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Abstract
Amicromechanical unit cell model is formulated to investigate the deformation in a unit cell of highly concentrated suspension of
long discontinuous aligned fibers. The periodic unit cell is many fiber lengths long to allow for microstructural variations due to
random fiber length overlaps and end-to-end gap distances between the fibers. This feature of the unit cell makes it possible to
examine the effect of such variabilities on the macroscopic material behavior (effective viscosity) during the forming process. The
influence of microstructure variability on viscosity is predicted. The standard deviation of the effective extensional viscosity is
significant and increases with material extensional deformation and the variation of the end to end fiber spacing. This could have
ramifications on the forming process and the final physical properties of the materials of interest. The predicted dependence of the
mean extensional viscosity value on the usual material parameters (fiber aspect ratio, fiber volume fraction) is found to be
consistent with the relations predicted by reported models using deterministic periodic unit cells. The behavior of standard
deviation of our model follows the same dependence as the mean value. On the other hand, it shows negligible variability of
effective longitudinal-transverse shearing viscosity of such materials, regardless of the random perturbations of fiber length
overlaps and end to end fiber spacings within the unit cell.
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Introduction

The behavior of highly concentrated suspensions of long dis-
continuous fibers is of interest during composite manufactur-
ing. Such materials can provide fiber volume fractions above
50%, desired for structural reasons, while providing the po-
tential for net-shape manufacturing and forming techniques
that are difficult to realize in systems with continuous fibers.
The matrix material is usually softened to form the part and
then re-solidified. To ensure that no clumps or wrinkles form
while shaping the material on the tool surface, it is critical to
understand the evolution of the microstructure and its effect on
the effective viscosity.

In this work we limit the material forms containing (a) very
high fiber volume fraction, (b) straight highly aligned discon-
tinuous fibers. These two conditions are not mutually

exclusive because the geometry dictates that to get maximum
volume fraction, they will have to be highly aligned. Such
materials can be made by material manufacturers. The fibers
in considered materials are structural, have limited flexibility
and are embedded in the material parallel to each other to
maximize the reinforcing benefit. Tensile deformation will
not introduce bending and deviation from this state. In this
work, we will not address the behavior of such systems under
compressive loads which may lead to fiber bending and loss
of stability.

Previous work

Deformation of thermoplastic materials reinforced by high
fiber volume fraction of fibers – both individual (continu-
ous or discontinuous) or in textile form have been analyzed
previously [1–6]. In this work we will limit our analysis to
individual systems of discontinuous and aligned fibers.
These systems are attractive as long and discontinuous fiber
systems allow for material extension in the fiber direction
improving material forming properties. At the same time,
they are less studied than those reinforced with continuous
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or woven/stitched fiber systems that can undergo shearing
deformations only [7–9].

During the forming process the fibers remain solid while
the polymer matrix softens and/or melts creating a suspension.
This suspension exhibits effective anisotropic viscous behav-
ior and an effective anisotropic viscosity tensor is used to
describe its deformation behavior at the macroscale [7]. This
is postulated to depend on fiber’s length, aspect ratio, volu-
metric content and orientation. The effective constitutive be-
havior of the system can be described with the suspension
parameters: resin viscosity, fiber aspect ratio, dimensions
and fiber orientation state.

For structural performance, high fiber volume fractions are
desirable. The system can realize high fiber volume fraction
(over 50%) only when the fibers are all straight and aligned in
one direction with the thin layer of polymer matrix lubricating
the contacts between them. Based on this possible configura-
tion, simple Representative Elementary Volume (RVE)
models were created to estimate the effective properties [7].
It was noted that the effective viscosity of fiber reinforced
material dramatically increases with the aspect ratio of fibers
and also with the fiber volume fraction. This leads to requiring
considerable forming forces and may cause [10] stability is-
sues as the formedmaterial cannot support compression forces
in certain directions. There is some experimental work
supporting these conclusions [8, 9].

The viscous squeeze flow model for the forming deforma-
tion depends on a Beffective^ viscous constitutive equation
that relates the applied forces to the deformation rate. The
constitutive relation may focus just on the linear viscous effect
or more complex visco-elastic behavior. The formulated con-
stitutive relation is then used within analytic or more likely
numerical models [10–13] to simulate the forming process
progression. The stress-strain rate relationship for simple in-
plane deformation in fiber direction can be cast in a simple
form [7].
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Where the parameters in the above matrix depend on effec-
tive viscosity components (longitudinal (η11), transverse (η22)
and shearing (η12) as follows [7]:

μ11 ¼ 4η11
2= 4η11−η22ð Þ

μ12 ¼ 2η11η22= 4η11−η22ð Þ
μ22 ¼ 4η11η22= 4η11−η22ð Þ

μ66 ¼ η12

ð2Þ

Embedding this relation into a finite element formulation
and having a constitutive form for the longitudinal (η11), lon-
gitudinal transverse (η22) and shearing (η12) effective viscos-
ity, one can predict the forming deformation as shown in

Fig. 1 though the approach still presents many challenges
and is not ready for industrial deployment [11].

Microstructural model

Limitations

This work concentrates on the determination of effective vis-
cosity values (mainly longitudinal extensional η11 and in-
plane shear η12) using unit cell based micro-mechanics
models. The continuum models used with constant material
parameters is an approximation. In real materials, the viscous
deformation is expected to be non-homogenous on the fiber
length scale. The presence of solid fibers causes the local
deformation rates in matrix material to be significantly higher
than the nominal forming rates during shaping of such mate-
rials into a mold during the manufacturing process.

Thus, at the length scale of fiber diameter, based on the
local arrangement of fibers the material behavior strongly
varies with the location. On the macro-scale, we can assume
that for Bsufficiently large sample^ the behavior averages to
that provided by Eq. (1) and (2) with constant coefficients. For
thin sheets of such materials about 0.1 mm, micrographs show
that there are about 10 fiber diameters across the thickness.
Any non-uniformity in behavior of material samples at the
length scale of sheet thickness should be considered as signif-
icantly affecting the overall material properties for forming
with such materials.

We expect that the non-uniformity in material parameters dur-
ing forming itself will appear as a result of non-uniformity in
material microstructure introduced during the production of the
material. If there is a variation of material microstructure, there
will be corresponding variation in Beffective^ properties on the
length scale of interest because it is too small to allow perfect
averaging.

To study this phenomenon we will relax the usual, but highly
impractical, constraint of highly regular representative volume
around a single fiber and we will introduce many fibers in the
unit cell and examine the effect of slight deviations of these fiber
arrangements in terms of end to end spacing between the fibers
and fiber overlap distance on the macroscopic processing prop-
erties such as the global (mean) and local (standard deviation at
certain length scale) effective viscosity values.

Approach

The hyper-concentrated fibrous system is expected to be high-
ly oriented to achieve the desirable high fiber volume fraction.
The material exhibits orthotropy related to the local fiber di-
rection, usually transverse isotropy. The behavior in fiber
length direction (L) significantly differs from the behavior in
both transverse directions (T) as is evident from Fig. 2.
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There are, strictly speaking, four deformation modes to be
considered for the material microstructure shown in Fig. 2,
however we are interested in thin sheet materials so we will
only address the three deformation modes as shown schemat-
ically in Fig. 3.

The sheet may be extended (or compressed) in the direction
of fibers (a), across the fibers (b) or sheared in plane (L-T in
Fig. 1). Applying the longitudinal extension (deformation
mode (a)) requires significant relative in-plane slip between
adjacent fibers and this obviously leads to magnified defor-
mation rates as seen by the matrix material. Note that even the
sheet extension may be accompanied by through-the-
thickness deformation (to preserve volume) which in turn im-
plies transverse shear deformation (Fig. 4) orthogonal to fibers
which we did not consider in Fig. 3. The deformation rates
within the resin are, again, magnified relative to the global
ones computed from the deformation rate of the sheet. Thus,
the effective viscosity components are much higher than the
viscosity of the pure matrix.

To obtain η11 or η12 we will use unit cell micro-mechanical
models as previously applied to periodic RVE [7] (Fig. 5).
These utilize the fact that for high fiber volume fractions of
reinforcement the fibers have to be well aligned. Using ideal-
ized fiber distribution, these models build a repetitive micro-
structure (in two- or three-dimensional space) as shown in Fig.

2. As each cell in this microstructure deforms in similar man-
ner, one can force the relative motion of individual fibers and
determine the resin flow needed for such a motion given a
proper constitutive model for resin deformation. This can be
accomplished using analytic solutions (exact or approximate)
or even applying numerical models. Once the system of equa-
tions is formulated and solved, necessary required forces to
induce those deformations can be determined.

Numerical modeling

Unit cell models were previously applied to both Newtonian
and non-Newtonian (Carreau) fluids [7, 14]. However, the
geometry of simple periodic unit cell is overly simplified to
be seen as a representative structure as we know that the actual
material will not be perfectly arranged. This is particularly

Fig. 2 Coordinate system within the hyper-concentrated suspension of
long, discontinuous slender fibers

Fig. 3 Deformation modes of thermoplastic sheet reinforced by
concentrated aligned discontinuous fibers: (a) longitudinal extension (b)
transverse extension, (c) in-plane sheering deformation

Fig. 1 Simulation of stretch forming of a beam around a corner. (a) Geometry, (b) velocity field and longitudinal stress (fiber tension) [11]
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important for the extensional flow in fiber direction which
changes the spacing between fiber fragments. Additional sim-
plifications are also excessive. Actually, the hexagonal Bunit^
cell as used in [7] cannot even be repeated spatially.

We will set a few simple requirements to build a unit cell
model containing multiple fibers to evaluate the effective vis-
cosity components. The unit cell allows for

a) fiber overlap to be a random value between all fibers in
the cell

b) random gap distance between fiber ends
c) flexibility in fiber arrangement and spacing in the trans-

verse direction

To accommodate this, our unit cell will look similar as the
one shown in Fig. 2 and will have parameters as shown
(schematically) in Fig. 6:

The size of a Bunit^ cell to be built for these requirements is
unknown to begin with, though it must be more than five or

seven fibers unlike in previous models. The actual size will be
set later to make sure that at least the basic statistics of the
predicted viscosity are invariant to further cell size increase
and the size should not exceed the characteristic length of the
system (the ply thickness in sheet materials) We will use the
ply thickness as the size of our unit cell even if smaller cell
size makes it possible to find mean values because of our
interest in calculating the standard deviation of the effective
property as well. The flexibility in fiber arrangement has been
currently limited to square/hexagonal packing though many
other configurations could be addressed within the
framework.

Approach to compute effective viscosity

In our approach we generate a cell of aligned fibers, periodic
in transverse directions as shown in Fig. 6. The actual example
system is depicted in Fig. 2. For square and hex packing, the
periodicity may be simply introduced by mirroring the fibers
from one border of the cell to the opposite border. If perturbed
positions are to be used, the boundary perturbations will need
to be linked, too.

The extension is simulated by prescribing the velocity at
the end fibers in the longitudinal direction (L in Fig. 2). This
can be accomplished by two approaches: (i) periodic condi-
tions at the cell ends or (ii) by simply Blocking^ the ends,
keeping one end stationary and moving the other end with
prescribed constant velocity.

We have opted for the second approach because the peri-
odicity would put significant constraints on generation of fiber
to fiber end gaps. The obvious effect of this second approach
is that the cell must be sufficiently long; the value of which
will be determined later.

The fibers in the system are now assumed to remain
aligned and move in longitudinal direction with trans-
verse plane contraction decreasing spacing s as needed
to satisfy the incompressibility of the fluid as shown in
Fig. 6. Each fiber i will act on its neighbor j through a
force Fij. We will neglect inertia effects and write mo-
ment conservation for each fiber. For the highlighted
fiber (i = 5) in Fig. 6 it will be simply

F15 þ F25 þ F35 þ F45 ¼ 0 ð3Þ

Similar equation may be written for every fiber in the
system. Now, to determine velocity of fibers we need to
realize that we can relate the forces with velocity

Fig. 5 Unit cell model for individual fiber and adjacent resin volume: (a)
Two-dimensional, in plane shear (b) Three-dimensional, longitudinal
extension

Fig. 4 Transverse deformation of fiber reinforced sheet. Change in thickness results in shearing deformation in resin surrounding the fibers
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difference between neighboring fibers i and j, resin vis-
cosity η and their specific geometrical configuration:

Fij ¼ Fij vi−v j; η; geometry
� � ð4Þ

We can substitute Eq. (4) in Eq. (3) for each fiber, constrain
the velocities at the cell ends that are known and solve the
system of equations. The actual simplicity or complexity of
this system depends on how we model (or simplify) the resin
viscosity and resin flow between fibers (fiber-fiber
interaction).

Forces between two fibers

To create and model a fairly large fiber system which can be
deformed in significant number of time steps, and to run the
model for significant number of random realizations we need
to accept limitation on reaction force between any two fibers
which overlap in some cross section. In theory we might (for
Newtonian fluids) just resolve the function in Eq. (4) by actu-
ally evaluating the resin flow by forcing the motion of a single
fiber in some CFD package and evaluating the forces on other
fibers by Stokes flow solver. This approach would, however,
incur heavy performance penalty. To avoid this burden, we
will use a simplified form of this expression. These simplifi-
cations stem from the geometric constraints of fiber bed with
high fiber volume fraction: Fiber bed deformation can be es-
sentially approximated by two modes:

1. Fibers slide relative to each other along the fiber direction.
This happens when the system is extended in fiber direc-
tion or if the system shears in longitudinal/transverse
plane. In both cases, there is relative shearing in the resin
layer between fibers in which resin transfers the force
from one fiber to its neighbor. As the flow is essentially
unidirectional, the actual flow velocity profile may be

easy to compute, but the coupling between multiple fibers
may complicate this and we will approximate this further.
Also, if system extends in fiber direction, cavitation flows
may be possible to move the resin from between the fibers
to growing spacing between their ends, but in this work
we will not consider this additional physics as it is not
trivial to address this in random fiber configurations.

2. The gap between fibers in transverse direction deforms
from the original configuration but fibers remain parallel.
Again, force is transferred by deforming resin layer but
there is insignificant magnification. This is not necessary
to model the system extension in transverse direction as it
will not contribute to forces in longitudinal extension.
Currently, we do not study this phenomenon and we ac-
cept previously reported relationships between effective
shearing and transverse extensional viscosity [7].

We will model the first mentioned case to analyze exten-
sion and shear along fibers in a randomized Bunit^ cell. The
force acting between two relatively sliding fibers must follow
certain rules:

i. It is directly proportional to resin viscosity, relative veloc-
ity of two fibers and the current length of the overlap oij.

ii. It is inversely proportional to the distance between the
fibers.

Fij ¼ Cij αij
� �

η
v j−vi
� �
s−dð Þ oij ð5Þ

This proportionality will require a coefficient Cij, which
will be definitely dependent on the Bangle of contact^ between
two fibers. Within this angle, the shearing flow is assumed to
be controlled exclusively by the closest neighboring fibers and
decoupled from motion of other surrounding fibers. For reg-
ular fiber cells this would be 90 degrees for quad and 60

Fig. 6 Unit cell parameters and
principal unknowns used in
solution: both the gap distance
between fiber ends, g and overlap
distance o are random within
certain range, the overlap actually
depends on gaps (random) and the
random value of first fiber offset
is e. Fiber dimensions are length
L, diameter d and spacing s
dependent on desired fiber
volume fraction. Individual fiber
velocity is as shown on the right
side and forces are transferred due
to fluid shearing between
individual neighboring fibers
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degrees for hex spacing, for irregular cells some approxima-
tion will be called for (Fig. 7).

Note that once there is any non-uniformness in the cell, eq.
(5) is an approximation. The true Bdecoupling^ happens only
for perfectly regular cells where it is ensured by the flow
pattern symmetries/antisymmetries. As such, if we apply
CFD approach to a selected random cell, we might see certain
effect of general arrangement on Cij, resulting in some varia-
tion for same Bangle of contact^ value. As we consider only
Bregular cells^ this influence can be ignored.

For regular cells, the coefficient can be determined by cal-
culating one-dimensional shearing flow in the gap between
fibers as was done before [7, 14] with various levels of detail.
For such regular arrangements, it would not be necessary to
build a 3D model of the unit cell. For fully random cell, how-
ever, the assumption does not quite hold. Modeling for such
cells can be undertaken as it will provide not only the coeffi-
cients, but also information about their possible variation.

However, CFD models would need to be fairly large and the
evaluation would be daunting as the deformation/flow cou-
pling would need to be included. For this work, we assume
regular transverse arrangement, square or hex with uniform
shearing throughout the flow domain which yields a very
simple relation between force and velocity

Fij ¼ αij:d=2
� �

η
v j−vi
� �
s−dð Þ oij ð6Þ

Here, the angle αij is π/2 or π/3, for square and hexagonal
arrangement, respectively. Note that for the fiber arrays regu-
larly spaced in cross-section plane any inaccuracy in this co-
efficient just poses a multiplicative constant (of order 1) for
effective viscosity values. Also note that for randomly spaced
fibers – even in regular grid – it is not quite possible to decou-
ple the flow between individual fiber pairs so we will be lim-
ited to applying Eq. (6) with Newtonian viscosity.

Extensional viscosity

To study the extensional behavior of a system with random
fiber distribution, the unit cell is constructed as shown in
Figs. 8 and 9. Notably, the cross section remains regular but
in each chain of fibers the offset and gaps between fibers can
be generated randomly as shown by the schematic on the right
side in Fig. 8. One could also vary the location of the fiber
chains or of the individual fibers within the chain, but in this
work we did not apply that perturbation.

The viscosity is calculated by forcing a uniform extensional
deformation by locking the fiber segments that cross one face
of the unit cell and move the fiber segments that cross the
opposite face of the unit cell with constant velocity. The net
forces acting on the set of fixed fibers crossing one unit cell
end are summed and divided by the corresponding cross-
sectional area of the unit cell face to calculate the applied
stress. Applied velocity divided by cell length provides the
strain rate and the ratio of stress to strain is the viscosity.

Size of unit cell

There are two characteristic sizes of the unit cell. One is in the
cross sectional direction, and is given by number of fiber
chains considered. This size is limited by material thickness,
and there cannot be more fibers in this direction than physi-
cally possible. The unit cell is periodic in the cross-sectional
plane, and thus can be used to determine mean values for
thicker material by repetition, though the standard deviation
values depend on this size.

Along the fibers, the random non-uniform gaps prevent one
from generating periodic structure along the fiber chains.
Thus, one has to provide Bsufficiently long^ cell to overcome

Fig. 7 The flow cell is influenced only by two closest fibers. (a) Square
arrangement (b) Hex arrangement and (c) General Arrangement. The
determination by bi-sectors as shown in (c) has some limitations and
this paper does not deal with cells randomized in the cross-section plane
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the effects of the fibers that are locked in the unit cell faces
instead of proper periodic boundary conditions. One can select
the in-plane dimensions to be very small but that does not
necessarily reflect the larger system. Also, as random values
are used for offsets and gaps, one should explore how the
number of realizations influence the results.

In this section we address the following three questions:

1. How large should the periodic cell be in the cross-
sectional plane to ensure that the predicted mean exten-
sional viscosity is invariant? Obviously, sufficient in-
crease in the cell size will reduce the standard deviation
to zero but the physical system size, as, say, the ply thick-
nessmight be limited to 10 fibers, will limit the size of cell
to be considered. We, however, need to determinate if the
mean value will become constant before limiting size is
reached otherwise the standard deviation would not be
sufficient to describe the variability of the property.

Also, free edge of the cell must be considered instead of
a periodic BC if the physical system thickness is reached
by a required single cell thickness.

2. How long should the cell be to predict invariant viscosity?
Does the fact that the edges are locked and extended at
fixed rate influence the result? Does the standard devia-
tion reach invariant state in that case?

3. How many realizations are needed before the mean vis-
cosity value and its standard deviations converge?

From computational viewpoint, one would like to keep the
system as small as possible, but ensure that it is large enough
to describe the randomness introduced in the unit cell due to
the spacings (gaps) and overlaps between the fibers within the
cell.

Number of realizations

To determine the necessary number of realizations, we exe-
cuted the sequence of random generation of gaps and offsets,
evaluated the viscosity in the initial configuration (the cell was
not deformed) and processed the resulting data sets. These
were then compared with the results from significantly larger
data set. The studies were initially conducted for no end-to-
end gaps and the presented results are for these cases unless
stated otherwise.

The resulting standard deviation stabilized after 100 to 200
realizations, the mean value much sooner. Therefore, we
chose to work with 200 realizations when standard deviation
needed to be evaluated. Table 1 compares results from several
200 sample realizations with one containing 2000 sample

Fig. 8 The square packed unit
cell of short fibers. The cross-
section arrangement is regular,
but the individual fiber chains
have randomly varying offset and
gaps between fiber ends. Note
that the latter influences the fiber
spacing in cross section (the left
schematic) if fiber volume
fraction is prescribed

Fig. 9 The hexagonally packed unit cell of short fibers. Note that the cell
is no longer orthogonal and two fibers are mirrored to two positions to
accommodate hexagonal connectivity
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realizations. These were run for 10 × 10 square cells with cell
length equal to five fiber lengths.

The mean value for 200 samples is within 0.3% of the
larger set, the standard deviation value within 5% which we
consider as sufficient considering the assumptions used for
this model. The relative viscosity is with respect to the viscos-
ity of the matrix material. The introduction of end to end gaps
between fibers slightly increases the variability of these
values.

Size of cell

The previous evaluations were performed for 10 × 10 cells of
certain length. Different cell sizes were considered to deter-
mine whether the predicted viscosity value depends on the cell
size and what cell size is sufficient. The effect of the cell size is
depicted in Fig. 10.

It is obvious that the mean value is steady from very small
cell sizes (6 × 6 would do). The standard deviation still de-
creases after 6 × 6 cell size. It seems to plateau after 8 or 10
cells but it really keeps slowly decreasing. For infinite cell the
standard deviation should (and does) go to zero. To determine
how many fibers to consider for standard deviation we are
limited by the material dimensions and, for the materials of
interest we will consider the cell size to be 10 – the sheets will
have 10 fibers across the thickness (fiber diameter ~ 10 μm so

the sheet thickness will be ~0.1 mm). For other material thick-
ness we would need to reevaluate the standard deviation.

Length of the Bperiodic^ cell

The fibers which touch the top and bottom surface of the unit
cell are locked. On one side they are stationary, the other side
is moved by a prescribed velocity. This replaces the periodic-
ity condition which is not suitable because of the variable end-
to-end fiber gaps.

To eliminate the end effects, the cell must be sufficiently
long. Figure 11 shows the predicted mean relative extensional
viscosity as a function of unit cell length and maximal gap
size. By gradually increasing the length of the cell we deter-
mined that (i) even for fairly short cell the effect is not dra-
matic and (ii) the Lcell/Lfiber of 5 or 6 is perfectly sufficient for
extensional viscosity modeling and further extension of the
cell length does not change the results significantly.

The effect of free boundary

It is easy to modify the described model to include the thick-
ness limitation of 10 fiber layers (or whatever number is sig-
nificant). Instead of mirrored periodic boundary, we do not
include any contact and force transfer along the free bound-
aries (Fig. 12), reducing the periodicity to two boundaries out
of the four.

The results show similar trends as those with periodic
boundaries. The free boundary demonstrates reduction of vis-
cosity (Bstiffness^) of the system. For hexagonal arrangement
(vf = 60%, L/d = 1000) the relative viscosity decreases from
1.82 × 106 to 1.70 × 106 and for square arrangement from
2.34 × 106 to 2.21 × 106. The standard deviation scales almost
proportionally, from 4.95 × 104 to 4.56 × 104 for hex packing
and from 7.85 × 104 to 7.60 × 104 for square packing respec-
tively. No significant changes in behavior of numerical model
were observed.

Table 1 Comparison of mean relative viscosity w.r.t. resin voscosity
and standard deviation obtained for several 200 sample sets and
compared with one 2000 sample set

Cell size Realization Size Relative viscocity Standard deviation

10 200 1.8129E + 006 5.2190E + 004

10 200 1.8201E + 006 4.7482E + 004

10 200 1.8221E + 006 5.1568E + 004

10 200 1.8147E + 006 5.0380E + 004

10 2000 1.8168E + 006 4.9474E + 004

Fig. 10 Relative extensional viscosity (Effective viscosity/Resin Viscosity) and standard deviation for 200 sample realizations of various sizes of square
and hex cells at vf = 60%, L/d = 1000, no end-to-end gaps
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The resulting viscosity distributions

In this section we will examine the dependence of effective
viscosity on material and model parameters. Four Bmodel^
parameters are considered

1. Fiber arrangement within the unit cell
2. The relative size of end-to-end gap g (Fig. 6) relative to

fiber length
3. Fiber aspect ratio L/D
4. Fiber volume fraction vf.

These are features of the physical material to be modeled
and can be related to the physical values, but in the absence of
the material, the effect may be studied to determine trends
needed to optimize the material.

The effect of Fiber arrangement

In our model we have so far utilized only two regular arrange-
ments, hexagonal and square. Both can be seen as an ideali-
zation and both could be perturbed to randomize the cell a bit
more. As was already shown above, the values of effective

extensional viscosity vary between these two cases with the
square packing predicting higher values and wider distribu-
tions (higher standard deviation). Cumulative plot of predicted
relative extensional viscosity values (vf = 60%, L/d = 1000, no
gaps) is shown in Fig. 13. The plotted viscosity is the Binitial
viscosity^ value, evaluated at the inception of deformation by
applying the strain rate to undeformed (strain =0%) cell at
time equal to zero.

This shows that the square fiber arrangement model (i)
predicts larger viscosity values and (ii) predicts wider distri-
bution. Note that there is no overlap between the two distri-
butions. It seems likely, though we cannot prove it rigorously,
that the hex arrangement presents a lower bound. The square
one is possibly an upper bound on the system stiffness
(viscosity).

The effect of end-to-end fiber gaps

As long as the fiber volume fraction of suspension remains
constant, the introduction of end-to end gaps – whether in the
original random generation or by stretching the material as
examined later – has two obvious effects on the mechanics:

1. The overlap between neighboring fibers decreases, reduc-
ing the viscous resistance (oij in Eq. (5)).

2. The distance between neighboring fibers (s-d in Eq. (5))
reduces, increasing viscous resistance of the system

As these two constitute competing mechanisms, the behav-
ior on mean viscosity is uncertain unless we exercise the mod-
el. The results of such an exercise are shown in Fig. 14. Note
that there is a limit on the gap size which is the dictated by the
desired fiber volume fraction.

The figure shows that the dependence of mean viscosity
value on gaps is not particularly strong, and for hex arrange-
ment is insignificant. For smaller fiber volume fraction the
trend may be actually reversed. However, it shows something
that is not quite so obvious: The standard deviation increases

Fig. 11 Mean relative extensional viscosity for 200 sample realizations
for various unit cell lengths with no or 10%maximal end-to-end fiber gap
(hex cells at vf = 60%, L/d = 1000)

Fig. 12 Unit cell configuration
with free boundary for square
(left) and hexagonal (right) fiber
arrangement. No force is
transferred across the top and
bottom boundaries which
represent the material ply surfaces

Int J Mater Form (2019) 12:777–791 785



significantly with the gaps, resulting in significant local vari-
ability. From forming perspective, this may have serious ef-
fects as a simple stretching might result in localized, very non-
uniform deformations.

The effect of Fiber length

The L/D ratio’s effect has been studied previously for regular
cells with the effect that the extensional viscosity scales with
(L/D)2. This means that the system is rather resistant to exten-
sion for any but very short fibers. Our results are consistent
with this reported finding (Fig. 15) [7]. They obviously cor-
respond with eq. (5) as both the overlap and the relative ve-
locity increase linearly with the fiber length, resulting in the
quadratic growth.

However, in addition to the verification of the known rela-
tionship of viscosity with aspect ratio, we can also show that

the standard deviation in viscosity distribution follows the
same trend, though it will shift to larger values with the intro-
duction of gaps. This suggests that making the fibers longer
(or shorter) does not result in more uniform forming
properties.

The effect of Fiber volume fraction

Again, the relation is similar to the relation predicted by the
previously reported deterministic models [7] (Fig. 16). The
particular shape depends on fiber packing and the form ac-
cepted to describe fiber to fiber force.

The standard deviation follows the same curve (within the
accuracy of our 200 sample realization) as the mean value, so
again the forming properties will not be more uniform if the
fibers are more or less packed together. As the viscosity is
inversely proportional to the fiber spacing (Eq. (5)) this is to
be expected.

Viscosity and deformation

The initial fiber cell configuration is random within the con-
straints we have listed in previous sections. This includes the
gaps between fiber ends which may be generated randomly.
As the extension is applied, the structure, however, deforms in
deterministic fashion, modifying the underlying geometrical
arrangements as fibers slide past each other and their trans-
verse distance reduces while the end-to-end gaps increase in
size or are created. Thus, it is feasible that at the end of defor-
mation the structure of fiber gaps may not be quite fully
random.

As far as the transverse distance reduction is concerned, we
assume that the cell is incompressible as the resin is incom-
pressible and fiber deformation is neglected. To accommodate
this, the distance between fiber chains is reduced as the mate-
rial cell is extended. The cell is contracted uniformly in

Fig. 13 Cumulative plot of predicted initial viscosity values (117
realizations), evaluated at the inception of deformation by applying the
strain rate to undeformed cell at time equal to zero which depends on the
unit cell configuration. Note that the square and hexagonal distributions
do not overlap

Fig. 14 Relative initial viscosity evaluated at the inception of deformation by applying the strain rate to undeformed cell at time equal to zero as a
function of end-to-end fiber gaps (vf = 60%, L/d = 1000). Low and High are determined using twice the standard deviation
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transverse directions. The contraction moves fibers closer to
each other which would, in the end, cause the forces to be-
come singular. In this work we avoided this situation by lim-
iting the deformation to 10–15% extension.

During the actual deformation, the contraction would re-
quire some matrix redistribution which would, in turn, apply
some additional forces on fiber segments. This is neglected
within the current work.

In this section, we want to briefly examine two effects:

1. How does the extensional viscosity vary with the system
deformation?

2. How does the microstructure develop during the deforma-
tion process?

Viscosity variation during the deformation process

For high fiber volume fraction (60%), the viscosity during the
extension increases slightly as shown in Fig. 17. The contrac-
tion overrides the reduction in overlap length, more for square
arrangement of cells. In that case, the fibers are closer and are
approaching to touch each other much sooner.

With rising mean value, the standard deviation of viscosity
remains similar to the initial distribution. The effects of free
boundary appear to be limited to shifting the mean value as well.

The change of mean value during the deformation depends
on the fiber microstructure arrangement and fiber volume frac-
tion. Extension shortens the fiber overlaps – which decreases
the effective viscosity but brings fibers closer to each other
which increases the effective viscosity value. The relative ef-
fect of these two opposing phenomena depends on the fiber
volume fraction. Thus, for high fiber volume fraction, the
latter is more significant and there is increase of effective
viscosity during deformation. For smaller fiber volume frac-
tion (Fig. 18) the transverse distance between fibers is less
important and the dependence is reduced. If we compute the
behavior for even smaller fiber volume fractions than consid-
ered herein, the trend reverses and viscosity starts to decrease
with the deformation as volume fraction drops.

Microstructure variation during the deformation process

The evolution of the microstructure within the unit cell can be
followed during the deformation process by tracking the fiber
positions with time. This is shown in Fig. 19. The processing
of the data is however non-trivial. The visual inspection reveals
that

1. The end-to-end gaps extend fairly non-uniformly. For ide-
alized periodic cell they would remain of the same size, in
random cell some open more than others.

Fig. 15 Relative initial viscosity evaluated at the inception of
deformation by applying the strain rate to undeformed cell at time equal
to zero as a function of fiber aspect ratio (vf = 60%, L/d = 1000, square
packing, no gaps). Power fit shows excellent correlation with reported
results [7] and also that the relation extends to the standard deviation as
well

Fig. 16 Relative initial viscosity evaluated at the inception of deformation by applying the strain rate to undeformed cell at time equal to zero as a
function of fiber volume fraction (L/d = 1000, no gaps). The same trend is seen for both the mean value and the standard deviation
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2. The short overlaps in neighboring chains tend to disap-
pear. In other words, the ends show some propensity to
align, which may have adverse effects on structural prop-
erties of the formed composite.

Other modes of deformation

The two-dimensional (sheet) anisotropic viscosity is defined
by three values. These can be related to the extensional vis-
cosity in fiber direction examined above, shearing viscosity in
longitudinal and transverse plane and transverse extensional
viscosity. The previous work [7] suggests that there is a simple
(constant) relation between the last two values, so we will
briefly look at the shearing behavior only.

Longitudinal-transverse shearing deformation
and the unit cell

In this section we briefly examine the application of shearing
deformation to the unit cell model we developed to see what
effect the random cell structure has on shearing behavior. This

is straightforward as the model can bemodified to this purpose
easily.We will for the time being assume that [7] is correct and
the transverse extension would behave similarly.

Possible approaches

We want to utilize the same model we applied to extensional
deformation. To apply shearing deformation to the cells
shown in Fig. 8, one has two possible approaches as shown
in Fig. 20:

1. Apply the shearing deformation along one of the walls
while locking the opposite wall in place. At the same time
apply periodicity at the ends. This approach has a draw-
back that the periodicity restricts the end-to-end fiber gaps
as we need a periodic geometry in the longitudinal
direction.

2. Apply the deformation as before but lock the end fibers to
the shearing frame. This is of course over-constrained
(stiffer) system, but one would expect that if the cell is
made sufficiently long, the end effects will eventually
become negligible.

Fig. 17 Relative extensional
viscosity during the deformation
for Square and Hex cells at vf =
60%, L/d = 1000. These are
individual realizations. Viscosity
is related to the reduced cross-
section

Fig. 18 Relative extensional viscosity during the deformation for Square and Hex cells at different fiber volume fractions, L/d = 1000. Viscosity is
related to the reduced cross-section
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We decided to implement approach 2 as we considered the
unconstrained variation of gaps between fiber ends important.

Size of the unit cell

The end effects mean that the unit cell must be long enough to
make them insignificant. The effect of the size was studied by
evaluating the relative shearing viscosity for increasingly long
cells (Fig. 20) In this case, the sample size was reduced to 20
realizations to save the computational time as the cells were
becoming very large. This implies limited accuracy of

standard deviation prediction which explains the rough curve
for standard deviation in Fig. 21.

The results suggest that the end effects require relatively
long (and slow to model) unit cell. We opted for L/Lfiber = 20.

Resulting distribution

The behavior of relative shearing viscosity has been computed
for the original random configuration. It corresponds reason-
ably to the previous models of periodic cells [7, 14]:

& The magnification factor is moderate (~10)

Fig. 19 Hex fiber cell (at vf = 60%, L/d = 1000) in original configuration and after 10% longitudinal extension. Matching fibers are color coded. Careful
look reveals that the gaps between fibers extend non-uniformly

Fig. 20 Possible application of
shear to the unit cell developed for
extensional deformation
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& There is no dependence on fiber aspect ratio
& The dependence on fiber volume fraction is moderate un-

less getting close to maximal packing (Fig. 22)

The random variations proved rather insignificant in the
case of shearing viscosity:

& The end-to-end gap slightly increased the viscosity
(around target 60% fiber volume fraction) because of re-
duction of transverse fiber distance

& The standard deviation is less than 1% of mean value.

This implies that there is little in local variability of shear-
ing viscosity on the length scale of 10 fibers (material thick-
ness) and that the effects of random distribution are far more
significant for longitudinal extension.

Conclusions

We presented a micromechanical unit cell model to study the
effective forming properties of highly concentrated suspen-
sion of long, discontinuous fibers based on the material mi-
crostructure. Compared to the previous work, the model is
based on significantly larger and partially randomized unit
cells and allows one to predict both the mean material re-
sponse (effective viscosity) and its variability introduced by
microstructural variability. The presented results analyze the
effects of random fiber overlaps and end-to-end gaps, but
other random parameters can be introduced into the model,
for example perturbed fiber spacing to quantify the influence
on the effective property.

We fully expected that the introduction of variability into
the cell will produce variability in effective material parame-
ters at certain unit cell length-scale, considered to be about 10
fiber diameters. This length-scale is physically related to the
thickness of analyzed material and non-uniformity on this
length scale cannot be easily smoothed out further during
forming.

With respect to the extensional viscosity the variability
proved to be significant.Moreover, it increases with additional
material extensional deformation and such behavior may have
significant effect on material forming.

The dependence of mean value on the usually considered
material parameters (fiber aspect ratio, fiber volume fraction)
was determined and shown tomatch the dependence predicted
by previous models, using simple regular microcells [7]. The
value of standard deviation seems to follow the same depen-
dence as the mean value.

With respect to longitudinal-transverse shearing, the ana-
lyzed variability does not produce significant variability in the
effective cell behavior and its dependence on random pertur-
bation of material microstructure is virtually nonexistent. This
result might transfer to transverse extension as argued before

Fig. 21 Model predicted relative
shearing viscosity depending on
the relative length of the unit cell

Fig. 22 Predicted relative shearing viscosity dependence on fiber volume
fraction. Square packing, 10 × 10 cell, L/D = 1000, end-to-end gaps
maximally 10% of fiber length with 20 realizations
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[7], but we did not study this mode of deformation as the
presented model would require significant modification.

The studied random variations of the unit cell – end gaps
and overlaps – are just a subset of possible geometrical distur-
bances. Two additional mechanisms to consider would be ir-
regular fiber transverse spacing and fiber misalignment. The
former can be added to our model. The latter may require
numerical modeling.

Also note that we did not examine the effects of finite
shearing deformation on end-to-end fiber gaps similar to the
way we examined the effects of extension. Since that may
have effects on material performance after forming, it should
be definitely addressed despite the fact that the randomness
effect on viscosity is negligible.
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