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Abstract
Dimensional analysis is performed as a method to evaluate the characteristics of superplastic forming processes. The analysis
is focused on the forming time results from superplastic free bulge tests so that an estimator for the forming time is obtained
based on dimensionless parameters. The dimensional analysis is performed by applying the normalisation to the dynamic
equations and their corresponding boundary conditions, from which five dimensionless parameters are obtained. Particular
conditions of the tests allow to reduce the parameters to two. This preliminary study of the applicability of the dimensional
analysis on superplastic forming processes will guide for further steps in which this technique may help during the initial
stages of the process layout.
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Introduction

Superplastic forming (SPF) is a manufacturing process that
takes advantage of the superplastic characteristic that certain
materials exhibit at specific ranges of temperature, strain
and strain rates [1]. During a standard SPF, a blank fine
grained sheet of material is placed between an upper and a
lower die. The system is sealed along the perimeter of the
blank. In case the material is sensitive to oxidation, air is
replaced by an inert gas, i.e. argon. Once the atmosphere
is replaced, heating is applied and the material is guided
to its working temperature. Also, a pressure-control system
is required to ensure that the strain-rate remains within the
necessary range [2]. Thus, three main features are necessary
to manage the SPF: an external heating source that reaches
and keeps the temperature within the specific range, a piping
system that allows replacing the air by an inert atmosphere
and a pressure-control system that ensures to keep the
strain-rate near a target.

Materials like AA5083 or Ti-6Al-4V are commonly used
in automotive and aerospace industry [3, 4]. This latter
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alloy is chosen by its high corrosion resistance and the
high mechanical performances at high temperatures. These
two properties are specially important for leading-edge
wings and inlet engine regions where air friction becomes
significant. Moreover, these parts present generally complex
shapes, [5], and are expected to increase its complexity
over the years since CAD and CAE tools are progressing.
SPF has proven to be an adequate manufacturing process
for laminar complex shapes. In the case of the military
aerospace industry, the percentage of Ti-6Al-4V used is
increasing as well as the use of SPF for certain pieces, being
applied even to fuselage parts or complete tail planes [6].

The superplastic behaviour is usually modelled by the
Norton-Hoff power law, relating the Cauchy stress, σ , to the
strain rate, ε̇, through a strain rate sensitivity index m and a
constant K [7].

σ = Kε̇m (1)

This model is based on the assumption that K and
m are strain-rate independent constants and that neither
hardening, softening nor damage accumulation are taken
into account. Different constitutive model proposals have
tried to overcome these issues with more complex equations
that can track the hardening, softening or the damage
occurring at the microstructure as well as the change in grain
size during the process [1, 8]. Our analysis can be easily
extended to these cases.
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The standard E2448-11 [9] establishes the method,
i.e. shape sample and load profile to test, via uniaxial
samples, the materials and obtain the superplastic properties
depending on strain, strain-rate and temperature.

Other standards like E2712-15 [10] are also applied
to SPF and allow to evaluate whether a blank sheet is
able to form up to a certain depth without breaking.
Unfortunately, this standard have been used successfully
only with aluminum alloys and the application to titanium
alloys must be verified at first. Similar to E2712-15, this
article will focus on the study of free-bulge forming (FBF)
tests. Unlike E2712-15, the tests are considered completed
when the blank-sheet forms a complete circular dome.

Free-Bulge Forming (FBF) [11] has been extensively
used as a test procedure for superplastic manufacturing
process during the last decade. Several purposes have
usually been intended: to be a SPF-parameter evaluator in
order to find the best conditions in terms of temperature and
forming pressure; to give the best compromise between the
alloy formability and the forming time, [12]; to constitute
an alternative superplastic material characterisation method,
[13–19]; to become a way to evaluate some proposed
material constitutive equations [20–22]; and also as a
method to study the micro structure behaviour [23].

In recent years, much attention has been paid to FBF
as a particular biaxial test thanks to its high versatility.
Compared to uniaxial tests, FBF tests provide material
information by using an easier shape of the blank, in
the sense that requires less pre-processing machining.
Moreover, FBF tests are generally easier to perform
compared to uniaxial tests since they apply an easier load
profile (constant pressure) while uniaxial tests must follow
a specific load profile that controls the strain and the strain-
rate of the sample during the test. Although uniaxial test
is the current standard for analysing superplastic material
behaviour and it is well accepted by the industry, a big effort
is been doing by researchers in order to deeply understand
the applicability of biaxial tests through FBF.

On the other hand, Dimensional Analysis (DA) [11, 24]
has been proved as a useful technique in several scientific
fields, such as fluid dynamics or thermodynamics. Thanks
to DA, different tests can be compared using the minimum
number of variables through dimensionless parameters.
In other words, the analysis of a certain process can
be performed by studying dimensionless variables. This
reduces the number of dimensions, and so the tests that are
needed to analyse the whole process.

However, DA is not as used in manufacturing process
as in the aforementioned disciplines, although it gives the
chance not only to test in down-scale dimensions, but also
to apply different materials as long as the similarity of the
geometry, process and material is fulfilled. That means that
a real process, e.g., of a titanium alloy, could be tested in

a down-scaled sample and in a equivalent material (similar
m) as long as the dimensionless parameters are equal.
Some works have used tools from DA, though not in a
systematic way [7, 25]. In this work, the great potentiality
of DA as a tool to support the initial stages of the process
layout is shown, by performing a general analysis from
first principles to obtain a forming time estimator that is
compared with theoretical and experimental results.

Formulation

Dimensional analysis

FBF consists on the deformation of a circular blank-sheet
that is let to expand freely due to a difference of pressure
between the two faces. The die containing the sheet is
designed in order to minimise the contact with the blank
during the test. Thus, the only contact is located at the entry
radius, necessary to minimise the stress concentration.

Figure 1 shows a basic scheme of a FBF test, in which
the blank is placed over a cylindrical die of radius lo. At the
initial time (t = 0) the blank remains flat. As the external
pressure goes to qo, the height at the center point starts
to change with time, reaching the target when the circular
dome is formed, i.e. h = lo. This is called the forming time,
to.

The SPF process applied to FBF can be solved
using the Cauchy and the continuity equation [11]. A
constitutive equation describing the material behaviour and
the corresponding boundary equations is also needed. Let �

be the volume and � the boundaries of the body to study.
Assuming, as usual, an incompressible behaviour of the
material, the density ρ remains constant during the process.
This assumption can be made unless the volume fraction of
cavities, that depends on the strain and strain-rate, becomes
significant [26]. Since the strain-rate of the analysed tests
are in the range of typical superplastic applications and the
final strain are in the order of 0.5, the density is assumed
to be constant during the process. Thus, the continuity
equation in its differential form is

∇ · v = 0 (2)

Fig. 1 Geometrical scheme of FBF for dimensional analysis
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where v is the velocity vector at each point. The lagrangian
formulation of the Cauchy equation is written in terms of
unit of volume

ρ

(
dv
dt

− Fi

)
= ∂σij

∂xj

(3)

where Fi represents the body forces in acceleration units,
and the σij are the Cauchy stress tensor elements.

The constitutive equation is formulated in its scalar form,
i.e. the equivalent stress, σe, is calculated as a function of
the deformation history, s, and the equivalent strain-rate, ε̇e.

σe = �(s, ε̇e) (4)

The boundary value problem is completed with the
conditions over �. The external surface is divided in
three different regions depending on the kind of boundary
condition applied to it,

� = �k ∪ �s ∪ �c (5)

Dirichlet or kinematic boundary conditions apply at �k .
This region is located along the perimeter of the blank xb

where a zero-displacement condition, due to the sealing
clamp, is assumed.

�k ⊂ � : v = f(xb, t) (6)

Neumman or dynamic conditions apply at �s and refer to
the external pressure,

�s ⊂ � : σijnj = qj (7)

Finally, mixed boundary conditions are located at �c and
refer to a sliding motion, 	w, between the blank and the
die, related to the contact pressure, σN , and the friction
coefficient, υ. This region is located mainly at the entry
radius.

�c ⊂ � : τ = φ(σN, 	w, υ) (8)

A set of characteristic values of the problem are chosen in
order to normalise the equations. The die radius, lo, and the
forming time, to, are set as characteristic length and time,
respectively. Also, a characteristic strain-rate, ε̇o, and stress,
σo, are used. The meaning of these values will be explained
later.

Defining the dimensionless velocity, ν , as,

ν = to

lo
v (9)

the continuity equation can be rewritten as,

∇ · ν = 0 (10)

This normalised equation does not provide any dimen-
sionless parameter.

Defining τ , πij , λj and ηi as the normalised variables
of time, stress, length and mass forces respectively, the
normalised equilibrium equation reads,

dνi

dτ
=

(
σo

ρv2
o

)
∂πij

∂λj

+
(

logo

v2
o

)
ηi (11)

and two dimensionless parameters, κ1 and κ2, can be
defined,

κ1 = σo

ρv2
o

; κ2 = logo

v2
o

(12)

κ1 represents the stress forces to inertial forces ratio,
while κ2 compares the gravitational and the inertial forces.
Therefore, higher values than 1 of κ1 implies that stress
forces are higher than inertial forces.

A third dimensionless parameter, κ3, comes out from the
constitutive equation

σe = �

(
s,

vo

ε̇olo
ε̇e

)
(13)

κ3 = ε̇olo

vo

(14)

Two additional dimensionless parameters emerge from
the mixed and dynamic conditions. Thus, κ4 and κ5

are, respectively, the friction coefficient and the external
pressure to characteristic stress ratio.

κ4 = υ ; κ5 = qo

σo

(15)

This five parameters can also be obtained by combining
the five independent �-groups obtained by direct applica-
tion of the Buckingham π theorem [27].

Analytical approach

A broad range of strategies have been used to analytically
capture the forming evolution on free-bulge tests. Detailed
formulation can be found in [7, 13, 28–31]. Here, we adopt
an approach based on [30] to compare with experimental
results. The following assumptions are employed in the
analysis:

– the material is isotropic and only develops a plastic
behaviour. Although the anisotropy have been study in
magnesium or titanium alloys [21, 32], its effect in the
planar behaviour has been reported insignificant [33].

– K and m paramenters are material constant independent
of strain-rate. The characteristics of the constant-
pressure FBF let to consider that the test will develop in
a narrow range of the strain rates, so that the sigmoidal
variation of the flow stress can be simplified,

– the volume remains constant as was explained in the last
subsection

501Int J Mater Form (2021) 14:499–506



– the thickness is equally distributed along any meridian
following the Jovane model [7],

– the sheet can be shaped as a part of a sphere subject to
a constant internal pressure,

– the sheet is clamped at the periphery.

The incompressibility condition can be written as:

ε̇m + ε̇t + ε̇s = 0 (16)

where ε̇m, ε̇t and ε̇s corresponds to the meridian,
circumferential and thickness strain-rate respectively. From
symmetry, ε̇m = ε̇t = −0.5ε̇s . Therefore, the thickness
strain can be calculated as

εs = ln

(
s

so

)
(17)

According to [30], the thickness ratio can be written in
terms of the angle α, see Fig. 2, assuming that the thickness
is equally distributed along the sheet.

s

so
=

(
sin α

α

)2

(18)

Thus, the thickness strain-rate can be written in terms
of the dimensionless height H , defined as the height to
characteristic length ratio, or in terms of the angle α,

ε̇s (t) = 2α̇

(
1

α
− cot α

)
= 2HḢ

1 + H 2
(19)

where both variables are related as

sin α = 2H

1 + H 2
(20)

In addition, the equilibrium equation states that

σ = qor

2s
(21)

Substituting (19) and (1) into (21) and considering that
lo = r sin α, for a constant pressure test, one can obtain that

qo = const =
(

2so

lo

)
K

(
sin3 α

α2

)[
2α̇

(
1

α
− cot α

)]m

(22)

Fig. 2 Geometrical scheme of FBF for analytical approach

Fig. 3 Characteristic adimensional height (H) evolution during a
constant-pressure FBF test

being that a first order ordinary differential equation for the
unknown function α(t). Integrating is possible to obtain an
implicit equation of α(t)

t = 2Im(α) m

√
2K

qoAR
(23)

where the Aspect Ratio (AR) has been defined as the die
radius to sheet thickness ratio, and Im can be calculated as

Im(α) =
∫ α

0

[(
sin3 α

α2

)]1/m (
1

α
− cot α

)
dα (24)

Methodology

The analysis starts from an experimental curve that traced
the time evolution of the center dome height for a constant-
pressure FBF until it reached the forming time. This height-
time curve (h, t) was later transformed into a normalised
height-time curve (H, t), Fig. 3.

Fig. 4 Characteristic strain-rate (ε̇) evolution at the apex-dome during
a constant-pressure FBF test
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Fig. 5 Correlation between κ1 and the forming time. The dotted line
represents the power law function

H is in the range of [0,1], where H = 0 corresponds
to the undeformed configuration and H = 1 corresponds
to the completed circular dome. Therefore, following the
dimensionless height at the apex dome during the forming

process, an abrupt transient state occurs during the first
seconds, which seems to be influenced by the near-zero
stiffness of the blank in its initial flat configuration. After
this first state, a steady state is reached, appearing a nearly
constant velocity at the center of the dome. The (H, t) curve
allows us to calculate the strain-rate at the center point,
according to [7], using (19)

Figure 4 shows a typical behaviour of the apex-dome
strain-rate during a constant-pressure FBF process. Despite
of being a pressure-controlled process, a nearly constant
strain-rate ε̇o is found in the course of the forming time. The
characteristic strain-rate was defined, as a dimensionless
measurement, from Fig. 4 as the 2nd percentile of the strain
rate during the forming time, which approaches the slope
from Fig. 3.

Thus, obtaining σo is straightforward using ε̇o and (1).
With this last value, the computation of the dimensionless
parameters is completed for each experiment.

A first analysis of the five dimensionless parameters let
us reduce the study to three of them. First, under SPF
conditions the deformation forces are much higher than the
gravitational ones. Therefore, κ2 can be neglected from the

Table 1 Data

Author (Year) Material (K, m) AR Temp. (◦C) qo (MPa) ε̇o (s−1) to (s) δt (s) εr (%)

Song [34] ZnAl22 (87, 0.35) 25 270 0.4 0.0015 365 73 20.0

0.6 0.0032 160 31 19.8

0.8 0.0060 87 17 20.2

Enikeev [30] Ti6Al4V (410, 0.43) 35 900 0.5 0.00037 1500 326 21.8

0.7 0.0008 678 144 21.3

1.0 0.0018 291 61 20.8

Franchitti [19] AZ31 (136.6, 0.457) 35 520 0.16 0.00069 809 228 28.1

0.29 0.0026 200 58 28.9

Jarrar [22] AA5083 (430, 0.5) 41.7 450 0.29 0.0005 1138 271 23.8

0.56 0.0037 142 33 23.1

0.90 0.020 26 6 21.3

Estébanez [35] PbSn60 (36.9, 0.364) 100 50 0.06 0.0041 122 30 24.6

0.07 0.0058 99 19 19.6

0.08 0.0084 69 13 19.2

0.09 0.012 50 10 19.0

0.10 0.013 45 9 19.4

Sorgente [17] Alnovi-U (248.2, 0.5) 16.7 500 0.3 0.00022 2499 606 24.2

0.4 0.00043 1189 303 25.5

0.5 0.00079 668 158 23.7

Sorgente [12] AZ31 (195, 0.457) 30 450 0.75 0.0085 87 21 24.1

1.00 0.017 26 11 41.3

1.25 0.036 12 6 53.8

Sorgente [36] Ti6Al4V-ELI (5229, 0.703) 22.5 850 0.50 0.00014 4597 1897 41.3

1.00 0.00032 1815 749 41.2

1.25 0.00061 924 372 40.2
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normalised Cauchy equation. Results showed that κ2 was
usually four orders of magnitude lower than κ1. Moreover,
κ4 was also discarded from the study because, in our
experimental setup, most of the blank sheet did not have any
contact with the die, being limited this contact to the entry
radius region.

Results and discussions

A total of 25 independent FBF tests were analysed [12, 17,
19, 22, 30, 34–36]. The tests were performed on lead, zinc,
magnesium, aluminium, and titanium alloys within an AR
range between 16.7 and 100 and within a thickness range
between 0.3 and 2 mm. Table 1 summarizes the analysed
tests set.

The analysis was focused on the study of the forming
time, being that one of the most characteristic outputs
defining the SPF process as they are the thickness
distribution or the forming energy. However, the study of
the height evolution during the process is usually the most
common analysed output within the literature.

κ1 as a function of to

Figure 5 shows the correlation between the forming time
and the first dimensionless paramenter κ1, representing the
stress forces to inertial forces ratio. From the normalised
Cauchy equation (11) the forming time is related to the
two first dimensionless parameters. As it was previously
mentioned, the second dimensionless parameter κ2 can be
neglected from the study. Thus, from Eq. 12, κ1 as a function
of forming time can be expressed analytically.

κ1(to) = σo

ρv2
o

= σo

ρl2
o

t2
o (25)

Despite of the heterogeneity of the tests depicted in
Table 1, a potential law can be shown as a correlation
law between the forming time, to, and κ1, see Fig. 5, that
matches with

κ1 = (5.23 · 106) × t2
o (26)

It is noteworthy that, even at quite fast processes, say
lower than 20 seconds, the stress forces are significantly
higher than inertial forces. Finally, using (26), Eq. 11
remains

dνi

dτ
≈ (5.23 · 106) × t2

o

∂πij

∂λj

(27)

κ5 as a function of AR

Figure 6 shows the correlation between the characteristic
strain rate and the forming time to. In that sense, the
definition of the characteristic strain rate proposed in the
Methodology section let us get a match between this value
and the forming time as a process output.

ε̇o ≈ 1

2to
(28)

In addition, this last expression let us understand κ5 as a
dimensional parameter related to the forming time

κ5 = qo

σo(ε̇o)
= qo

Kε̇m
o

= qo

K
(2to)

m (29)

Furthermore, an experimental study of κ5 for the bunch
of tests on Table 1 shows that this dimensionless parameter
is strongly dependent on the test geometrical characteristic
represented by the AR, Fig. 7. This relationship can be
expressed approximately as

κ5 ≈ 1.17

AR
(30)

Fig. 6 Correlation between
forming time and ε̇o
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Fig. 7 Correlation between κ5
and the AR. Placed symbols are
calculated as the mean value
among all the tests for each
article

Applying the material parameters, K and m, and using
(29) and (30) the forming time can be estimated as

to ≈ 0.5 m

√
1.17 · K

qoAR
(31)

This last equation is equivalent to Eq. 23, when α = π
2 ,

being possible to obtain an approximated value of Im(π
2 ) as

Im(
π

2
) ≈ I ∗

m = 1

4
m

√
1.17

2
(32)

In order to check the similarity between (24) and (32),
next Fig. 8 compares both expression for different values

0 0.2 0.4 0.6 0.8 1

m

0

0.05

0.1

0.15

0.2

0.25

I m

Im ( /2)

Theoretical curve
I*m

Fig. 8 Theoretical and approximated curves of Im, Eqs. 24 and 32
respectively, as a function of m parameter

of m parameter. Approximated expression understimates
the analytical approach in a range from 19% to 33% for
a range of typical values of m parameter for superplastic
applications between 0.3 and 0.7.

In order to deeply understand the use and the potentiality
of this procedure, an independent FBF test is performed
using Fig. 7. The test aims to get an estimated forming time
for an specific external pressure, applied to a material and
dimensionless parameters that are previously determined.

The independent test was performed on magnesium alloy
AZ31, at constant pressure of 5 bars and 450o. At these con-
ditions, K and m parameters are estimated as 195 MPasm

and 0.457 respectively by comparing experimental results
[12] with numerical analysis. The sample AR is 22.5. Apply-
ing the expression (31) the estimated forming time was 362
s., meanwhile the experimental forming time was set in 422
s. This estimation provides an error of 14%. A study of
the propagation of the uncertainties was also performed fol-
lowing the standard procedures [37] in order to determine
the typical threshold for error in forming time. This study
reveals that experimental errors from material characterisa-
tion (5%), pressure level (0.25%) and geometrical variations
(1%) can provide forming time errors (εr ) in the order of
20%, see Table 1. Thus, forming time errors lower than 20%
can be considered as good estimations.

Alternatively, the same procedure can be applied in order
to get an estimation of the necessary external pressure, qo,
to obtain an specific strain rate at the apex dome.

qo ≈ 1.17 · σo(ε̇o)

AR
(33)
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Conclusions

Following the procedure of [11], a dimensional analysis
of a SPF process has been developed. The study has
been focused on the forming time of FBF tests as an
output parameter. Dimensionless parameters have been
obtained through a normalization procedure of the physical
equations, using the density as a mass variable. However,
the density does not seem a proper variable for defining
the material since the inertial forces of the process have
been proved to be much lower than the stress forces. In that
sense, further research is needed in order to use a distinct
mass variable linked to the stress forces to allow a better
characterisation of the material. Dimensionless parameter
κ5 has been used as a forming time estimator that matches
with the analytical expressions. This ratio between pressure
and material stress is directly related to the aspect ratio of
the sample and let us write the forming time as a simple
expression of material parameters (K, m), external pressure
and geometrical dimensions. In this way, DA has been used
to study free-bulge tests as a first step to integrate DA in
initial stages of the SPF process layout. Future works can
be conducted aiming to prove the availability of down-scale
tests and the use of equivalent materials.
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