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Abstract
Most commercial softwares simulating casting process use a scalar field to quantify the shrinkage on final parts. The
repartition of this scalar is used to localize shrinkage in the part. In this work, the objective is to use a new approach to predict
morphological information about size and shape of shrinkage: the phase field method. This method is based on a parameter
order defining the alternating zones metal/gas. Starting with a uniform unit value of this scalar, the phase field equation is
modified with a nucleation process predicting the growth of the air phase into the metal one still liquid. The coupling with
the Navier-Stokes equation brings up some interesting non-dimensional parameters that affect shrinkage morphology. This
is what we have tried to analyse after proposing the modified phase fields formalism. Even if we are not yet in the predictive
stage, we present in the end of this paper a numerical/experimental comparison showing the potentiality of the developed
approach.
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Introduction

Porosity in castings is a major defect since it may
have different effects on the deterioration of mechanical
properties. Two types of defects are observed:

• The first one is the defect related to gas porosity (air
entrapment) which is due to the turbulent flow when
the die casting is filled. It also can be a consequence
of die coating vaporization, or dissolved hydrogen
rejection from metal during its solidification [1]. The
microporosity increase can be associated with the
dendritic arms growth that leads both to air entrapment
and to hydrogen desorption in these voids. In permanent
mould casting process, a vacuum system can be used to
reduce this problem thanks to metal injection into the
mould cavity under the quasi-vacuum conditions [2].
An example is shown in Fig. 1 (other figures could also
be found in literature [3]).
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• The second type is the shrinkage porosity induced by
the densification occurring during the transformation
from liquid to solid state. According to the default size
we can deal with macroporosity or microporosity. This
default is located in the hottest zones. This type of
porosity depends on the solidification morphology (see
Fig. 2 or [3]).

The defaults types are differentiated by their size, location
and shape of the surface. Thus, porosity analysis and
classification are achieved by microscope observation.
The dispersion of shrinkage allows to define different
morphology as shown in Fig. 3 (pipe shrinkage, centreline
shrinkage or surface sink).

In this study, we will focus only on shrinkage porosity
induced by densification and its formation during the
solidification process.

Most commercial softwares simulating casting process
use a scalar field to quantify and localize the shrinkage on
final parts.

Some of these commercial codes use the Niyama crite-
rion (Ny) to detect shrinkage defects during solidification,
which is defined as the local thermal gradient divided by
the square root of the local cooling rate. As shown in
Fig. 4, according to the diagram illustrating the relationship
between the volume of shrinkage porosity and the Niyama
criterion, the shrinkage formation can be estimated [5, 6].
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Fig. 1 SEM micrographs of gas porosity and pore surface

A more general approach is applied to Al-Cu and Al-Si
alloys. Ch. Pequet, M. Gremaud, and M. Rappaz [7] have
developed a numerical model to predict the microporosity,
the macroporosity, and the pipeshrinkage formation during
the solidification using a mushy-zone refinement method.
In order to calculate the pressure drop in the mushy zone,
they superimposed a fine and regular finite volume grid
on the finite element grid used to calculate heat flows.
Microporosity is formed in mushy zone. Macroporosity
appears in the partially closed liquid regions which are
connected to an open region via the mushy zone. Pipe
shrinkage is obtained by integration of the calculated
interdendritic fluid flow over the open-region boundaries.

In our work, we present a modelling approach for the
formation of shrinkage during the cooling based on the
phase field theory. The phase field approach allows to model
free boundary problems without having to explicitly follow
the complex interfaces that takes different forms during the

Fig. 2 SEM micrographs of shrinkage and dendrites

Fig. 3 Classification of shrinkage porosity [4]

evolution of the microstructure. This is done by the use of an
order parameter. The phase field approach can be applied to
a wide range of microstructure evolution problems related to
very different processes by appropriately selecting physical
or artificial variables. It has been successfully applied to
many material processes such as alloy solidification [8],
microstructural evolution of polycrystalline materials [9],
crystalline nucleation [10], recrystallization process [11],
dendritic growth [12], grain magnification and growth [13]
among many others applications.

The main purpose of this paper consists to propose a
numerical model of shrinkage formation during the cooling
stage based on the phase field method and taking into
accounts fluid dynamics as well as heat transfer. The
filling stage simulation is not included in this work. In the
beginning of this paper, we summarize the main idea of the
phase field theory and we detail our contribution consisting
to generate voids by a nucleation process. Then we
present the coupled system resulting from the Cahn-Hilliard

Fig. 4 Schematic illustrating the Niyama Criterion to detect shrinkage
porosity [6]
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equations associated to the Navier-Stokes equations. A non-
dimensionalization of the set of the obtained equations is
also proposed. This allows to arise some non-dimensional
parameters that we relate to the different kinds of voids
distribution observed when making a parametric numerical
study. Finally, a qualitative comparative study has been
performed between our simulations and a gravity die casting
part obtained in an instrumented mould.

Phase fieldmodel

Free energy of the system

The phase field model is formulated here for a binary
mixture of two immiscible fluids (air and molten metal in
liquid state) using the Cahn-Hilliard scattering function. The
formulation starts from a free energy of the system F which
is a function of fluids mixing composition.

F = (C, ∇− C) =
∫

(βψ(C) + α

2
|∇− C|2)d� (1)

Here, C is the variable that describes the phase. It will
be called in the following an order parameter. ψ(C)

is a double-sink function that implies the only stable
equilibrium values of C are +1 for liquid or −1 for air. A
classical form of ψ which is used in most cases is defined
by:

ψ = 1

4
(C + 1)2(C − 1)2 (2)

However, other forms of ψ(C) can be found in the
literature [14]. In our case, a non symmetric form is chosen
in the numerical section, more suitable when the two
phases are not in the same proportion. The choice of this
function ensures that the values of C (+1 and −1) are
the stable equilibrium positions. α and β are the phase
field parameters defining the free energy as proposed by
Cahn & Hilliard in their original work in 1958 [15]. α is
homogeneous to a force and β is homogeneous to an energy
per unit volume, thus:

• √
αβ: is the surface energy. We can consider that this

quantity represents the surface tension between the two
phases.

•
√

α
β
: is the liquid-air interface thickness. We are using

a diffuse interface model. The transition between the
liquid and the air is continuous with values of C ∈
[−1, 1].

By taking the variational derivative of the free energy F
with respect to the order parameter C, we obtain:

δF =
∫

(βψ ′(C) − α∇−
2C)δCd� (3)

We define the chemical potential from the variational
derivative of the free energy as:

φ = δF
δC

= β
∂ψ

∂C
− α	C (4)

According to the Cahn-Hilliard formalism (see for example
[16]), the diffusive flux in the evolution of C is proportional
to the gradient of the cheminal potential:

dC

dt
= −∇− .J− with J

−
= −M∇− φ (5)

J
−
is the diffusive flux and M is the mobility (scalar in the

case of isotropic separation mixture, and tensor in the case
of non-isotropic separation).

Kinetic equations of volume defects

The evolution of the phase field variable C is deduced from
the Eqs. 3, 4 and 5 and thus writes in the presence of a
velocity field v

−
as:

∂C

∂t
+ v

−
.∇− C = ∇− .(M∇− φ) = ∇− .(M∇− (β

∂ψ

∂C
− α	C)) (6)

The previous equation is conservative. It allows in several
cases [17] to start with a mixture defined with C = 0
on a domain �. Over time, this domain is subdivided into
alternating zones with C = 1 and C = −1 while respecting
the normality condition expressing that

∫
�

C d� is constant
(the integral of C is conserved, i.e. the flux of C is assumed
to be zero on the boundaries of �).

In our case of shrinkage formation during the cooling
phase, we start with a liquid state (C=1), then the density
decreases according to the temperature. In most cases, the
density is a decreasing function of temperature that can be
experimentally identified for each material.

We can predict the global rate of the shrinkage formation
during the cooling from the measured density evolution
ρ(T ). We assume in this work that: (i) there is no pressure
effects on the density and that (ii) once the mould is filled,
there is no alimentation of new liquid.

Our system starts from an initial state (in the beginning
of the cooling phase) defined by:

∫
C(t = 0)d� = |�|; C(t = 0) = 1 (7)

|�| is the volume of the mould cavity. At the end of the
cooling phase, we have:

∫
�

C(t = ∞)d� = Clim|�| (8)
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The value of Clim can be estimated from the experimental
curve of ρ(T ) .

Clim|�| − |�|
|�| = Clim − 1 = 2

1
ρ(Tf )

− 1
ρ(T0)

1
ρ(T0)

(9)

T0 is the initial temperature and Tf is a temperature below
which the evolution of ρ with temperature does not
create shrinkage but homogeneous part contraction. The
temperatures in the previous expression allow to obtain
a value of Clim between −1 and 1. In order to consider
volume defect nucleation and growth, we introduce a source
term S that affects the conservation of C during time.
Equation 6 becomes non conservative and writes:

∂C

∂t
+ v∇− C = ∇− .(M∇− (β

∂ψ

∂C
− α	C)) − S (10)

This approach was introduced in [18] in order to describe
the formation of the polycrystalline phases in a metal. It will
be used in our case based on a description of the phase field
using a single variable C (and not using two variables C and
η as in [18]). This approach is used here for the prediction
of the void phase nucleation in the liquid.

In contrast to [19], we introduce the source term with
a negative sign because we suppose that the void phase
(defined by C = −1) germinates in the liquid phase
(defined by C = 1). So, the source term decreases the value
of C.

The source term takes the form:

S =
{
0 if C < C0 or R1 > P0

R2Vg if C ≥ C0 and R1 < P0

Vg is a nucleation velocity. C0 is the critical order parameter
of void nucleation, above which nucleation is authorized. It
can takes for example the value 0.P0 is a probability threshold
that control the nucleation activation. Itmust be taken between
0 and 1. A simplest choice consists to fix it at 0.5. R1 et R2

are two randomnumbers generated uniformly between 0 and
1 that are independent from one time step to another. These
two values are independently generated at any point of the
continuous domain. With these elements, the source term S

becomes defined at each material point of the � domain.
In order to reproduce a nucleation physics consistent with

[7], where we suppose that the nucleation is assumed to
occur far from the boundaries and located in the hottest
zones, we propose the following form of Vg:

Vg = VgMax

[(∫
�

Cd� − Clim|�|
)]+

F(T ) (11)

The notation [.]+ refers to the positive part (max(., 0)).
F(T ) is a user defined function that we propose under the
following form:

F(T ) =
{
1 if T > (Tmax − δT )

0 otherwise

In some previous works [19, 20], Vg is considered constant.
However in our approach the proposed form (11) allows to:

• Adapt the nucleation velocity according to the integral
of C on the domain. In fact the positive part of
(
∫

Cd� − Clim|�|) allows to obtain a maximum
nucleation rate at C = 1. This nucleation rate tends
towards 0 when the system reaches the expected state
verifying

∫
Cd� = Clim|�|. We have chosen the linear

dependency which is the simplest one, but other forms
can be imagined.

• This form allows also via the F(T ) function to locate
voids nucleation in the hottest zones. Tmax is the
maximum temperature value recorded at each moment
of the simulation and δT is a temperature gap set by the
user that delimits the hottest zone.

To analyse the global effect of the source term, we can
integrate the Eq. 6 on the volume �:

d

dt

∫
�

Cd� = −
∫

�

∇− .J− −
∫

�

Sd� (12)

This form assumes that there is no flux of C across the
boundaries. The first term of the second member vanishes
due to the conservative character of J

−
. Knowing that:

Ctot =
∫

�

Cd� (13)

The Eq. 12 becomes:

dCtot

dt
= −

∫
�

Sd� (14)

As S is numerically defined at each time step, this equation
will control the conservation of C during the numerical
integration.

The coupled system of equation

We consider here a system consisting of two-phases: metal
and air. The Navier-Stocks equations has to be taken into
account to get the kinematic fields. The velocity field is
continuous from one phase to the other. It is denoted v

−
on

each material point. The Cahn-Hillard and Navier-Stokes
equations are coupled so that, the free energy generation
by convection is at each time equal to the opposite of the
kinematic energy generation by capillarity [21]. Thus an
advection term is added to the source term of the Navier-
Stockes equation containing the capillarity contribution
which accounts for inter-facial forces as body forces:

ρ(

∂v
−

∂t
+ v

−
∇− v) = −∇− P + ∇− .(2ηD= ) = −ρgz

−
+ φ∇− C (15)

Besides, the continuity equation is given by ∇− · v = 0

in the metal phase. The thermo-physical properties such
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as the density ρ and the viscosity η will be expressed as
continuous functions depending on the order parameter C.
Simple mixture laws can be considered.

ρ(C) = 1 + C

2
ρliq + 1 − C

2
ρair (16)

η(C) = 1 + C

2
ηliq + 1 − C

2
ηair (17)

ρliq is the liquid density and ρair is the air density. Based on
the volume-specific properties as a function of temperature,
we can define ρliq as follows :

ρliq = ρ0R(T ) (18)

R(T ) is a thermal dependent function verifying R(T0) = 1,
where ρ0 is the value of ρliq at the reference temperature T0.
Thus:

ρ(C, T ) = 1 + C

2
ρ0R(T ) + 1 − C

2
ρair (19)

Similarly, we write the viscosity as a function of the order
parameter and the temperature according to:

η(C, T ) = 1 + C

2
η0V (T ) + 1 − C

2
ηair (20)

ηair is the air viscosity and ηliq = η0V (T ) is the liquid
viscosity (ηair << ηliq ). η0 is the liquid viscosity at a
reference temperature. V (T ) is a function that expresses the
thermo-dependence: i.e, the viscosity variation as a function
of the temperature verifying V (T0) = 1.

To take into account the physics of the cooling during the
post-fill stage of the casting process, the Naviers-Stockes
and Cahen-Hillard equations must be coupled to the heat
transfer equation (WLF or Arrhenius model can be used
here for the function V (T )).

In its simplest form, the heat transfer equation can be
written as follows:

ρCp(
∂T

∂t
+ v

−
∇− T ) = k	T (21)

Where ρ is the density of the mixture, Cp is the specific
heat capacity, and k is the thermal conductivity. All these
parameters are dependent on the temperature and the order
parameter C. Latent heat of phase change is not considered
here but can be added with no major difficulties.

To solve such an equation, it is necessary to define
correctly the boundary conditions and especially the heat
convection coefficient between the metal and the mould.
This was the object of a study which is not detailed
here in which we did an instrumented casting setup that
notes the real temperature in some points of the metal
and the mould. A numerical simulation with an inverse
identification allowed us to go up to the convection
coefficient. However, in order to simplify the writing
in numerical modelling section, the Dirichlet boundary
conditions will be considered at the mould/part interface.

Summary of the equations

– Evolution of order parameter

∂C

∂t
+ v

−
.∇− C = ∇− .(M∇− φ) − S (22)

Where φ = β
∂ψ
∂C

− α	C

– The Naviers-Stokes equation neglecting the inertia term

− ∇− p + η	u − ρgz
−

+ φ∇− C = 0 ; (23)

associate to ∇− .v− = 0 in the metal phase. Compressible

behaviour is considered for the air phase.
– Heat transfer

∂T

∂t
+ v

−
.∇− T = k

ρCp

	T (24)

Non-dimensionalization of themodel equation

Several literature works present adimensionalization of
Naviers-Stockes and Cahen-Hillard equations (see [16] for
example). In most of these works, the characteristic velocity
is defined as the ratio of the surface energy by the viscosity.
As a result, the characteristic time is directly related to
this velocity. In our work, we present another form of
non-dimensionalization based on the mobility to define
the characteristic time. The form that we propose does
not allow to retrieve the classical dimensionless number
such as the capillary number Ca and the bond number Bo.
However it allows to obtain direct effect of non-dimensional
parameters. We consider easier to interpret non-dimensional
numbers in terms of counterpart forces.

In Eq. 6, the mobility M is homogenous to a diffusivity
by volumic energy:

M ≡ [L]4
[F ][t] ≡ m4

N .s
(25)

Where L is a unit of characteristic length, F is a unit of
force and t is a unit of time. β is equivalent to an energy
per unit volume and is expressed in N/m2. If we consider
that L is a characteristic dimension of our geometry, then

we can define the characteristic time by L2

Mβ
. The variables

with ∗ denotes the dimensionless quantity. According to the
previous definitions, we can give the following choice:

• Dimensionless time : t∗ = t
Mβ

L2

• Dimensionless operators : ∇−
∗ = L∇− ; 	∗ = L2	

• Dimensionless velocity : v∗ = v
Mβ
L

; Mβ
L

is the characteristic velocity
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• The interface thickness is defined by:

ε =
√

α

β
(26)

It can be written in a dimensionless form as ε∗ = ε
L

=√
α
β

L

• The dimensionless nucleation source term: S∗ = SL2

Mβ
,

• The dimensionless nucleation rate: V ∗
gMax = VgMax

L2

Mβ

The other contributions in the source termR1, R2, F (T ) and
P0 are already dimensionless.

Finally, the dimensionless Cahen-Hillard equation becomes:
∂C

∂t∗
+ v∗∇−

∗C = 	∗φ∗ − S∗ = 	∗( ∂ψ

∂C
− ε∗2	∗C) − S∗ (27)

Where, φ∗ = φ
β
. It should be noted that this dimensionless

equation is controllable with only two parameters:

• ε∗: which represents the dimensionless interface thick-
ness. This parameter has to be chosen according to the
minimum size of the shrinkage and also in coherence
with the size of the discretization elements.

• V ∗
gMax : which controls the nucleation rate (this contri-

bution is in S∗).

For the Navier-Stokes equation, we define the dimension-
less pressure as:

p∗ = pL2

η0Mβ
(28)

We consider that η0Mβ

L2 is the characteristic pressure.

By multiplying (23) by the term L3

η0Mβ
, we obtain:(

1

η0

L2

Mβ

)
∇− p = η

η0
L2	

(
v
−

L

Mβ

)

−
(

ρ0gL3

η0
Mβ
L

L

)
ρ

ρ0
z
−

+ L2β

η0
Mβ
L

L

φ

β
L∇− C (29)

This equation arise two dimensionless numbers:

1. The first one is G∗ = ρ0gL3

η0
Mβ
L

L
which represents the ratio

of the gravity forces by the viscous forces.

2. The second one is P ∗ = L2β

η0
Mβ
L

L
which represents the

ratio of phase separation forces by viscous forces.

We keep voluntarily the denominator η0
Mβ
L

L without
simplification to show the product of viscosity by a
characteristic velocity by a characteristic time.

The final equation is then written as:

− ∇−
∗p∗ + η∗	∗v∗ − G∗ρ∗z

−
+ P ∗φ∗∇−

∗C = 0 (30)

Where, η∗ = η
η0

and ρ∗ = ρ
ρ0
, are two functions that depend

on C and temperature. They are equal to 1 for C = 1 and

at reference temperature (T = T0), where η0 and ρ0 are
defined.

Finally the heat (24) becomes dimensionless when it is

multiplied by L2

Mβ
. It writes:

∂T

∂t∗
+ v∗∇−

∗T = D∗	∗T (31)

D∗ =
k

ρCp

Mβ
. This dimensionless quantity represents the

ratio of a thermal diffusivity by the phase field diffusivity.
It should be noted that the temperature remains with
dimension. We can divide this equation by a characteristic
temperature in order to have a dimensionless field, but that
does not made a new significant dimensionless number.
Beside, if we want to make this equation dependent on the

C variable, we can say that: D∗ = [ k
ρCp

]C=1

Mβ
d∗(C) (with

d∗(C = 1) = 1) and we obtain:

∂T

∂t∗
+ v∗∇−

∗T =
[ k
ρCp

]C=1

Mβ
∇−

∗(d∗(C)∇−
∗T ) (32)

Final set of dimensionless equations
The final set of equations is written after removing the
asterix notation for simplification:

∂C

∂t
+ v

−
∇− C = 	(

∂ψ

∂C
− ε2	C) − S (33)

− ∇− p + η(T , c)	v
−

− Gρ(T , c)z
−

+ Pφ∇− C = 0 (34)

∂T

∂t
+ v

−
∇− T = D	T (35)

Numerical resolution

There are some difficulties related to the resolution of
the Cahn-Hilliard equation. The first one consists to
make possible an implicit resolution of the elliptic terms
containing a non linear contribution. The second one is
related to the fourth order derivative in the frame work of
a classical low order P1 or Q2 finite element discretization.
In most works dealing which such an equation (see for
example [22, 23]), the fourth order derivative is reduced
by introducing a new variable ζ = 	C and by making a
coupled resolution of a set of two second order equations
where the second one is:
∂C

∂t
+ v∇− C = 	(

∂ψ

∂C
) − ε2	ζ − S (36)

This is in some ways equivalent to a double application of
the diffusion operator. In our approach, we keep the same
idea but with a small difference which consists in making
the substitution of the second variables before looking for
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its value. In this way, the fourth order terms could be
treated in the frame work of an implicit resolution. Now
let’s come back to the term 	(

∂ψ
∂C

) which cannot completely
be resolved in an explicit strategy otherwise the elliptic
character of the equation disappear. To avoid this, we make
a splitting to introduce an ellipticity to the equation. We
define the ϕ(C) function as:

ϕ(C) = ∂ψ

∂C
+ C (37)

In the case where:

ψ(C) = 1

4
(C + 1)2(C − 1)2 (38)

We have ϕ(C) = C3, and the order parameter equation
becomes:

∂C

∂t
+ v∇− C = −	C − ε2	ζ + 	ϕ(C) − S (39)

It must be noted that this splitting is valid for any choice of
ψ .

At this stage, it is essential to address the question related
to the choice of other forms of the function ψ . Even if
in most works we use the symmetric form (38) where the
unstable equilibrium is obtained for C = 0, we found
suitable for the cases where our Clim (defined in Eq. 9) is
close to 1 to change the definition of ψ to a non symmetric
form. The following form is proposed:

ψ(C) = C
(
3C3 − 4Clim C2 − 6C + 12Clim

)
12

(40)

That form defines the unstable equilibrium at C = Clim.
The related derivative is then given by:

∂ψ(C)

∂C
= (Clim − C)(1 − C)(1 + C) (41)

The advantage of that expression is that it defines a generic
writing allowing to regain the specific case of Eq. 38 by
simply fixing Clim = 0. In all cases, the expression of ϕ

given by Eq. 37 remains unchanged and this is what we will
use in the following.

Before solving the C evolution equation, a preliminary
work consists to links the ζ variable to C.

In a weak form based on a finite element discretization,
we can write:∫

�

C∗ζd� =
∫

�

C∗	Cd� (42)

A Galerkin discretization is used. It can be written as:

C(x) =
n∑

i=1

Ni(x)Ci (43)

where n is the total number of interpolation functions and
Ni are the interpolation functions.

The integration by part assuming zeros flux of C on the
boundaries of � writes:∫

�

C∗ζd� = −
∫

�

∇− C∗∇− Cd� (44)

The mass and the stiffness matrix are given by:

M=
ij

=
∫

�

Ni(x)Nj (x)d�

K=
ij

=
∫

�

∇− Ni(x)∇− Nj(x)d�

In our case, it is preferred to use the lumped form of the
mass matrix.

The formulation (44) after simplification becomes:

M= ζ
−

= −K= C
−

(45)

then the formula used for the substitution writes:

ζ
−

= −M=
−1K= C

−
= L= C

−
, L= = −M=

−1K= (46)

Temporal discretization

The evolution (39) of C(x) is defined in space and time.
A quasi-implicit method is used for temporal integration.
We denote by Ct and Ct+δt the discrete values of C at two
successive time steps t and t + δt . The iterative scheme is
defined by:

Ct+δt − Ct

δt
+v

−
.∇− Ct+δt = −	Ct+δt − ε2	ζ t+δt

+	ϕ(Ct) − St+δt (47)

The same space discretization used previously is again used
for this equation. The velocity field is supposed known
at this stage. The v

−
.∇− C term gives an advective character

which requires an upwinding stabilization of the classical
centred finite element interpolation:

C̃∗(x) =
n∑

i=1

⎡
⎣Ni(x) + h

2

v
−

||v
−
||

⎤
⎦Ci (48)

h is the average size of each triangulation element.
Using the same previous discretization, the variational

formulation writes:
∫

C∗ Ct+δt − Ct

δt
+

∫
C̃∗v

−
.∇− Ct+δt =

∫
∇− C∗	Ct+δt

+ε2
∫

∇− C∗∇− ζ t+δt +
∫

∇− C∗	ϕ(Ct ) +
∫

C∗St+δt

(49)

The previously defined lumped mass matrix as well as the
stiffness matrix can be used here. In addition, we define a
new matrix by:

G=
ij

=
∫

�

∇−
T Ni

h

2

v
−

⊗ v
−

||v
−
|| ∇− Njd� +

∫
Ni(x)v

−
∇− Njd� (50)

891Int J Mater Form (2021) 14:885–899



The Eq. 47 becomes:

M=
Ct+δt − Ct

δt
+G= Ct+δt = K= 	Ct+δt + ε2K= ζ t+δt

+K= ϕ(Ct ) + M= St+δt (51)

Or after substitution:

(I + δtM=
−1G= −δtL= − δtε2L=

2)Ct+δt = δtL= ϕ
−
(Ct )

−δtSt+δt + Ct (52)

Fig. 5 Evolution of the system state during the cooling process: The first column represents the order parameter, the second one the interface
metal/void, the third one the fluid phase velocity field and the final column the temperature field. Simulation done for P = G = 106, D = 0.1
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Fig. 6 Different final voids
repartitions according to the two
parameters P and G with
ε = 0.035 and D = 1

Where, I is the identity tensor. Let’s callH = I+δtM=
−1G= −

δtL= − δtε2L=
2 and F = δtL= ϕ

−
(Ct ) − δtSt+δt + Ct

To solve this problem, a normality condition has to
be imposed with a Lagrange multiplier to ensure that the
quantity

∫
�

Cd� is congruent with the source term. We
calculate at each time step Ic = ∫

Cd� = N
−

T C. Initially

it starts with the unit value, then it is given by I t+	t
c =

I t
c − δt

∫
St+δt d�.

The global system is finally given by:

⎛
⎝ H N

−
N
−

T 0

⎞
⎠

(
Ct+δt

λ

)
=

(
F

Ic

)

Where λ is the Lagrange multiplier associated to the C

integral conservation.
If we deal now with the kinematic problem, we

assume that during the cooling stage there are no extreme
solicitations that occur (such as contraction or high
compression zone). In fact, the only flows that exist are
related to the gravity or the phase separation. Thus we

decide to solve the kinematic equation by penalizing the
term ∇− p:

The penalized continuity equation is defined by:

divv
−
I + (1/χ)∇− p = 0 (53)

Then we obtain:

− ∇− p = χtrD= I (54)

Where D= =
∇−v+∇−vT

2 and χ is a penalization parameter

chosen generally equal to 103 or 104.
The equation then becomes:

χtrD= I + η(T , C)	v
−

− Gρ(T , C)z
−

+ Pφ∇− C = 0 (55)

The finite element formulation for this problem is written in
2D where the two components of the velocity field are vx

and vz (respectively along the horizontal axis x and vertical
axis z):

Kv
−

= F− (56)
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Fig. 7 Different final voids
repartitions according to the two
parameters P and G with
ε = 0.0033 and D = 10

K is the global finite element matrix derived from an
assembly of the local stiffness matrix written on each
element as �e:

k=
e =

∫
�e

B=
T A=

⎛
⎝λ + 2η λ 0

λ λ + 2η 0
0 0 η

⎞
⎠ A= B= d�e (57)

with:

A= =
(
1 0 0 0
0 0 0 1
0 1 1 0

)
, B= =

⎛
⎜⎜⎜⎝

∂N1
∂x

0 ∂N2
∂x

0 ∂N3
∂x

0
∂N1
∂z

0 ∂N2
∂z

0 ∂N3
∂z

0
0 ∂N1

∂x
0 ∂N2

∂x
0 ∂N3

∂x

0 ∂N1
∂z

0 ∂N2
∂z

0 ∂N3
∂z

⎞
⎟⎟⎟⎠(58)

The right side is given by:

F− = G

∫
�

N
−

N
−

T (∇− Cφ)d� − P

∫
�

N
−

N
−

T ρz
−
d� (59)

Finally, the heat transfer equation can be written using the
same operators previously defined. The variational form:∫

�

T ∗ ∂T

∂t
d� +

∫
�

T ∗v
−
.∇− T d� =

∫
�

T ∗D	T d� (60)

corresponds to the discrete form:

M=
T t+δt − T t

δt
+ G= T t+δt + K= T t+δt = 0 (61)

on which boundary conditions must be taken into account.
This equation can be solved using a first order Euler implicit
time integration scheme.

Analyse of non dimensional parameters
influence

A 2D unit length square part is considered in this section.
Simulations start when the mould is filled with a molten
metal at temperature equal to 400◦C. Dirichlet boundary
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Fig. 8 Different final voids
repartitions according to the two
parameters P and G with
ε = 0.0033 and D = 1

Fig. 9 Cast part design and thermocouples position
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Fig. 10 The thermocouples location in the mould

conditions are applied to the interface with the mould (fixed
temperature at the interface equal to 40◦C). The parameter
ε characterizing the interface thickness takes the value of
0.035 or 0.0033. The parameters G and P vary from 104

to 106. The Thermo-dependence is characterized by an
Arrhenius like function defined by:

V (T ) = exp[1000(1/T − 1/400)]
The function F(T ) of Eq. 11 delimits the hottest zone
by a difference from the maximum value equal to δT =
2◦C. The VgMax parameter is set to 105. The probability
threshold P0 is fixed to 0.5. The Clim value is chosen
equal to 0.6, which is equivalent to a final voids proportion
equal to 20%. Even if this value is not representative of a
realistic distribution, it has been chosen to highlight well the
parameters effects.

In the first Fig. 5 where ε = 0.035, we observe at
different non-dimensional times the evolution of the system.
In the beginning of the cooling, four void nuclei appear in
the hottest zone. A coalescence is then observed which is
favoured with the high value of the parameter P (106). The
induced kinematic is shown in the third column. The value

Fig. 11 Several cutting plans of the part

of G = 106 favours a rise of the formed cavity towards the
upper part of the mould.

In order to observe the influence of the G and P

parameters, four final morphologies are shown in Fig. 6 for
a fixed parameter ε = 0.035.

Two other parametric studies are presented in Figs. 7
and 8. To go down to a thinner void size, the parameter
ε is decreased to 0.0033. To respect the conformity of the
mesh regarding the interface thickness, a uniform size mesh
with 368 000 finite elements has been used. Two values of
non-dimensional conductivity are consideredD = 1 and 10.

Regarding these figures, several conclusions can be done:

• The G parameter is the one who controls the rise of
the voids to the upper zones of the part. Thus it is
determinant to localize the vertical default distribution.

• The parameter ε determines the voids size at the end
of the nucleation process (which corresponds in general
to the first moment of the cooling stage). It defines the
initial morphological size that evolves later under the
kinematics effects.

• The parameter P controls the final size of the voids. A
high value allows a mobility inducing coalescence.

• A rapid cooling (controlled by the D parameter)
concentrates the defaults in the part core. A slow
cooling may allow defaults to be located near the skin.

An example of experimental confrontation

An example of mould providing almost 2D filling and cooling
has been designed and used to produce hourglass-shaped parts.
Such design localizes two hot zones who can communicate
via a small constriction. The mould is presented in
Fig. 9. The experimental set up is instrumented with k-
thermocouples connected to a data acquisition system that
measure metal and mould temperatures during filling and

Fig. 12 Pictures of some planes showing macro-shrinkage formation
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Fig. 13 The velocity field of the molten metal during non-dimensional time

solidification phases. We can ensure then that the thermal
predicted field by simulation is conform to the real one.

Five thermocouples have been installed (Fig. 9: Th A to
Th E) and Fig. 10.

Before casting, the mould is put into an oven at 150◦C to
ensure a homogeneous temperature repartition.

For each casting, a quantity of Zamak 5 was melted in
the oven (450◦C) and then casted. The part is ejected from
the mould after one hour cooling.

In order to observe the shrinked zones, the part was cut
according to the Fig. 11.

The shape of the shrinkage in some planes is shown in
Fig. 12.

Our model has been applied to predict such defaults. A
2D symmetric mesh has been used based on 5000 finite
elements. The simulation has been done with the following
parameters: ε = 0.01× the total height, G = 1.7.106, P =
106, VgMax = 5.104, Clim = 0.8. Figures 13 and 14 shows
respectively the velocity field and the temperature evolution
during non-dimensional time. As the characteristic time
of our model is related to the phase field parameters, it
becomes difficult to determine it with direct experimental

Fig. 14 The Temperature field of the molten metal during time
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Fig. 15 Order parameter evolution during time

identification. Thus we used an inverse identification based
on thermal fields confrontation. From this confrontation,
we deduce that the ratio between the dimensional and
dimensionless time is about 1500.

The Fig. 15 shows the void morphology evolutions
obtained from the phase-field model. The blue areas are
considered as the voids (C = −1) while the red regions
are the liquid (C = 1). The shrinkage can be localized in
the hottest zones. This figure illustrates that the formation
of macro-shrinkage during cooling is qualitatively similar to
the experimental observation.

Conclusion

A new void formation model based on the phase field
framework is presented. It allows to model shrinkage
formation during the cooling stage taking into account
gravity and coalescence effects. The numerical method
combines the discretization of the convective Cahn-Hilliard
equation with the discretization of the Navier-Stokes
equations coupled with heat transfer one.

The difficulty of such simulation lies in the couplings
between the different mechanisms. An accurate modelling
should include all the coupling that occurs during the
cooling between flow, heat transfer, anisotropy, phase
change, dependence of rheological or thermal parameters on
kinetic variables, ...

Even if we success here to produce very reasonable qual-
itative results, a lot of efforts must be continued in order to
determine perfectly all the multi-physics interdependency.
In fact, if we just take the thermo-dependency law giving

the viscosity as function of, temperature, no rheometer is
today able to proceed under the processing conditions of our
metal. Thus a convenient inverse approach development is
required. To that is added the difficulty related to the iden-
tification of the phase field kinetic parameters, especially
the mobility for which imaging technique is very probably
unavoidable.
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