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Abstract
This study uses the Marciniak and Kuczynski (M-K) method to present an analytical forming limit diagram (FLD) for
sheet metals. The procedure for the analytical FLD prediction is described in detail and step-wise manner, and an
algorithm is written using MATLAB. First, an appropriate algorithm is determined to establish the theoretical analyses,
and various anisotropic yield functions, such as Hill’s 48, Barlat 89, and Hosford, are considered. The predicted FLDs
are compared with experiments involving a typical AA6016-T4 aluminum alloy. Second, the Gurson model that con-
siders damage growth is implemented when Hosford is the yield function, as Hosford criterion predicts the best
comparable analytical FLD with experiments among the yield functions. Third, a parametric study is performed to
investigate the effects of parameters on the FLD prediction. Results indicate that an extremely low value for the initial
void volume fraction in the safe and groove zones has minimal effects on the FLD prediction. Lastly, the values of void
volume fractions are calculated assuming no geometrical imperfections and the imperfection is because of higher void
volume fraction in groove zone than that in safe zone.
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Introduction

The Marciniak and Kuczynski (M-K) method for forming
limit diagram (FLD) prediction considers an extremely slight
reduction in thickness of sheets in the form of a band in a
certain region of a sheet specimen as a pre-existing imperfec-
tion. Such small-scale imperfections are indeed present in
rolled sheet materials and can be the result of roll lines essen-
tially small-scale surface undulation over the sheet surface.
This assumption and other elements of the classical plasticity
theory (e.g., yield criterion, flow rule, hardening law) and
basic mechanics of sheet forming (e.g., plane stress, force
equilibrium, strain compatibility, proportional tensile loading)
are used thereafter to track the strain state within and outside
of the imperfection. Moreover, the aforementioned ideas aim

to obtain the limit strains for various biaxial tensile load paths
to construct an FLD. The M-K method yields the FLD shapes
for many sheet materials that are often similar to that obtained
experimentally.

Given that rolled aluminum sheet materials are typically
anisotropic, various anisotropic yield functions have been
utilized in the literature to predict their FLDs using the M-
K method. Butuc et al. [1] applied a considerably flexible
mathematical framework to the M-K method, and various
anisotropic yield functions on A6XXX-T4 sheets. In an-
other study, Butuc et al. [2] performed FLD predictions for
AA6016-T4 aluminum sheets using several different an-
isotropic yield functions, such as Hill’s 1948 [3] and
1979 [4] and Barlat Yld96 [5]. The results indicated that
when the Barlat Yld96 criterion is used as the yield loci
and the Voce equations considers the hardening law, the
predicted FLD is compared the best to the experiments.
The aforementioned study and other similar research have
typically utilized a plane stress assumption within the M-K
method for FLD prediction. Ganjiani and Assempour [6]
utilized the M-K method by considering Hosford [7] and
BBC2000 anisotropic yield functions to predict FLD for
AA5XXX alloys under plane-stress condition. The
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algorithm developed in [1] was used in [6], and the
Newton-Raphson method was modified using the globally
convergence method to solve a nonlinear set of equations.

For many high-strength sheet materials, including alu-
minum alloys, which contain a significant amount of sec-
ond phase particles, micro-voids often result in the vicin-
ity of particles during large plastic deformation during
formation. These particle-induced micro-voids are known
to localize plastic flow and limit the formability of sheet
materials [8–11]. One of the well-known models of duc-
tile void growth that is often utilized in analyzing large
plastic deformation of ductile metallic materials is the
Gurson model [12], and its later modification called the
Gurson–Tvergaard–Needleman (GTN) model, proposed
by Tvergaard and Needleman [13]. These models treat
voids as spherical cavities and capture their effects on
material yield following a modification of the von Mises
yield criterion [12]. The effect of void growth on FLDs
was investigated in [14] by using the original Gurson
model combined with the M-K method. This particular
study showed that FLDs decrease with the increase in
initial void growth. Chelovian and Kami [15] simulated
the M-K method by using the finite element method to
predict an FLD for AISI 304 steel material by using the
GTN model. Gurson’s original model for isotropic sheets
to provide the plastic flow response of metals has been
extended by several studies to include anisotropy based
on the Hill quadratic [16], Hosford [17, 18], and Barlat
and Lian non-quadratic [19]. Hosseini et al. [20]
established an algorithm to predict FLD by using the orig-
inal Gurson model for anisotropic materials. Furthermore,
Son et al. [21] considered the Gurson model in their M-K
based FLD predictions when Barlat and Lian are the yield
function with prolate-ellipsoidal void shapes. In [21], the
initial void volume fraction in the groove zone is larger
than that in safe zone, thereby significantly lowering
FLD. Furthermore, the algorithm to predict FLD is based
on applied proportional strains in [21], which is relatively
complex and time-consuming to implement.

The current study uses the algorithm presented in [2],
which is stress-controlled, and utilizes the Gurson model
with various yield functions. FLDs for a typical aluminum
alloy AA6016-T4 are predicted and compared with the
experiments. Results indicate that Hosford yield function
predicts the most comparable FLD. A parametric study is
performed and the effect of the void volume fraction on
FLD prediction is investigated. Given that extremely low
values for the initial void volume fraction in the safe and
groove zones are considered, FLD predicted using the
Gurson model considerably approximates to the case when
this model is switched off. Therefore, a high-value void
volume fraction is suggested in the groove zone and con-
sider it as the only source of imperfection in sheet metals.

M-K analysis-based analytical model for FLD
prediction

This section presents and discusses all critical theoretical con-
cepts that affect the outcome of the results of the M-K analysis
in this study, as well as the framework of the M-K analysis
itself. First, the analytical model developed in this research
assumes the existence of a plane stress deformation state in
the sheet plane. That is, no stress component in the thickness
direction (σ3 = 0) is assumed. Two types of algorithms are
used to predict FLD on the basis of either applied stresses or
strains during the proportional loading of specimens.
Algorithms based on proportional stress loading condition
(i.e., stress-controlled) is discussed in [2] and used in the pres-
ent research. By contrast, algorithms based on proportional
strain loading condition (i.e., strain-controlled) is discussed
in [21] and implemented to compare the predicted FLDs.

The focus of the current study is to predict FLDs by using
the original Gurson model and establish the best approach in
this regard. Void nucleation and coalescence are not consid-
ered in the Gurson model. In this study, FLDs are predicted
using the GTN model, and the effects of void nucleation and
coalescence are studied briefly.

M-K method using the original Gurson model

Theoretical analysis of stress-controlled FLDs

The Gurson yield function for anisotropic porous metals is
expressed as follows [12]:

Φ ¼ σ

σM

 !2

þ 2q1CVcosh
3q2σm

2σM

 !
− 1þ q1

2CV
2

� � ¼ 0 ð1Þ

where q1 and q2 are the fitting parameters, CV is the void
volume fraction, and σ;σM ; and σm are the macroscopic ef-
fective stress, material flow stress with strain hardening, and
mean stress, respectively. Yield function (Φ), which is similar
to other yield functions, exhibits the following characteristics
or elastic and plastic loading conditions [12]:

The symbol, Φ,is defined as follows:

Φ ¼
< 0 and Φ̇ < 0 Linear elastic behaviour

¼ 0 Linear elastic−strain hardening plastic behaviour

8<
:

ð2Þ

Swift law is used to present the following stress–strain
curve of the material:

σSwift law ¼ B C þ ε
pl

� �n

ð3Þ
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Effective stress σ is defined individually for each aniso-
tropic yield function. For the plane stress case, Hosford effec-
tive stress is expressed as follows [7]:

σ ¼ 1

R90 1:0þ R0ð Þð Þ1=M
R90 σ1j jM þ R0 σ2j jM þ R0R90 σ1−σ2j jM� �" # 1

M

ð4Þ
where σ1 and σ2 are the two principal stress components.
Meanwhile, M is an exponent and has suggested values of 6
and 8 for BCC and FCC metals, respectively [7]. Similar to
Eq. (4), Barlat 89 anisotropic yield criterion for generalized
plane stress case can be expressed as follows [22]:

σ ¼ a k1 þ k2j jM þ k1−k2j jM þ b 2k2j jM� �� 	 1
M ð5Þ

where,

k1 ¼ σxþh1σy
2 ;k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σx−h1σy

2

� �2
þ h22σxy

2

r
; h1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0

1þR0
þ 1þR90

R90

q

h2 ¼ σh

τh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R0ð Þ 1þ R90ð Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R0ð Þ 1þ R90ð Þp þ 2M−2

� � ffiffiffiffiffiffiffiffiffiffiffiffi
R0R90

p
" #1=M

c ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0

1þR0
þ R90

1þR90

q
; a ¼ 2−c

c ;b ¼ c
2−c:

where σx, σy are normal and σxy shear stress components in
the xy sheet plane and σh and τh are the yield stress and shear
stress, respectively, in the rolling direction.

Hill’s 48 anisotropic yield function under plane stress con-
dition is expressed as follows [3]:

σ ¼ Fσyy
2 þ Gσxx

2 þ H σxx−σyy
� �2 þ 2Nσ2

xy

h i1
2 ð6Þ

For sheet materials, the constants F, G, H, L,M, and N can
be obtained through three experimental planar tensile tests
along the 0o, 45o, and 90o orientations with respect to the sheet
rolling direction in the following form [23]:

F ¼ R0

R90 1þ R0ð Þ;G ¼ 1

1þ R0
;H ¼ R0

1þ R0
and

N ¼ R90 þ R0ð Þ 1þ 2R45ð Þ
2R90 1þ R0ð Þ

ð7Þ

In this model, the stress component values based on the
stress ratios when Hosford is the effective stress are obtained
as follows:

σ1 ¼ σM

Q1M
ð8Þ

where,

Q1M ¼ 1

1−q1CV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R90 1:0þ R0ð Þð Þ R90 þ R0 αj jM þ R0R90 1−αj jM� � � 2
M

þ q1CV 1:5q2ð Þ2 1þ α
3

� �2
s

ð9Þ

and α ¼ σ2 σ1 is the stress ratio in safe zone.

Associative flow rule dεij ¼ dλ ∂ f
∂σij

� �
can be used to obtain

the plastic strain increment, which leads to the effective strain
increment using the concept of plastic work. The latter can be
expressed as follows [21]:

dW ¼ σ1dε1 þ σ2dε2 þ σ3dε3 ¼ 1−CVð ÞσMdεM ð10Þ

The following equation is obtained by substituting associa-
tive flow rule equation into Eq. (10):

σ1 dλ
∂Φ
∂σ1

þ σ2dλ
∂Φ
∂σ2

þ σ3dλ
∂Φ
∂σ3

¼ 1−CVð ÞσMdεM ð11Þ

As σ3 = 0 in the present work, we have:

dλ ¼ 1−CVð ÞσMdεM

σ1
∂Φ
∂σ1

þ σ2
∂Φ
∂σ2

ð12Þ

The major and minor strains are calculated by adding the
strain increments at each step (εNewij ¼ εOldij þ dεij ). Void vol-
ume fraction CV for a porous metal is expressed as follows
[21]:

CV ¼ VV

VT
¼ VT−VM

VT
ð13Þ

where VT, VV, and VM are the total, void, and matrix volumes,
respectively. Meanwhile, volumetric plastic strain can be
expressed as follows [19]:

dεV ¼ dε1 þ dε2 þ dε3 ð14Þ

The following equation is obtained by considering that the
matrix material is incompressible [21]:

CV ¼ VV

VT
¼ VT−VMð Þ

VT
ð15Þ

dεV ¼ dVT

VT
¼ dVV

VT
¼ dCV

1−CV
ð16Þ
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dCV ¼ 1−CVð ÞdεV ¼ 1−CVð Þ dε1 þ dε2 þ dε3ð Þ ð17Þ

The last equation can be integrated numerically, and the
current void volume fraction can be updated using the follow-
ing equation [21]:

CNew
V ¼ COld

V þ dCV ð18Þ

The M-K method is a commonly used approach in the
literature to predict the analytical FLD of sheet materials.
This method relies on a slight reduction in thickness of sheets
in the form of a pre-existing imperfection band in a certain
region of the sheet specimen (see Fig. 1). The imperfection
factor f is defined as the ratio of the current thickness in the
groove zone b and safe zone a as follows [2]:

f ¼ tb

ta
¼ f oexp εb3−ε

a
3

� � ð19Þ

where fo is the initial imperfection factor and εa3 and εb3 are the
thickness strains in zones a and b, respectively. The stress
tensors following the groove orientation using the rotation
matrix are presented as follows [6]:

σnt ¼ TσntTT ¼ σnn σnt

σnt σtt

 �
ð20Þ

where

T ¼ cos θð Þ sin θð Þ
−sin θð Þ cos θð Þ
 �

The strain compatibility between the regions a and b in the
groove direction is expressed as follows [2]:

dεbtt ¼ dεatt ð21Þ

Force equilibrium equations along and perpendicular to the
groove directions are expressed as follows [2]:

Fa
nt ¼ Fb

nt ð22Þ

Fa
nn ¼ Fb

nn ð23Þ

where Fa
nn and Fa

nt are forces per unit width in the n and t
directions, respectively, in zone a; and Fb

nn and Fb
nt are forces

per unit width in the n and t directions, respectively, in zone b.
Therefore, the following expressions can be rewritten:

1−CVað Þσa
nnexp εa3

� �
ta0 ¼ 1−CVbð Þσb

nnexp εb3
� �

tb0 ð24Þ
1−CVað Þσa

ntexp εa3
� �

ta0 ¼ 1−CVbð Þ σb
ntexp εb3

� �
tb0 ð25Þ

By considering the imperfection factor equation (i.e., Eq.
(19)), Eqs. (24) and (25) can be further written as follows:

f
1−CVb

1−CVa

σb
nn

σa
nn

¼ 1 ð26Þ

f
1−CVb

1−CVa

σb
nt

σa
nt
¼ 1 ð27Þ

For the solution of the unknown parameters in the groove
region, matrix F is defined as follows:

F¼ F1 F2½ �
where,

F1 ¼ Φb ¼ 0 ð28Þ

F2 ¼ dεbtt
dεatt

−1 ¼ 0 ð29Þ

The Newton–Raphson method is used to solve the preced-
ing set of equations. Hence, the Newton–Raphson expression
is as follows [2]

F xþ δxð Þ ¼ F xð Þ þ J :δx ð30Þ

where, J ij≡ ∂Fi
∂x j

and unknown parameter x is defined as [2]:

x¼ σb
tt dεM

b
 �

ð31Þ

Values of x are obtained as follows [2]:

δx ¼ −J−1:F ð32Þ
xnew ¼ xold þ δx ð33Þ

Fig. 1 Schematic view of a sheet
metal with initial thickness
imperfection [24]
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Figure 2 shows the flowchart of the algorithm to pre-
dict the stress-controlled analytical FLD. However, in ev-
ery applied strain along a proportional stress in the safe
zone, the stress and strain components in the algorithm
are calculated in the safe zone. Thereafter, the Newton–
Raphson method is used to calculate the stress and strain

components in the groove zone. In every step, the total
strain, imperfections and void volume fractions are up-
dated, and necking is assumed to occur when effective
strain increment in the neck exceeds the effective strain
increment just outside the neck of a certain multiple of at
least 10.

12

φορ = ≤

> 0.1

Document and 

Yes

Apply 

No

Insert required material constants

Initialize values for , , , , ,

1) Initial guess for and .

2) Update effective strain in groove zone:         +
3) Calculate effective stress in groove zone for material following Equation (3).

4) Transfer stress components in groove zone into ntz direction.

5) Calculate in groove zone following Equation (12).

6) Calculate in xyz direction using associative flow rule.

7) Transfer strain components in groove zone into ntz direction.

8) Calculate and  components. 

1) Update effective strain in safe zone:         +
2) Calculate effective stress in safe zone for material following Equation (3).

3) Calculate stress components in xyz direction for safe zone following Equation (8) and stress ratio.

4) Calculate in safe zone following Equation (12).

5) Calculate in xyz direction using associative flow rule. 

6) Transfer stress and strains components in safe zone into ntz direction.

− =tolerance
and

− = tolerance

Yes

Calculate new values for and following Equations (32) and (33)

No

=
=

End

1) Update strain components for both groove and safe zones

2) Calculate new value for following Equation (19)

3) Calculate for both groove and safe zones.

4) Update for both groove and safe zones

Fig. 2 Flow chart of the algorithm to predict the stress-controlled analytical FLD
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Theoretical analysis of the strain-controlled FLD prediction

The combination of the Gurson and Barlat 89 models has
been used to predict the analytical FLD in [21]. This algo-
rithm is different from the algorithm developed in [2],
which is used in the current study. Eqs. (22–23) are con-
sidered preconditions and Eqs. (28–29) are used in the

Newton–Raphson method to calculate σb
tt and dεMb at ev-

ery increment in this study when stresses are applied pro-
portionally. In [21], Eq. (29) was used as a precondition
and only Eq. (23) was used in the Newton–Raphson meth-
od to calculate the stress ratio in the groove zone when
strains are applied proportionally. However, the algorithm
presented in [21] has been implemented (which is not il-
lustrated in this paper), and FLD for AA6016-T4 has been
predicted by switching off the Gurson model (q1 = q2 =
0.0). Therefore, another FLD using the implemented algo-
rithm in the current study has been predicted by switching
off the Gurson model and considering the Barlat 89 yield
function to investigate the effects of the algorithm on FLD
prediction. In [21], the implementation and analysis of the
algorithm to predict FLD following the constant strain
paths are performed and explained in detail.

M-K method based on the GTN model

The strain-controlled void nucleation volume fraction incre-
ment is as follows:

dCVð ÞNucleation ¼ AdεM ð34Þ

where dεM is the plastic strain increment, and the parameter A
is chosen so that nucleation follows a normal distribution as
suggested by Chu and Needleman [25]:

A ¼ f N
SN

ffiffiffiffiffiffi
2π

p exp −
1

2

εM−εN
SN

 !2
2
4

3
5: ð35Þ

Here, εN is the average void nucleating strain, fN is the
volume fraction of void nucleating particles, and SN is the
standard deviation of void nucleating strain.

In this way, the growth of existing voids and the nucleation
of new voids are considered in the evolution of void volume
fraction as follows:

dCV ¼ dCVð Þgrowth þ dCVð Þnucleation ð36Þ

The function of void volume fraction (CV
∗(CV)) is defined

to consider coalescence as follows [13]:

CV
* ¼

CV for CV ≤CVc

CVc þ
CV

*
u−CV

CV f −CVc
CV−CVcð Þ for CV > CVc

8<
: ð37Þ

where CVc is the critical void volume fraction when coales-
cence happens and CVf is the void volume fraction at failure.

The parameter CV
*
u ¼ 1

q1
is defined and CV

∗ replaces the CV in

the Gurson yield function (Eq. (1)).

Results and Discussion

Algorithms were written using MATLAB to construct the
stress- and strain-controlled analytical FLDs for the
AA6016-T4 aluminum alloy sheets described in the previous
section. Table 1 presents the material properties to predict
FLD for the AA6016-T4 aluminum alloy. Given that the ini-
tial void volume fractions in metals is extremely low and
approximates zero, Ca

vo ¼ Ca
vo ¼ 0:001 are considered.

Moreover, q1 = 1.5 and q2 = 1.0 are considered for metals as
suggested by Tevergaard in [26]. The remainder of the mate-
rial properties that provide the elastic–plastic tensile responses
(see Table 1) are as those presented in [2]. Various yield func-
tions are used to construct the stress-controlled FLDs (see
Fig. 3). The stress ratio increment to construct an FLD is
0.1. FLDs are compared with the FLD for the AA6016-T4
aluminum alloy as presented in [2]. Figure 3 shows that
Hosford predicts the best theoretical FLD matched with ex-
periments, and Hill’s 48 predicts FLD that is not considerably
comparable with the experiments. Note that the initial imper-
fection factor (fo) cannot be measured through physical exper-
iments. The suggestion in [27] is to choose fo by fitting the
FLD prediction of the in-plane strain tension to the corre-
sponding experimental limit strain. Accordingly, fo = 0.991
is chosen for AA6016-T4 in this study. Fig. 4 shows the ef-
fects of the imperfection factor on FLD, in which the fo value
has a significant effect on FLD, which lowers with a decrease
in fo.

The effects of the anisotropic plastic ratios on the stress-
and strain-controlled predicted FLDs is investigated and

shown in Fig. 5. The Barlat yield function is used, and Ca
vo

¼ Cb
vo ¼ 0:0 to switch off the effect of void growth. Note that

in these figures, groove orientation is switched off, and FLDs
are predicted when θ = 0 to investigate the direct effects of R0,
R45, and R90 on FLDs at a certain groove orientation. The
results indicate that R0, R45, and R90 have significant effects
on the predicted FLDs. Note that the values of the major and
minor strains at the plain strain state are the same for all cases.
For the isotropic case when R0 = R45 = R90 = 1.0, the predicted
FLDs are the same as shown in Fig. 5(a). Given the values
R0 = R45 = R90 = 0.8, the right side of FLDs are the same but
the left side of the strain-controlled FLD is extended substan-
tially. Fig. 5(c) shows that the values of AA6016-T4 for R0,
R45, and R90 are used, and the predicted FLDs are compared.
Evidently, the strain-controlled FLD is slightly extended on
the right side and can be comparable with the experimental
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FLD. However, the left side is substantially extended and may
be unsuitable for comparison with the experiments. Fig. 5(d)
shows that the effect of R90 is examined and that it causes the
strain-controlled FLD to extend on the right and left sides
compared with the stress-controlled FLD.

This study analyzes the effects of the q1, q2 and void vol-
ume fractions on predicting FLDs. In Figs. 6, 7, 8 and 9,
Hosford yield function is used, and the stress-controlled
FLDs are predicted. The material properties are the same as
presented in Table 1. Note that in these figures, groove orien-
tation is switched off, and FLDs are predicted when θ = 0 to
investigate the direct effects of each parameter on FLDs at a
certain groove orientation.

Figure 6 shows the sensitivity of the fitting parameters in
the Gurson model (q1 and q2) on FLDs. The predicted FLD
decreases with an increase in q1 and q2. Evidently, the effect of
q2 on lowering FLD is higher than the effect of q1. However,
FLD decreases drastically when the fitting parameters q1 and
q2 change. The reason for the effects of q1 and q2 on FLD can
be addressed from the change in yield locus. The void growth
in the safe and grove zones are not equal because of thickness
imperfection consideration in the groove zone, even if the
initial void volume fractions are considered equal in both
zones. Moreover, the void volume fraction in every applied
strain step is different because of void growth. The yield locus
in the Gurson model following Eq. (1) changes at every ap-
plied strain step, and q1 and q2 affect on the change in yield
locus.

Figure 7 shows the effects of the initial void volume frac-
tions in the safe and groove zones, and that the initial void
volume fractions are the same in both zones. Clearly, FLD
lowers with an increase in the initial void volume fraction.
Note that the initial void volume fraction of a real material
approximates zero and the value of 0.001 is an appropriate
consideration for the initial void volume fraction of the safe
and groove zones in aluminum alloys. The combination of the
Gurson and Hosford models with 0.001 as initial void volume
fraction evidently has a small change compared with FLD
when the initial void volume fraction is 0.0. The plastic re-
sponses in the groove and safe zones are similar in both zones
when the initial void volume fractions are the same. The FLD
has a lower effect compared with the case when the initial void
volume fraction in the groove zone is larger than in safe zone.
Figure 8 shows the effect of latter case. Note that the same
initial void volume fraction for the groove and safe zones must
be considered from the metallurgical perspective.

Figure 8 also illustrates that the effect of the initial void
volume fractions when the initial void volume fraction in the
groove zone is twice the initial volume fraction in the safe
zone. The large values of the initial void volume fraction in
the groove zone play a role of imperfection factor. This case
causes FLD to decrease significantly rather than the case when
the initial void volume fractions are similar in the safe and
groove zones. This fact can be explained with change in yield
loci when the plastic responses in the groove and safe zones
are not similar, and the stress–strain curve in the groove zone

Table 1 Material properties to predict the analytical FLD for AA6016-T4 [2]

B C n R0 R45 R90 q1 q2 Ca
vo Cb

vo M

417.854 0.01 0.245 0.8 0.43 0.61 1.5 1.0 0.001 0.001 8
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decreases more than that in the safe zone. When CVo is similar
in the safe and groove zones, the behavior of the material is the
same. However, when CVo is large in the groove zone, the
yield locus in this zone shrinks (see Fig. 9), thereby lowering
FLD.

The initial void volume fractions have minimal effect on
the FLD prediction when they are equal in the safe and groove
zones. However, this initial void volume fraction has a signif-
icant effect on FLD when the void volume fraction in the
groove zone is larger than that in safe zone. From the

metallurgical perspective, the void volume fractions in both
zones are equal and approximates zero. In [28], FLD is pre-
dicted theoretically using the Gurson model, the safe zone is
considered void-free zone, and only the groove zone has ini-
tial void volume fraction. In [21], void volume fraction in
groove zone is twice the void volume fraction in safe zone
to predict the FLD. Although small-scale imperfections are
indeed present in the sheet metal, the initial imperfection is
considered 1.0 (see Fig. 10); the assumption is that a high void
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volume fraction in the groove zone is the only source of im-
perfection. In fact, the assumption is that imperfection is a
result of a high void volume fraction in the groove zone,

thereby predicting FLD (see Fig. 10). When Ca
vo ¼ 0:001 and

Cb
vo ¼ 0:0025 and when Ca

vo ¼ 0:0015 and Cb
vo ¼ 0:003

with fo = 1.0, the predicted FLD is nearly comparable with

FLD when Ca
vo ¼ 0:001 and Cb

vo ¼ 0:001 with fo = 0.991.
Thus far, the FLDs predicted in this study were produced

based on the original Gurson model. As mentioned previous-
ly, the objective of this study is to select the best approach that
considers the effect of void growth on FLD prediction. The
effects of void nucleation and coalescence when the GTN
model is used to predict FLDs are also investigated. The re-
sults are shown in Fig. 11. The effect of void nucleation is
investigated when the effect of coalescence is switched off.

The parameter set of void nucleation and void coalescence for
AA6016-T4 alloy is not available in literature [29]. Therefore,
fN = 0.04, SN = 0.1, and εN = 0.3 are selected to show only the
effect of void nucleation. These values are obtained from [13]
for metals. Notably, investigation of the effect of void nucle-
ation and coalescence on FLD prediction is the aim of this
study regardless of the actual values of the mechanical prop-
erties of AA6016-T4 alloy. We observed that void nucleation
exerted a significant effect on FLD prediction. Void nucle-
ation decreased FLD because void growth increased signifi-
cantly. fc = 0.15 and ff = 0.25 as reported in [13]. However,
coalescence did not influence FLD prediction when these
values were considered for void coalescence. Therefore, a
small value of fc adopted, and the predicted FLD is shown in
Fig. 11. Void coalescence does not have much effect on FLD
for the full range of the stress ratio (α), and FLD decreased
only at high values of α. The effect of coalescence on FLD
prediction when the M-K method that considers the GTN
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model is used for isotropic materials was studied in [30], and a
similar behavior was observed.

Conclusions

This study uses an analytical approach to predict FLD for
sheet metals. The M-K method is utilized, and the effects of
various yield functions on FLD prediction are analyzed and
compared with the experiments. An appropriate algorithm is
also investigated to establish the theoretical analysis.
Furthermore, a parametric study was performed to understand
the effects of each parameter on FLD prediction. Lastly, the
salient conclusions of this study are summarized as follows:

& The stress-controlled FLD predicts the left side well and
matched with the experiments for the AA6016-T4 alloy.
By contrast, the strain-controlled FLD matches well with
the right side of the experimental FLD.

& The Hosford yield function with M = 8 predicts the most
suitable FLD compared with the experiments for a typical
AA6016-T4 aluminum alloy sheet.

& Given that an extremely low value for the initial void
volume fraction in the safe and groove zones are consid-
ered, FLD predicted using the Gurson model is extremely
close to the case when the Gurson model is switched off.

& Accordingly, a high void volume fraction in the groove
zone is assumed to result in a significant effect in
predicting FLD.
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