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Abstract
For decades, aluminum extrusion has been successfully applied in the manufacturing of profiles for the applications
ranging from locomotives to skyscrapers. In recent years however, increasing profile complexity and the need for rapid
production have lead to greater challenges for manufactures seeking rapid and robust production procedures. As a
consequence, the occurrence of defects in extruded profile surfaces continues to create difficulties often requiring disposal
of entire components. Hence, quality inspection of the profiles must be performed prior to packing in order to identify
and appropriately manage defect-containing extrusions. Up until now, quality control in extrusion factories is primarily
performed by the human eye due to its high performance in discriminating defect varieties. But human performance is cost
intensive and furthermore prone to failure, especially when applied in high-throughput environments. On that account this
paper proposes an approach in surface defect classification and detection, whereby a simple camera records the extruded
profiles during production and a neural network architecture distinguishes between immaculate surfaces and surfaces
containing a variety of common defects (surface defect classification). Furthermore, a neural network is employed to point
out the defects in the video frames (surface defect detection). In this work, we show that methods from artificial intelligence
are highly compatible with industrial applications such as quality control even under common industry constraints such
as very limited data set sizes for training a neural network. Data augmentation as well as transfer learning are the key
ingredients for training networks that meet the high requirements of modern production facilities in detecting surface defects,
particularly when access to training sets is limited. Accuracies of 0.98 in the classification and mean average precisions
of 0.47 in the detection setting are achieved whilst training on a data set containing as little as 813 images. Real-time
classification and detection codes are implemented, and the networks perform reliably despite changes in lighting conditions
and camera orientation.
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Introduction

Extruded aluminum profiles are frequently applied in
structural components of car body parts, train frames,
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window frames, and skyscraper support structures, to name
a few. During production, surface defects frequently occur
due to tool wear and varying process conditions. Common
surface defects include blisters, scratches, and skid marks
[1]. Surface defects arising during manufacturing must be
properly identified and characterized in order to prevent the
delivery of defective materials to customers. Depending on
the severity and location of each defect, the corresponding
profiles can be properly sorted.

Current extrusion facilities rely primarily on the human
eye to detect these surface failures. Contrarily, industrial
production sites that work with highly textured materials
such as cork and textiles broadly employ machine vision
systems for quality inspection [2]. For example, Gonzalez-
Adrados and Pereira [3] apply image analysis techniques
and discriminant analysis [4] to classify certain defects in
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cork with an accuracy above 90%. Lopes and Pereira [5]
determine the quality of cork planks through automated
visual inspection and they report a high degree of accuracy
in surface anomaly detection. Also Georgieva and Jordanov
[6] employ an automated visual inspection system to
classify four different types of cork tiles. They first extract
features and then apply a feedforward neural network to
perform the classification. Classification accuracies of up to
95% are reported. Li et al. [7] employ principal component
analysis [8] to detect glass defects in mobile phone cover
glass manufacturing. They report a true positive rate of 0.88
and a false positive rate of 0.06.

Image analysis techniques, however, are not as
widespread in the metalworking industry. Extruded alu-
minum is highly reflective. This leads to illumination
problems in the images and consequently to a more difficult
classification task. The high cost and time-intensive nature
of quality control by human eye provides a strong impetus
for the metalworking industry to transition into automated
defect detection systems. Different approaches have been
proposed: electrical conductivity of the profiles [9], infrared
and high-resolution cameras to produce thermograms [10],
and shallow neural networks [2]. Chondronasios et al. [2]
aim to detect and classify blisters and scratches on extruded
aluminum profiles by first extracting features and then
performing classification by a 2-layer feedforward neu-
ral network. They report a testing accuracy above 98%.
Xue-wu et al. [11] investigate defect detection on strongly
reflecting metal surfaces. Their defect detection and classi-
fication method consists of image pre-processing, feature
extraction, and subsequent classification through a sup-
port vector machine [4]. Their method achieves accuracy
rates between 76.8% and 91.3%. Park et al. [12] propose
to use shallow convolutional neural networks (CNNs) to
detect dirties, scratches, burrs, and wears on wood, stone,
paint, and silicon. They achieve accuracy rates of 96.3%
up to 97.7% and are therefore equally accurate as human
inspection.

CNNs are favoured over machine learning procedures
that require the user to specify features for the learning
algorithm [13]. Indeed, CNNs perform feature extraction
and classification of images simultaneously. Having a
method that does not rely on prespecified features is
especially advantageous in situations where parameters,
such as lighting conditions, may fluctuate. In this paper,
deep CNNs are employed for surface defect classification
and detection on metal surfaces. We apply three state of the
art networks that have performed particularly well in image
classification contests relevant to industrial processing
conditions. Slight adjustments are made in order to fit them
to the surface defect classification setting. The networks
along with the training procedures are implemented in
Python in combination with the open source deep learning

library Tensorflow. The models used to explore the problem
are described in Section “Models and methods”. The
obtained results are highlighted in Sections “Results” and
conclusions are drawn in Section “Conclusion”.

Surface defects, data acquisition
and labeling

During the production of aluminum profiles, three different
kinds of surface defects frequently occur. Figure 1 displays
a profile without any defects, with blisters, with a skid mark
and with scratches.

Skid marks appear when the pressing operation has
stopped and when a new billet is inserted into the press.
Forces are released from the tool and its elastic deformation
is reverted. This causes a sliding between the tool and
the aluminum workpiece which ultimately results in a skid
mark. Blisters on the extruded surfaces can arise by multiple
mechanisms- the most frequent being insufficient venting
in the press. Locked in air is pressed inside the profile
and blisters are formed after the profile exits the tool.
Scratches appear when the profile is not well handled on
conveyor belts or during transport. Considering the skid
mark in Fig. 1c, a fundamental problem in image processing
of metal surfaces becomes obvious. The skid mark is the

Fig. 1 Illustration of a profile without surface defects (a), with blisters
(b), with a skid mark (c) and with scratches (d). The skid mark is the
light gray top-to-bottom line on the aluminum profile. The yellow line
results from a reflection of the factory’s lighting system
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top-to-bottom thin, small light gray line on the surface.
Other yellow and white broader lines are reflections of light
from inside the factory hall. The differentiation between
arbitrary artifacts due to reflection and real surface defects
makes the task of properly identifying surface defects more
challenging.

A data set for training the various kinds of neural network
architectures was collected. In total, 909 images containing
blisters, scratches, skid marks, or defect-free aluminum
surfaces were utilized. In order to make the data set as broad
as possible, images of the defects were taken under various
conditions. Defects were photographed under high and low
brightness, from different orientations and from close and
further away (see Fig. 2). This process is important so that
the network learns from a wide range of surface settings
that might occur in later use of the network for inference. If
the network uses only a single imaging condition to train its
weights, it will not become robust with respect to variations
of these surface settings which it is likely to encounter
during industrial implementation.

In image classification, distinct labels have to be assigned
to the pictures based on expert knowledge prior to training.
Thus, we assigned a label from the set

L := {blisters, scratches, skid marks, no defect}
to each sample image in the initial labeling procedure.

Fig. 2 Data set acquisition using different camera settings: photograph
of surface defect from far away (a), close (b), under different
orientation (c) and under a different angle (d)

In object detection, the network training requires the
expert to mark the pixel of the top left corner and the pixel
of the bottom right corner of a surface defect in addition
to assigning the correct defect type to the marked region.
Figure 3 shows the labeling of an image containing multiple
blisters. The blisters are marked and the label is associated
with the object. The labeling for the object detection was
performed in LabelImg [14]. In total, 2000 blisters, 1500
scratches and 200 skid marks were identified in the total
data set.

Models andmethods

The problem under consideration is two-fold: surface
defect classification and surface defect detection. We first
introduce CNNs in general. Then we present models and
methods applied to the surface defect classification task. At
the end we elaborate on surface defect detection.

Convolutional neural networks

In recent years a massive amount of research was performed
in the field of CNNs especially for image analysis. This
section gives a concise overview over the techniques of
CNNs. Figure 4 shows a usual CNN scenario. An arbitrary
square image of size 32 × 32 × 3, where 3 is the number
of channels that an RGB image contains, serves as an input.
In a first step, so called kernels or filters are slid over the
input image and dot products between kernel values and
cropped regions of the input image are calculated. Usually
kernel sizes in width and height direction are between three
and seven and their size in depth direction is identical to the
depth of the input image. However kernel sizes are design
parameters and are chosen by the architect of the network.
The regions that are scanned by the kernel are determined by
another design parameter, the stride. When the stride is one
then the kernel is shifted one pixel horizontally or vertically
when a new dot product is calculated. Figure 4 shows a
CNN with a total of 5 kernels in the first convolution layer.
The number of different kernels in one convolution layer
again is defined by the network architect. When the dot
product for every kernel and for every spatial position on the

Fig. 3 Labeling an image for the training procedure of object
detection. Objects in the image need to be marked by means of top left
pixel and bottom right pixel
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Fig. 4 Graphics showing the principles of convolutional neural networks

input image is calculated, non-linearities are applied to the
resulting values and the first feature map evolves. Typical
non-linearities are the rectified linear unit (ReLU) function

f (x) = max(0, x) (1)

or the sigmoid function

f (x) = 1

1 + e−x
. (2)

This procedure is repeated multiple times where a new
set of kernels is applied to the resulting feature map of
the previous convolution layer. The process of applying
kernels to the input image or feature maps is called feature
extraction. Usually a dense layer is situated at the end
of the network which performs the final classification or
regression based on the extracted features. In a dense layer
each output neuron is connected to each input neuron.

The expression “deep learning” comes from the fact
that networks with high numbers of convolution layers can
perform better than shallow networks in regression and
classification tasks under right treatment during the training
procedure. Up until now network architectures exist that
contain more than 100 convolution layers.

During the training procedure images are passed through
the network, a loss function is calculated and then
minimized by performing gradient descent with respect to
the kernel weights. When graphic card memory permits, a
batch of images larger than one is used to perform gradient
backpropagation.

Surface defect classification

Three state-of-the-art networks are utilized to perform
image classification, namely VGG16 [15], ResNet50 [16],
and GoogLeNet [17]. The choice of networks is motivated
by their respective performance in the ImageNet [18]
challenge. In the following we give detailed information

about the data pre-processing, the transfer learning approach
and key features about the three different architectures.

Data pre-processing and augmentation

Demant et al. explain that most cameras in industrial
inspection lines utilize gray scale images. It is also known
that most image processing algorithms perform adequately
on gray level images [19]. With that in mind we pre-
processed the images as follows. Images are resized to
896 × 896 pixels and then converted to gray scale. Pictures
used in classification challenges on publicly available data
sets such as the ImageNet Large Scale Visual Recognition
Challenge IJCV [18] are of size 224 × 224. The objects of
interest occupy large portions of these images. In contrast,
our surface defects may cover as little as 5% of the image.
This makes the defect classification and detection task
challenging. An image resolution of 896 × 896 pixels was
selected for this work, as it sufficiently resolves features of
interest while still allowing for efficient network training.

The data is split into three sets: a training set of size
813 images, a validation set of size 16, and a test set of
size 80. The validation set size was intentionally set to a
small number to save important data for training and testing.
During training, we monitor the networks’ performances
on the validation set to employ early stopping [20]. Early
stopping aims to reduce possible overfitting to the training
data. As the training proceeds, the validation set accuracy is
monitored. When the validation set accuracy suddenly starts
decreasing, the training is stopped.

A training set size of 813 is rather small to train
deep-learning algorithms. Thus, data augmentation (DA) is
performed on the training set where we randomly apply the
transformations of translation, rotation, horizontal flipping,
and vertical flipping to the images in order to provide a
larger amount of unseen training data. Resulting empty
regions in the training images are filled with zeros and
appear black in color. Figure 5 illustrates four augmented
images.
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Fig. 5 Four examples of random image DA performed on the training
set

Transfer learning

Transfer learning (TL) [21] is leveraged in order to
accelerate the training process and to enhance performance
of the networks by compensating for the small training set
size. By applying TL, network weights are initialized based
on a previous training of the network on a large and publicly
available data set. The under-lying premise of this approach
is that the feature extraction function of a network can be
generalized, since the operation is quite similar for any kind
of investigated object. We use network weights pre-trained
on ImageNet as initial weights for the learning procedure.

Since the input images of the ImageNet challenge are of
size 224 × 224 × 3 but our data set consists of gray scale
images of size 896 × 896 × 1, the network architectures
are adjusted appropriately. Specifically, kernel strides in the
first and second layers are doubled in order to account for
the 8 times larger images. In utilizing pre-trained weights of
the first convolution layer, we only keep the blue channel
weights of the original RGB kernels. The blue channel is
used because industry often employs blue light to enhance
visibility of surface defects on reflective materials. We
also conducted experiments utilizing pre-trained weights
of the other two color channels but found no significant
improvement in classification accuracy.

In the ImageNet classification challenge, the networks
distinguish between 1000 classes. Hence these networks’
output is 1000-dimensional. This work only requires
distinguishing between four classes. Consequently, we
replace the last fully connected output layer with a layer
containing four neurons. The weights of the last layer are
initialized uniformly with a mean of 0.

VGG16

The VGG16 network is 16 layers deep [15]. It consists
of thirteen convolution layers and three dense layers. In
contrast to older networks [22–24] which make use of larger
but fewer kernels, VGG16 employs small convolution filters
with a kernel size of 3 × 3 and a stride of 1. A stack of
three 3 × 3 convolution layers with stride 1 has the same
receptive field size as a single 7 × 7 convolution kernel.
Furthermore, three 3 × 3 convolutions contain three non-
linear activation layers instead of just one and also have
fewer parameters. Simonyan et al. [15] argue that having
additional non-linearities in the network makes the decision
function more discriminative.

To enable TL, we alter the network as outlined in
Section “Transfer learning”. We apply a stride of 2 instead
of 1 in the first two convolution layers to cope with
the higher resolution of our images. We perform gradient
backpropagation with a batch size of 8 and a learning rate
of 10−5 in combination with the ADAM optimizer [25].

GoogLeNet

Szegedy et al. [17] propose a network architecture that is
not only deep, but also wide. They introduce the inception
module that applies several convolutions to its input (for
instance, one with kernel size 1 × 1, one with kernel
size 3 × 3, and one with kernel size 5 × 5) in parallel
and outputs a concatenation of the individual convolutions.
Thus an inception module performs several convolutions
in parallel. Therefore, the network architect does not need
to decide in advance which convolutions to implement
as the network chooses for itself. However, stacking
these inception modules would lead to tremendously high-
dimensional outputs. Thus dimension reduction is applied.
Szegedy et al. [17] implement convolutions with a kernel
size of 1 × 1 and smaller output depth than input depth in
front of every inception-module-convolution to reduce the
dimensionality. An illustration of an inception module is
presented in Fig. 6.

GoogLeNet consists of three convolution layers, nine
inception modules and one dense layer. Moreover, there are
two additional intermediate classification nodes inside the
network. This enables the gradient to better flow through the
first few layers during backpropagation.
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Fig. 6 Schematic illustration of an inception module with dimension-
ality reduction introduced by Szegedy et al. [17]

To enable TL on our data set, we alter the GoogLeNet
architecture as outlined in Section “Surface defect classifi-
cation”. We adjust the stride of the first convolution layer to
4 instead of 2 and the stride of the second convolution layer
to 2 instead of 1 to cope with the higher resolution of our
images. Additionally, we delete the intermediate classifiers
of the GoogLeNet. We perform gradient backpropagation
with a batch size of 16, a learning rate of 10−5 and the
ADAM optimizer.

ResNet50

He et al. [16] discern that the network depth is crucial for the
network’s performance [15, 17]. Deeper networks, however,
suffer from a degradation problem. Adding more layers to
the network first increases accuracy. At a certain depth,
however, accuracy saturates and eventually decreases. He
et al. [16] explain that this behavior is due to optimization
difficulties rather than due to overfitting or the problem
of vanishing and exploding gradients. They propose deep
residual networks to tackle the aforementioned degradation
problem. They argue that if identity mapping layers
are added to a shallow network, the training error
of this deeper network is expected to not exceed the
training error of the initial shallower network. Due to the
degradation problem, however, solvers might experience
difficulties in approximating these identity mappings, which
ultimately results in lower accuracy. The residual learning
reformulation of the problem is hence as follows. Assume
a neural network contains a block that ideally learns an
intermediate mapping H . Consider the residual function
F(x) := H(x)−x, where x denotes an input to the block. A
so-called residual block learns the function F instead of H

and adds the input vector x to its output F(x) via a shortcut
connection in the network architecture. Refer to Fig. 7 for
an schematic representation of this process.

Input x

Weight layer

Weight layer

H(x)

Input x

Weight layer

F(x)

F(x) + x

Weight layer

Identity

mapping

ReLU ReLU

ReLU

ReLU

Fig. 7 Schematic illustration of a block (that consists of two weight
layers followed by a ReLU non-linearity) in a standard neural network
(left) with ideal learning function H and its corresponding residual
version (right). The illustration is adapted from [16]

If the above added identity mappings are optimal,
the solvers can drive the weights of the multiple non-
linear layers towards zero instead of approximating the
identity mappings itself. Even if added identity mappings
are not optimal in reality, He et al. [16] experimentally
found that the learned residual functions generally have
small responses. This suggests that additional identity
mappings provide a reasonable preconditioning to the
learning problem.

The ResNet50 version we employ consists of one
convolution layer, twelve identity blocks, three convolution
blocks and one dense layer where each block has a depth of
3.

To enable TL, we alter the ResNet50 network as outlined
in Section “Transfer learning”. Specifically, we apply a
stride of 4 instead of 2 in the first convolution layer and
a stride of 2 instead of 1 in the first convolution block to
cope with the higher resolution of our images. We perform
gradient backpropagation with a batch size of 16, a learning
rate of 10−4 and the ADAM optimizer.

Surface defect detection

Girshick et al. [26] proposed the Faster R-CNN object
detection model building on previous work [27, 28]. The
process of finding objects in an image is as follows; see
Fig. 8. First, a CNN extracts a feature map of the image.
Then a region proposal network generates rectangular
proposals for regions of interest based on the extracted
feature map. Next, crops of the feature map are extracted
using the region proposal network. The obtained crops
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Fig. 8 Object detection and classification via Faster R-CNNs.
Illustration adopted from [26]

are then pooled and classified. In this setting, the training
consists of minimizing 4 different losses. A classification
loss of the proposal network has to be minimized that
measures if the region proposal network proposes regions,
that are actually in the training data. In doing so, the region
proposal network learns to propose meaningful regions
that might contain objects for further analysis. The second
loss minimization considers a bounding-box regression,
which measures how well the proposed regions coincide
with the regions in the training data. By minimizing this
loss, the region proposal network learns to propose regions
of the right size. At the end of the network- after the
classifier- are the last two losses. One of these classification
losses measures how well the classifier classifies objects
in the proposed regions. Minimizing this loss yields a
proper classification of objects to their classes. Finally,
the bounding-box regression loss measures how well the
proposed regions match the true regions. Minimizing this
loss allows the network to adjust the final regions to best
match the ground truth regions from the initial labeling
procedure.

This work utilizes the Faster R-CNN method in
combination with the ResNet50 architecture as a feature
extractor. The labeled data set was shuffled and split into
a training set which comprises 85% of the data and a test
set comprising the remaining 15% of the data. The training
is conducted using the TensorFlow object detection API
[29]. In contrast to the classification approach, only random
horizontal flips are employed to augment this data set. We
perform gradient back-propagation with a batch size of 1

Table 1 Training statistics for various networks when trained with TL
and DA

Network (TL + DA) Batch size Iterations Learning rate

VGG16 8 30 000 1e−5

GoogLeNet 16 15 000 1e−5

ResNet50 16 15 000 1e−4

Network (TL + DA) Training loss Validation score Test score

VGG16 0.04 0.62 0.76

GoogLeNet 0.41 0.91 0.80

ResNet50 0.06 0.97 0.98

and a learning rate of 3 · 10−4 in combination with the
momentum optimizer [30].

Results

Classification results

During training of the network architectures, the multi-class
cross entropy loss function was minimized. We first show
the best results obtained using a training procedure where
TL and DA were leveraged. Following is a comparison of
the results when TL and/or DA were left out during the
training procedure.

Training with transfer learning and data augmentation

Table 1 summarizes the batch size, number of iterations
trained, learning rate, averaged training loss, and the
validation and test accuracies achieved by the three
networks examined in this study. The batch size for
ResNet50 and GoogLeNet was chosen as 16 and for
VGG16 could only be set to 8 due to its large number
of weights to train and therefore large graphics card

Table 2 Training statistics when only trained with DA and when only
trained wit TL

Iterations Test score

Network (DA)

VGG16 60 000 0.81

GoogLeNet 30 000 0.61

ResNet50 30 000 0.65

Network (TL)

VGG16 4 000 0.5

GoogLeNet 5 000 0.79

ResNet50 5 000 0.75
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Fig. 9 ResNet50 cross entropy loss over the course of training

memory consumption. The number of iterations follows
from the previously mentioned early stopping approach.
The accuracy on the validation set is monitored parallel
to training and the training process is stopped before the
accuracy starts decreasing due to overtting. Note that our
validation set size is small and should not be used for
interpreting the accuracy of the network on unseen data. The
test set score, however, does give a reliable value for the
actual performance of each network. The learning rates for
the three networks were also tuned based on the validation
set performance during training.

ResNet50 is the best performing network. It achieves a
test set accuracy of 0.98. GoogLeNet scores the second-best
test set accuracy of 0.80 and VGG16 achieves the third best
test performance with an accuracy of 0.76. The relatively
large difference in performance between ResNet50 and
GoogLeNet may be due to omitting the interior classifiers
in the original GoogLeNet architecture.

In an industrial facility, the networks will be used
to classify hundreds of overlapping images of extruded
aluminum surfaces per second. For a single defect,
therefore, the network has multiple attempts to uncover it.
For this reason, ResNet50 (with its high accuracy on the test
set and a score of 0.98) is highly suitable for industrial use
as a real-time inference system. Refer to Section “Real-time
implementations” for further details on its performance.

Comparison of training procedures with and without
transfer learning and data augmentation

In the scope of this study we compared the results of the
previous section with results that are obtained when TL
and/or DA are disregarded. This enables the evaluation of
the strength of the two methods during training of CNN
classifiers for surface defects. Three additional scenarios are
considered:

1. Training with TL and without DA
2. Training without TL and with DA
3. Training without TL and without DA

The batch size and the learning rate for all three cases are
identical to the ones in Section “Training with transfer learn-
ing and data augmentation”. The number of iterations was
altered again according to the early stopping approach. The
third scenario resulted in unstable training and is not fur-
ther investigated in this study. The small data set does not
allow for a training without TL and DA. Table 2 shows the
training statistics for the first and the second scenario. When
trained with DA, GoogLeNet scores a test set accuracy of
0.61 and ResNet50 a test set accuracy of 0.65. Data augmen-
tation alone is thus not able to train the networks properly.
When GoogLeNet and ResNet50 are trained with TL but
not with DA, they achieve test set scores of 0.79 and 0.75,

Fig. 10 ResNet50 accuracy over the course of training
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respectively. Presumably, the rotation invariance introduced
by the DA causes the smaller accuracy compared to the
training with TL and DA. Only VGG16 scores a simi-
lar accuracy to the previous case with TL and DA when
trained with DA (0.81) but fails when only trained with
TL (0.5).

TL and DA are fundamental for training deep neural
networks on our small data set. This statement is also
supported by Figs. 9 and 10, which plot the smoothed
training loss and the validation accuracy over the course of
training. When no TL and only DA is leveraged, the training
procedure needs much longer compared to training with TL
(see Fig. 9). The fastest minimization of the training loss
is achieved when only trained with TL but without DA.
However, overfitting to the small data set occurs rapidly
which is made manifest in the lower test set accuracy.
Looking at the validation set accuracies throughout the
training procedure, similar conclusions can be drawn (see
Fig. 10). Unstable training due to an insufficiently large
training set size when only trained with TL becomes
apparent by prompt discontinuities in the validation set
accuracy. When trained with only DA, the validation set
accuracy saturates well below the corresponding accuracy
when trained with both TL and DA.

ResNet50 weights and feature maps (TL + DA)

In order to visualize what the ResNet50 architecture learned
during the training procedure, the first convolution layer
kernels are plotted in Fig. 11a after the training process has
ended. The image contains 64 sub images that represent
the kernel values by means of gray scale intensities. The
brighter a pixel appears, the higher the corresponding kernel
value.

The Figure shows that the kernels activate when they
are translated over a 7 × 7 crop of an image and strike
an oriented edge. This can be seen from the black and
white stripes under multiple angles in the various kernels.
Furthermore, there is a kernel that learned weights which
form a round disk when plotted in this manner (row 3 and
column 3). These observations can be tied with our different
defect classes. Kernels in the form of oriented edges will
presumably fire when they hit a scratch or a skid mark, and
kernels in the form of disks will activate when slid over a
blister.

Figure 11b confirms the previous statement. It shows
the values that are obtained when the feature maps of the
first convolution layer are averaged over their depth for
all images of one batch. Oriented edges such as profile
edges or scratches appear in bright white. Round forms like
blisters are also clearly visible as white dots. Red arrows in
Fig. 11b point to profile edges, scratches and blisters that
were activated by the kernels.

Fig. 11 Illustration of kernel weights (a) and feature maps (b) of the
first convolution layer in the ResNet50 architecture

VGG16 feature maps (TL + DA)

The following section gives insights into the VGG feature
maps when images of extruded aluminum profiles are run
through the network. Consider Fig. 12. The first column

Int J Mater Form (2020) 13:591–603 599



Fig. 12 Input images (left
column) and over the depth of a
feature map averaged values of
the 4th (middle column) and
11th (right column) convolution
layer of VGG16

displays the input images. The second and third columns
depict over the depth of a feature map averaged values of
the 4th and 11th convolution layers at the end of the training
process.

It can be seen that the defects from the original images
are activated in deeper network layers. Indeed, they are
visible as bright dots and stripes in the last column of
Fig. 12. Figure 12a to c show the activation of blisters on
an extruded aluminum profile. In the initial image, the feet
of the scientist are visible in the top left corner. In the

4th layer, blisters in the middle of the profile are already
activated and the feet of the scientist standing right next
to the profile are still visible. In the 11th layer, only the
blisters remain activated and the feet are gone. Figure 12d to
f show a similar scenario whereby blisters on the surface are
activated in the deeper layers of the network. The activation
of skid marks is illustrated in Fig. 12g to i, and the activation
of scratches is depicted in Fig. 12j to l. The feature maps
emphasize that the network learned meaningful kernels as
well as the underlying structure of the data while still
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Fig. 13 Averaged losses for the Faster R-CNN method in combination with ResNet50 with TL (brown) and without TL (pink)

excluding arbitrary artifacts (such as glare or employee feet)
in the images.

Object detection results

We next discuss the performance achieved by the object
detection procedure. Two scenarios have been tested:

1. Training with TL and with DA (horizontal flips)
2. Training without TL and with DA (horizontal flips)

The batch size for both scenarios was chosen as 1. The
training was conducted for 300 000 iterations in the first
scenario and 800 000 iterations in the second scenario.

Figure 13 displays the smoothed average loss computed
from all four losses in the faster R-CNN object detection
setting. When TL is used, the loss decreases rapidly and
achieves a value of 0.1 after 300000 iterations. In contrast,
training without TL requires 800000 iterations in order
to reach a comparable value. High fluctuations for both
scenarios occur due to the small batch size of 1. Figure 14
displays the evolution of the mean average precision (mAP)
during training. By calculating the mAP, first an intersection
over union (IoU) defined as

IoU(A, B) = A ∩ B

A ∪ B
(3)

is evaluated, where A and B are proposed and true pixel
boxes. When IoU > 0.5 then the proposed region counts as
a hit, otherwise as a fail. Second the mAP defined as

mAP = 1

nclasses

∑

c∈classes

T P (c)

T P (c) + FP(c)
(4)

is calculated where nclasses is the number of present classes,
T P (c) are true positives of class c and FP(c) are false
positives of class c. In our study the mAP for training with
TL and DA saturates at 0.47, whereas it saturates at 0.20
when training only with DA. This again emphasizes the
importance of TL. The resulting mean average precision
is rather pessimistic. During examination of the results
it has been found that most of the times all surface
defects where found by the network and also correctly
classified. However it happened frequently that surface
defects were encapsulated in one box instead of different
boxes especially for scratches. This reduces the mAP
although all defects were found and correctly classified.

Faster R-CNN with ResNet50 scores a mAP of 0.47
and with that satisfies the industry’s requirements. A real-
time inference is therefore implemented and is discussed in
Section “Real-time implementations”.

Fig. 14 Mean average precision for an intersection over union of 0.5 for the trained network with TL (blue) and without TL (green)
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Real-time implementations

We implemented a real-time classification inference using
the best performing network, ResNet50. In addition, we
implemented a real-time inference of the object detection
method with ResNet50. Tensorflow frozen inference graphs
were optimized, written to the disk and utilized for

Fig. 15 Illustration of online inferences for defect classification and
defect detection

inference of web cam images. On a GTX 1080 graphics
card, classification takes 0.01 seconds per image and
detection takes 0.1 seconds per image. During testing of
the procedures, we found that the results are independent of
lighting conditions, camera orientation, and camera distance
to the aluminum profiles. An example for the real-time
classification inference is given in Fig. 15a and for the
defect detection inference is given in Fig. 15b.

Conclusion

A novel approach has been developed that enables cost
effective yet fast and reliable quality inspection of surfaces
of aluminum extruded profiles. Data has been collected
and labeled to train deep convolutional neural networks
that enable classification and also detection of the surface
defects most commonly experienced during aluminum
extrusion. Once trained, the networks are able to learn
meaningful features and classify and detect the surface
defects with high accuracy. Utilization of TL and DA
are highly recommended when training deep convolutional
neural networks on small data sets. In the classification
setting, when training with TL and DA, the training times
on a GTX 1080 graphics card are as follows:

– ResNet50: 5 hours and 7 minutes
– GoogLeNet: 4 hours and 32 minutes
– VGG16: 5 hours and 22 minutes

Training ResNet50 as a feature extractor in the object
detection setting using TL and DA requires a total of 37
hours and 37 minutes because of the small batch size
of 1. A real-time implementation demonstrates that the
approach utilized for this study is suitable for current
industrial implementation for high-accuracy detection of
surface defects. Furthermore, the pure classification task
outperforms the object detection task with respect to both
inference time and accuracy, making it the preferred quality
control setting in a production facility.
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