
stationary grip after the specimen has been installed and also
held together with bolts in each of the four corners. Using
spacers, the distance between the plates can be controlled.
During the initial testing 3 mm and 5 mm distances were
tried and it was concluded that the latter gave the best
compromise between suppressing out-of-plane deformation
while not affecting the measured load considerably. Thus,
all results presented in this paper with anti-wrinkle
plates will concern a spacing of 5 mm between the
plates.

Obtaining the shear angles

The raw data from the bias-extension test can be processed
to normalized shear force, Fsh, vs. shear angle, γ , for
a possible comparison with other fabrics or use in a
numerical simulation. The shear angles can be kinematically
predicted from the specimen dimensions and the crosshead
displacement assuming either pure or simple shear. Again
referring to Fig. 3, the kinematic relations will be presented
in terms of the roving angle, w. The kinematic relations
assuming pure shear are well-known and widely used. The
inter-fiber angle αPS is given as [5, 22]:

αPS = 2wPS, (2)

wPS = arccos

[√
2

2

(
1 + δ

H0 − W0

)]
(3)
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The inter-fiber angle assuming simple shear, αSS, was
derived by Pourtier et al. [22]:

αSS = wSS + arcsin

⎛
⎜⎝ sin(wSS)√

1 + 1
sin2(wSS)

− 2
tan(wSS)

⎞
⎟⎠ , (4)

wSS = arcsin

( √
2(H0 − W0)

2(H0 − W0 + δ)

)
(5)

For both kinematic inter-fiber angle expressions in Eqs. 2
and 4 the shear angle γ can be computed using Eq. 1.
As previously discussed, the pure shear kinematics result
in a symmetric deformation such that the inter-fiber angle
α is twice the roving angle w. On the other hand, simple
shear kinematics result in an anti-symmetric deformation
for which the inter-fiber angle is the sum of the two terms
in Eq. 4 where the first terms is larger than the second.

It is also recommended to optically measure the shear
angles as a check [3]. The optical shear angles are
determined by analyzing digital images acquired during
the test. A widely used method for optical shear angle
acquisition is digital image correlation (DIC) [3]. DIC relies
on a speckle pattern painted on the surface of the specimen
which can be used for cross-correlation. In this study, the
Hough transform algorithm is applied which can identify
straight lines, i.e. the rovings in the acquired images. For
this reason, this method does not use a speckle pattern
and is therefore easier to set up experimentally and further,
does not affect the force measurements. The main idea is
to crop the image to the gauge area (zone C), apply an
edge detection algorithm (here the Canny algorithm) and
identify straight lines using the Hough transform algorithm.
The search space for the lines to identify is among others
narrowed down using a minimum length requirement based
on the distance between stitches. Details can be found in
Krogh et al. [14].

After identifying the roving angles of zone C, the average
is computed, i.e. wavg. The next step is to compute the
average inter-fiber angle, αavg which can be done with
either of the two kinematic theories, i.e. Eqs. 2 and 4.
To identify which kinematic theory to apply, the mid-
height width of the specimen is also measured optically.
As previously noted, a difference in width can be observed
between the two types of shear deformation and this width
difference can thereby be used to distinguish as first applied
by Harrison et al. [8]. The theoretical mid-height width of
the rectangular specimen, Wmid (see Fig. 3), can be derived
by considering the constant side length of the gauge area,
Lc = √

2W0/2. Notice that for pure shear kinematics,
all four edges of the gauge area remain constant, whereas
for simple shear kinematics only two remain constant. The

width is computed by using Lc and the roving angle w :

Wmid = 2Lc sin(w) = √
2W0 sin(w) (6)

Here, the pure shear roving angle wPS, Eq. 3 must be used
for pure shear analysis while the simple shear roving angle
wSS, Eq. 5 must be used for simple shear analysis.

Obtaining the normalized shear force

A common approach for obtaining the normalized shear
force, which is widely used for woven fabrics, is based on
an energy equilibrium between the power exerted by the
crosshead and the shear deformation energy dissipated in
zones C and B. In its original form, the expression was
intended for rectangular specimens [5, 15] and here the
areas of zones C and B, necessary for calculating the energy
contributions, can be determined from the width and the
height of the specimen. The shear force expression can be
extended with area scaling factors so that it can be applied
to other specimen geometries [19]. In this study, the area
of zone C and B have been scaled with the factors SC and
SB , respectively, where e.g. SC is the ratio between the
areas of zone C from the actual specimen and a rectangular
specimen. The equation for the normalized shear force, Fsh,
becomes:

Fsh(γ ) = AB − AC Fsh
( γ
2

)
(7)

The factors A, B and C are calculated as:

A = 1

SC (2H0 − 3W0) cos(γ )

B =
(

H0

W0
− 1

)
F

[
cos

(γ

2

)
− sin

(γ

2

)]
(8)

C = SBW0 cos
(γ

2

)
F is the crosshead force. The assumptions behind the
expression in Eq. 7 are, apart from the kinematics described
previously, that the shear angles in each zone are uniform,
that the initial state has a perfect orthogonal configuration
of the fibers and that the response is rate-independent [5].
In general, the applicability of the expression to UD NCF is
not well documented. Simple shear deformation is expected
to introduce errors but if the shear angle is measured and
the specimen is also undergoing some degree of pure shear,
collectively causing specimen elongation, then the error is
likely to be small [11].

A point to note about Eq. 7 is that Fsh(γ ) depends on the
value Fsh(

γ
2 ), i.e. its value at the half shear angle. For this

reason the expression must be evaluated iteratively, see e.g.
Hivet and Duong [12] and Machado et al. [18] for details.
The challenge here is that the stability of the classical
iterative scheme is affected by introduction of the area
scaling factors as also noted by Pierce et al. [19]. To this end,
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the authors proposed a modification of the initialization.
This modification seems rather heuristic for the tested
specimen geometry and it is not clear how to adapt it to other
geometries. As an alternative to the iterative scheme, Samir
and Hamid [23] fitted the expression of the normalized
shear force to a 5th degree polynomial by solving five
equations in five unknowns at five different values of the
shear angle. This approach, however, limits the solution
to what can be represented with a fifth degree polynomial
and increasing the polynomial order can possibly lead to
oscillatory behavior. In this work, the most robust approach
was found to be based on a spline fit which is elaborated in
the following.

The idea behind the spline fit approach is to determine
a piecewise cubic spline function, SFsh(γ ) as the solution
to Eq. 7, i.e. the normalized shear force as function of the
shear angle. An unconstrained optimization algorithm is
used to adjust the Nk number knots of the spline such that
residuals of normalized shear forces are minimized. The
knot positions are evenly distributed on the γ -interval, i.e.
γ1, ..., γNk

and the design variables, a1, ...aNk
, will control

their corresponding normalized shear force values. Thereby,
the i’th knot coordinate is given by (γi, ai). The residuals
are calculated for each data point, j = 1, ..., Nd as follows:

rj =
[
AB − AC SFsh

(γj

2

)]
− SFsh(γj ) (9)

The expression enclosed in the square brackets corresponds
to Eq. 7 in which the value of the normalized shear force
at the half shear angle is calculated with the spline fit, i.e.

SFsh
( γj

2

)
. The rightmost term is the spline fit evaluated at

the j ’th data point and thus Eq. 9 must be minimized for all
data points:

minimize
a

1

Nd

Nd∑
j=1

|rj | (10)

s.t. ai ≥ 0 ∀ i = 1, ..., Nk

In this way, the average of the residuals is minimized such
that all the design variables are positive, i.e. corresponding
to positive normalized shear forces. To make sure that the
solution predicts zero normalized shear force at zero shear
angle, the function value of the first knot is prescribed to
0.0. A value of Nk = 15, i.e. 15 knot positions is used.

Experimental results

The experimental results of the various specimen geome-
tries are presented in this section. The specimens can be
seen at an elongation of 15 % in Fig. 5, which will be
described in detail later in this section. All tests were carried
out in displacement control at a rate of 10 mm/min.

Force vs crosshead displacement

The measured force from the load cell vs. the displacement
of the crosshead of the universal testing machine is
presented in Fig. 6 for all the tested specimens. All
curves exhibit the same initial trend with a steep increase

a b c d

Fig. 5 Test specimens at 15 % elongation. a Rectangular, elongated
40 mm. b Diamond without plates, elongated 40 mm. c Diamond with
plates, elongated 40 mm (The red lines drawn on the specimen indicate

the different shear zones while the blue line traces a roving across the
specimen). d Large diamond, elongated 87 mm
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Fig. 6 Force vs. crosshead displacement for the four specimen configurations

in the force followed by a near-constant slope. The
rectangular specimens continue this trend whereas the
diamond specimens gradually increase their slopes. The
force levels are quite different which in part can be
explained by the differences in specimen areas. It was,
however also observed that the backing fibers of the
rectangular specimens would tend to be pulled out of the
stitches at high values of elongation. This phenomenon can
be seen in Fig. 7 and it is an indication that the deformation
mechanism is simple shear, i.e. with the UD rovings sliding
relative to each other. Only minor pulling-out of the backing
fibers was observed with the diamond specimens. The
edge stitching kept the backing fibers firmly in place with
no apparent impact on the overall deformation. However,

Fig. 7 Backside of the fiber mat of rectangular specimen at high
elongation with slipping of backing fibers visible

merely the larger specimen area was effective in mitigating
pull-out as seen in Fig. 8.

Because the fabric is unbalanced, S-shaping of a bias-
extension specimen is expected [3]. This deformation
overlayed with the anti-symmetric deformation from simple
shear can be observed on the rectangular specimen in
Fig. 5a.

The diamond specimens can be seen in Fig. 5b (without
plates) and 5c (with plates). Obviously there is a big
difference between the deformations. The specimen without
plates wrinkles in the gage area (onset at approximately 20
mm of displacement) and the free corners fold out-of-plane.
The specimen with plates remains almost flat. By means
of the lines drawn on the specimen, the effects of in-plane
bending stiffness is evident as S-shaping of the rovings.

Fig. 8 Backside of fiber mat of diamond w. plates specimen at high
elongation (side without edge stitching). The backing fibers remain in
their place without slipping
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Fig. 9 Optical shear analysis
assuming pure shear kinematics
for rectangular and diamond
with plates. The diamond
specimens without plates (not
shown) showed similar behavior
up until the wrinkle onset angle
of ≈18◦

Looking at the measured forces in Fig. 6, it can be seen
that the forces of the diamond specimens with plates are not
significantly different from those of the diamond specimens
without plates. For this reason, and because the out-of-plane
deformations inhibited optical analysis after the wrinkle
onset, the focus in further the data processing will be on the
specimen with plates.

The large diamond specimens (Fig. 5d) exhibited out-
of-plane folding / wrinkling to a large extent which even
changed mode during the test. This mode change is
evident in Fig. 6 as a “soft” force-drop at around 80 mm
displacement. The out-of-plane displacements as well as the
size of the specimens inhibited optical analysis.
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Fig. 10 Mid-height width of the rectangular speciemens vs. the
crosshead displacement

Optical measurements

Videos of the rectangular and diamond w. plates specimens
were analyzed optically for shear angles in the gauge
area. As previously discussed, the roving angles, w can be
measured and with the application of a kinematic theory i.e.
Eqs. 2 or 4, the shear angles can be computed. In Fig. 9, the
computed shear angles assuming pure shear are presented
and plotted against the kinematic pure shear angle which
is computed based on the elongation. The ideal “one-to-
one” line is also shown. Both types of specimen follow the
same initial trend in that they are initially below the ideal
line until around 10◦ after which start to follow the line
more closely. Slightly before 30◦ the rectangular specimens
start to deviate from the line while the diamond specimens
stay with the line up to around 45◦. A closer examination
of the videos reveal, that the initial deviation is caused by
tensioning of the stitches and backing fibers before shear
in the gauge area is initiated. This mechanism is probably
due to the relatively loose backing fibers and it can thus be
observed how rovings at the interface between zone A and
C slide relative to each other.

The point where the rectangular specimens separate from
the ideal line corresponds to an elongation of approximately
30 mm and by referring to Fig. 6 it can be seen that this
point corresponds to the point where the force curves of the
rectangular specimens start to flatten. On the other hand,
the diamond specimens continue shearing until the point of
failure, i.e. with stitches starting to break.

To investigate the behavior of the rectangular specimens
more closely, the width at the mid height throughout the
test was also extracted from the videos. It is plotted in
Fig. 10 together with the theoretical widths predicted by
both pure and simple shear kinematics, i.e. using Eq. 6. In
the figure it can be seen how the measured widths follow the
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theoretical pure shear width until a displacement of a little
more than 30 mm after which they deviate and continue with
the same slope as the theoretical simple shear width. The
width measurements thus confirm the previous observations
regarding Fig. 9 for the rectangular specimens in terms of a
transition from pure to simple shear.

Using the measured mid-height width and the theoretical
widths from pure and simple shear, the percentage of pure
shear, %PS, can be estimated:

%PS = 100
Wmid,optical − Wmid,SS

Wmid,PS − Wmid,SS
(11)

Thus, if %PS = 100 the prediction is deformation in pure
shear whereas if %PS = 0, the estimation is simple shear.
The computed pure-shear percentage can then used to scale
the kinematic shear angles as well as the optical shear
angles:

γscale = γPS + (100 − %PS)(γSS − γPS) (12)

A result of the shear angle scaling is presented in Fig. 11
in a plot of shear angles vs. crosshead displacement for
test specimen #5 (the behavior of the other specimens
was similar). The theoretical predictions from pure and
simple shear are plotted in black. Notice that the pure
shear kinematic angle saturates in 90◦ at around 62 mm,
whereas the simple shear kinematic angle continues as a
horizontal asymptote. The scaling of the kinematic angles
is plotted in green (solid line with circles) and it is seen
to follow the theoretical pure shear angles until around 30
mm displacement after which it breaks off and follows the
simple shear slope - analogous to what is seen in Fig. 10.
The optically measured angles (processed as both pure and
simple shear) are plotted as respectively downward and
upward pointing triangles with their scaled values plotted
as squares - all in red color. It can be seen how the optical
pure shear angles are slightly above the kinematic pure shear
line at around 20-30 mm of displacement. This effect is
likely due to the in-plane bending stiffness (as also seen in
Fig. 5c). In general, a reasonable good agreement between
the scaled kinematic and optical shear angles is seen. The
optical width measurement followed by scaling of kinematic
angles could thus be an alternative to the optical shear
angle measurement. Attention should be paid to the shear
data after pure shear saturation - the validity of the scaling
here is questionable. For the further data processing of the
rectangular specimens, the scaled optical angles will be
used.

Shear force calculation

The measured load and the shear angles can now be used
to compute the normalized shear force for the rectangular,
diamond with plates, and large diamond specimens. The
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results for the rectangular specimens are computed with
the scaled optical shear angles (Fig. 11), the diamond
with plates specimens are computed with the optical pure
shear angles (Fig. 9) and the large diamond specimens
are computed with the kinematic shear angles. The latter
decision is made due to lack of optical shear angles but
can be justified assuming that the large diamond specimens
behave like their smaller counterparts, i.e. follow the pure
shear kinematics up to around 45◦. The result can be
seen in Fig. 12. All specimen curves agree well until a
shear angle of 25◦, after which the shear force of the
rectangular specimens flatten while the shear force of the
diamond specimens rise steeply. As previously discussed,
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Table 1 Average statistical values of residuals from shear force
calculation computed across all specimens in the sample

Avg.(r/Fsh) Max(r)

Rectangular 0.097 22.73 N/m

Diamond w. plates 0.139 70.60 N/m

Diamond large 0.057 20.86 N/m

Avg.(r/Fsh) is the average of the normalized residuals (element-wise
division)

the large diamond specimens exhibited large out-of-plane
buckling and thus the discrepancy between the diamond
with plates and large diamond specimens was expected.
Still, given the large differences in specimen area, it can be
concluded that no significant size effects between the two
specimen geometries exist. Statistical data of the residuals
from the minimization routine in Eq. 11 are presented in
Table 1. As seen, the residuals are generally low. The biggest
discrepancies could be observed in the beginning and end
of the shear angle ranges, where the local changes in the
gradient of the normalized shear force was highest.

Comparison with FEmodel prediction

This section presents a numerical simulation of a bias-
extension test. The simulation serves two purposes: To test
the applicability of a modeling approach developed for
two initially orthogonal fiber directions and to verify the
computed normalized shear force vs. shear angle curves for
the quasi-UD material. The idea is to use the shear data
processed from a diamond specimen as input to the model
and then simulate a rectangular specimen bias-extension
test. Then, the reaction force from the simulation can be
compared with the experimentally measured reaction forces
of the rectangular specimens. For practical purposes in wind
turbine blade manufacturing, the relevant shear angles are
below 25◦, which is thus the target in the simulation.

Description of the simulationmodel

The simulation is carried out in the commercial FE code
Abaqus Explicit and makes use of the built-in fabric
material model [6]. The fabric material model is developed
for fabrics with two fiber directions and stress-strain
curves, e.g. from experimental characterization must be
input. The deformation modes include fiber tension and
compression as well as positive and negative shear. An
elaborate description of how to obtain material data input for
the material model, including incorporation of out-of-plane
bending, can be found in Krogh et al. [13].

In this paper, the focus is on the shear properties
and for this reason it was decided to create the model
with membrane elements and thereby neglect an accurate
description of the out-op-plane behavior. This choice is
justified in two ways: First, only minor wrinkling was
observed during testing of the rectangular specimens.
Second, any out-of-plane displacement is not expected to
influence the shear angles and the global reaction force
significantly which are the primary interests here. The UD
fiber stiffness was chosen to 5 GPa as a balance between
keeping the strains in the fiber directions sufficiently low
(here max. 0.19 %) while keeping the stable time increment
at a reasonable level. Recall that the stable time increment
in explicit time integration is inversely proportional to the
stiffness of the material and thus this simplification can be
made to reduce the computational time [9]. As a further
simplification, the stiffness of the other fiber direction in
the model, i.e. the effective backing material stiffness, was
also set to 5 GPa. In reality, it is much lower and a series of
experimental tests would be necessary to determine a proper
characteristic. The present setup will result in a symmetrical
deformation with PJN-like behavior.

For the experimental shear input to the material model,
data from the diamond specimens with plates was used, i.e.
seen in Fig. 12. The shear stress is obtained by dividing the
normalized shear force, Eq. 7, with the fabric thickness. The
data were lightly smoothed and averaged to a single curve
before being input to the material models as a series of data
points.

The FE model comprises a rectangular fabric with
dimensions 120 mm × 270 mm, i.e. equal to the rectangular
tested specimens. In the model, the fibers are initially
oriented at ±45◦ to the edges. The ideal mesh from a
numerical point of view would have the element edges
aligned with the initial fiber directions to avoid in-plane
shear locking [28]. Another efficient remedy that can be
used with an edge-aligned mesh, is reduced integration
together with a stabilization scheme to avoid zero-energy
modes [7]. For this reason, the membrane elements used in
the model are 4-node elements with reduced integration and
hourglass control (Abaqus name: M3D4R).

Numerical results

The result of the simulation is shown in Fig. 13 after
displacing the right edge 25 mm with the left edge fixed.
From the figure it is clear that the three distinct regions
appear. The maximum computed shear angle is 22.4◦, which
fits well with the kinematic pure shear angle of 21.2◦.
Small wrinkles have formed in the center region C with a
maximum out-of-plane displacement of approximately 1.5
mm. The contours of the five rectangular specimens (at the
same displacement) have been overlaid using red lines and
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Fig. 13 Simulation of the
bias-extension test in Abaqus at
a displacement of 25 mm. The
contours indicate the shear
angles in degrees. The kinematic
pure shear angle is 21.2◦. The
contours of the five rectangular
specimens have been overlaid
using red lines

[deg]

a good agreement is seen in spite of the slight S-shaping of
the experimental test specimens.

The reaction force of the simulated test (solid red line)
is compared with the experimental force-displacement data
for the rectangular specimens (solid black line with error
bars) in Fig. 14. From the graph is can be seen that
the simulation matches the experiment reasonably well up
to approximately 25 mm of displacement after which an
increase is seen. This point can also be seen in Fig. 6
and corresponds to the elongation where the rectangular
specimens start to lose cohesion and deform in simple
shear while the diamond specimens keep intact. In general,
though, the model seems to be too stiff. A part of this extra
stiffness likely comes down to the simplifications made
during the modeling, e.g. regarding the backing material
stiffness and waviness. However, although the friction
contribution from the plates previously was concluded to
be small overall (see Fig. 6) the contribution could still be
significant at low values of elongation where the forces are
likewise low. The same issue was pointed out by Harrison
et al. [10]. To investigate this further, the ratios between
the averaged reaction forces of the experimental diamond
specimens without and with plates were computed over the
course of the test and used to scale the simulated reaction
force in Fig. 14. The result is shown in the figure as a solid
red line with squares which is closer to the experimental
data.

Thus, the data processing is neatly verified in that one
specimen geometry (diamond) was processed and used to
create the input data to the FE material model which then,
when used in the simulation, matches another specimen
geometry (rectangular) reasonably well.

Discussion

The results of the paper have indicated that the quasi-
UD material predominantly deforms in pure shear although
the rectangular specimens exhibit a transition to simple
shear at around 25-30◦. This transition is specimen size
and shape dependent in that it appears to be related to
the pulling-out of backing fibers - something which is

mitigated with the extra material surrounding the gauge area
in the diamond specimens. However, for practical draping
purposes - especially for wind turbine blade production -
the deformation kinematics can be assumed to follow pure
shear theory. Only for particularly small fiber mats will
the simple shear kinematics be relevant but to this end the
structural impact of having backing fiber pulled out must
also be considered.

Another question is if the high shear angles of 30-
40◦ achieved with the bias-extension test can be achieved
in a production setting where the fiber mats are mostly
draped manually. Thus, the practical shear limit could be
considerably lower. A test replicating more closely the
draping process in the production setting can clarify this
matter.

The FE model showed good agreement with the
experimental data but it made use of some simplifying
assumptions. If a more accurate description of the simple
shear or slip is desired, some more advanced modeling
approaches can be found in the literature, see for instance
ten Thije et al. [25] or Bel et al. [2].

0 10 20 30 40 50 60 70

Displacement,  [mm]

0

10

20

30

40

50

60

F
o
r
c
e
, 
F

 [
N

]

Experimental data

Simulation (input from diamond w. plates)

Simulation, scaled (input from diamond w. plates)

Fig. 14 Comparison of experimental and simulated values of force vs.
displacement of rectangular bias-extension test. The error bars of the
experimental data correspond to the min/max values

1493Int J Mater Form (2021) 14:1483–1495



Conclusion

This paper has presented an investigation of the shear
kinematics of a quasi-UD glass fiber material. The material
has the majority of the reinforcement fibers in the
longitudinal direction with a small amount of transverse
±80◦ backing fibers. In spite of this unconventional
architecture, it is demonstrated using the bias-extension
test that the material mostly deforms in pure shear. The
mechanism that enables this deformation is rotation of the
UD tows and the backing fibers in the stitches with the
backing fibers acting as an effective 90◦ family of fibers.

The shear kinematics is however specimen size and shape
dependent: The conventional rectangular bias-extension
specimen geometry exhibited a transition to simple shear at
around 25-30◦ of shear. By applying a diamond geometry
which has more stabilizing material surrounding the gauge
area in addition to anti-wrinkle plates to suppress out-of-
plane wrinkling, primarily pure shear angles up to 45◦ were
achieved.

The roving angles were measured optically using a
method based on the Hough transform and converted to
shear angles using both pure or simple shear kinematics
- a necessity when only the UD fibers can be measured.
In addition, the mid-height width of the conventional
rectangular specimens was also measured which helped
identify the transition to simple shear and to compute the
percentage of pure shear throughout the test. Using this
percentage the pure and simple shear angles could be scaled
accordingly.

The bias-extension test was simulated using the fabric
material model in Abaqus which is based on two initially
orthogonal fiber families. A good agreement with the
experimental data was seen which thus verifies the bias-
extension data processing. Ultimately, the conclusion is that
a model based on pure shear kinematics will be able to
predict the draping process up to moderate shear angles,
which will find its applicability in the wind turbine blade
production.
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6. Dassault Systèmes Simulia Corporation (2014) Abaqus 6.14
Documentation: 23.4.1 Fabric material behavior

7. Hamila N, Boisse P (2013) Locking in simulation of composite
reinforcement deformations. Analysis and treatment. Compos A:
Appl Sci Manuf 53:109–117. https://doi.org/10.1016/j.composit
esa.2013.06.001

8. Harrison P, Tan MK, Long A (2005) Kinematics of Intra-Ply
Slip in Textile Composites during Bias Extension Tests. 8th Int
ESAFORM Conf on Materials Forming 987–990

9. Harrison P, Alvarez MF, Anderson D (2018a) Towards com-
prehensive characterisation and modelling of the forming and
wrinkling mechanics of engineering fabrics. Int J Solids Struct
154:2–18. https://doi.org/10.1016/j.ijsolstr.2016.11.008

10. Harrison P, Taylor E, Alsayednoor J (2018b) Improving the accu-
racy of the uniaxial bias extension test on engineering fabrics
using a simple wrinkle mitigation technique. Compos A: Appl Sci
Manuf 108:53–61. https://doi.org/10.1016/j.compositesa.2018.
02.025
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