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Abstract
The virtual fields method is an approach to inversely identify material parameters using full-field deformation data. In
this work, we extend the sensitivity-based virtual fields to large deformation anisotropic plasticity. The method is firstly
generalized to the finite deformation framework and then tested on numerical data obtained from a finite element model of
a deep-notched specimen subjected to a tensile loading. We demonstrated the feasibility of the method for two anisotropic
plasticity models: Hill48 and Yld2000-2D, and showed that all the parameters could be characterise from such a test. The
sensitivity-based virtual fields performed better than the currently accepted standard approach of user-defined ones in terms
of accuracy and robustness. The main advantage of the sensitivity-based virtual fields comes from the automation of virtual
fields generation. The process can be applied to any geometry and any constitutive law.

Keywords The virtual fields method · Anisotropic plasticity · Sensitivity-based virtual fields · Material testing · Full-field
measurements

Introduction

Accurate modelling of metal forming processes is of key
interest to industries such as automotive. One of the main
issues in simulating processes such as deep drawing of
metal sheets is ensuring that the chosen constitutive model
represents the material accurately. Many of the metallic
materials used in this industry exhibit anisotropic properties
due to texture induced during cold rolling which highly
affect deformation of it during forming processes (e.g.
earrings formation during deep drawing [20]).

One of the most popular anisotropic plasticity yield
criteria is Hill48 [19], which in case of plane stress
conditions requires four parameters, generally identified
from three uniaxial tests performed in three directions:
rolling (RD), transverse (TD) and 45◦ to RD. In many
cases, experimental results suggest that Hill48 is not
capable of predicting biaxial yield behaviour accurately,
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and thus has limited applicability for forming predictions.
Numerous models were proposed to capture the biaxial
behaviour of sheet metals more accurately, such as: Yld89
[9], Stoughton’s model of 2002 and further refinement of
2009 [43, 44], BBC2000 [6], BBC2005 [5], Yld2000-2D
[8] and Yld2004-18 [7]. Often, the usefulness of these
complex models is limited by the significant effort required
to accurately identify their parameters experimentally.
In particular, many of these models require performing
an additional biaxial test, such as bulge or equibiaxial
tension on cruciform specimens, increasing the cost of
the procedure. Therefore, there is a drive to improve
testing techniques and a promising way to achieve this
goal is to collect experimental data using more advanced
methods, such as full-field measurements e.g. digital image
correlation (DIC).

New tests can be designed in order to collect more data
within a single run, compared to the standard methods. The
use of full-field measurements makes it possible to choose
complex geometries for the test specimens, introducing
heterogeneous strain fields, thereby enabling the yield
envelope to be probed at thousands of different stress states
at once. One of the main challenges in such approach is to
extract the material parameters from the collected data. Two
of the most used inverse techniques capable of doing this are
finite element model updating (FEMU) and the virtual fields
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method (VFM). It was demonstrated that these approaches
can reduce the number of tests needed to fully characterize
anisotropic models, in particular Hill48, or Yld2000-2D [11,
13, 18, 21, 35, 38, 39].

The virtual fields method is a very efficient technique
for extraction of material parameters from full-field
measurements. One of the main advantages of the VFM
over the FEMU is that it is significantly faster in terms
of the computational time. In fact, some authors reported
that for their particular application the VFM was 125
times faster than FEMU [47]. This is especially important
as the complexity of material models and the number of
data points available from the measurements grow. Another
advantage of the VFM is that it acts directly on collected
data and no numerical simulations are required. As a result,
the method can be integrated directly into a DIC platform
making it more accessible to practising engineers. The
method has already been applied to a range of materials and
constitutive laws such as arteries [2], rubbers [17, 45, 46],
composites [15], and metals [22, 24, 25, 33, 39].

One of the main challenges in the VFM is the
choice of virtual fields. These are test functions that act
upon the reconstructed stress fields to check for stress
equilibrium. Their choice strongly affects the accuracy
of the identification. Until recently, no structured method
was available to generate high quality virtual fields for
non-linear problems. Currently, the standard approach is
to rely on user-defined virtual fields (UDVFs), using
standard expansion bases such as polynomials or harmonic
functions. The effectiveness of these user-defined virtual
fields strongly depends on their choice, and requires the
user to understand the method in depth to be able to
select these fields in an informed way. Recently, a new
approach for generating high quality virtual fields has been
developed, leading to the so-called sensitivity-based virtual
fields (SBVFs) [28]. They outperformed UDVFs in case of
isotropic plasticity, and are generic enough to be applied to
any constitutive model.

In this work, we have extended the SBVFs to the case of
large deformation anisotropic plasticity, and demonstrated
their feasibility to calibrate Hill48 and Yld2000-2D yield
functions from a deep notched specimen subject to tensile
loading.

Theory

Brief recall of the finite deformation framework

Let us consider a body B, where the position of particles
in the reference configuration is given by X and in the
deformed one by x. The motion of each material point can
be described by a function x = φ(X, t), which maps the

position of every particle in the reference configuration to
the current deformed configuration. The displacement field
is defined as the difference between the current and the
reference positions:

u(X, t) = x − X (1)

The deformation gradient is defined as:

F = ∂x
∂X

= ∂u
∂X

+ I, (2)

where I is the second order identity tensor. Using polar
decomposition, the deformation gradient can be written as
the product of two second order tensors:

F = VR (3)

where V is the left stretch tensor and R is the rotation tensor.
The left stretch tensor can be conveniently calculated as:

V =
√
FFT (4)

where the root operator refers to the root of a matrix.
A consequence of such mathematical description is that
for every point, a local coordinate system rotates during
deformation, as outlined in Fig. 1. This is an important
feature to consider when the body includes a texture, as its
orientation will follow any local rotations.

A convenient measure of strain, called Hencky strain, can
be constructed from the left stretch tensor:

εL = lnV (5)

This strain measure can be used to formulate constitutive
laws within the finite deformation framework. For further
details on continuum mechanics the reader is referred to
[12].

The virtual fields method

Quasi-static equilibrium can be expressed in so-called
‘weak form’ in which it is enforced as a weighted average
over the entire domain, expressed here in the current
configuration Bt , in absence of volume forces:

−
∫

Bt

σ : ∂u∗

∂x
dBt +

∫

∂Bt

(σn) · u∗d∂Bt = 0 (6)

where ∂Bt is the boundary of Bt , n is the outwards vector
of ∂Bt and σ is the Cauchy stress tensor.

Equation 6, called the principle of virtual work (PVW),
is satisfied for any continuous function u∗ (called virtual
displacements) that is piecewise-differentiable. Both stress
and test function (virtual displacements) are expressed in the
current configuration in the case of Eq. 6.
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Fig. 1 Definition of coordinate
systems, X is the initial position
of a material point and x, its
current position, (i, j) is the
initial orientation of local
coordinate system, (1, 2) is the
corotational system, (Ξ, H) is
the material coordinate system
in the reference configuration
and (ξ, η) is the material
coordinate system in the current
configuration

The PVW can be alternatively formulated in the
reference configuration. In that case, another stress tensor is
defined, called the first Piola-Kirchhoff stress tensor P:

P = det(F)σF−T (7)

Notably, the first Piola-Kirchhoff stress tensor is asymmet-
ric due to the asymmetry of the deformation gradient.

As a result, in the reference configuration, the PVW can
be expressed as:

−
∫

B0

P : ∂U∗

∂X
dB0 +

∫

∂B0

(PN) · U∗d∂B0 = 0 (8)

where B0 is the considered body in the reference
configuration and ∂B0 its boundary. This form is much
more suitable for practical implementation in case of the
proposed method, as the virtual fields U∗, defined in the
reference configuration B0, do not need updated virtual
boundary conditions, as will become apparent later in
the article. This approach has been used by most of the
VFM community [36, 38, 39, 41]. Noticeably, it was
demonstrated that the current configuration formulation
could be successfully applied to the case of hyperelasticity
as well [2, 23, 32].

The VFM uses the PVW to identify material parameters
from kinematic data and loading. Generally, kinematic
fields are measured by means of full-field techniques such
as DIC over the entire domain. This data is then used
to reconstruct the stress field using a set of material
parameters, denoted here as χ . The calculated stresses must
be in equilibrium with the measured loading, which is
enforced through either Eq. 6 or 8. As the correct values of
the constitutive parameters are unknown at the start of the
process, the stress field is first estimated with a guessed set

of parameters and the equilibrium can be checked by means
of Eq. 8:

Φ(χ) =
⎡

⎢
⎣−

∫

B0

P(χ) : ∂U∗

∂X
dB0+

∫

∂B0

(P(χ)N) · U∗d∂B0

⎤

⎥
⎦

2

(9)

The material parameters are found through an iterative
minimisation of the cost function, i.e. the correct material
parameters produce a stress field that minimises the gap
in the PVW. Since the full-field measurements provide
spatially dense data, the integral of the stresses can be
approximated by a discrete sum. Additionally, multiple load
levels (time steps) have to be included to involve all the
parameters of the constitutive model. Multiple independent
virtual fields can be used to involve data in the cost
function in various ways, which generally leads to better
conditioning of the cost function, resulting in more robust
minimisation and more accurate identification. Finally, a
general form of the cost function can be expressed as:

Φ(χ) =
nVF∑

i=1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nTime∑

t=1

⎡

⎢⎢⎢⎢
⎣

Wint︷ ︸︸ ︷
nPts∑

j=1

(

Pj (εL, χ) : ∂U∗j (i)

∂X
Sjh

)

−
∫

∂B0

(P (εL, χ)N) · U∗(i)d∂B0

︸ ︷︷ ︸
Wext

⎤

⎥⎥⎥⎥⎥⎥
⎦

2⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (10)

where Wint is the virtual work of internal forces and Wext is
the virtual work of external forces, Sj is the surface area of
j -th point and h is the thickness of specimen.

Since in most of cases the measurements are only
performed at the surface of specimen, some assumption
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about the through-thickness distribution of the mechanical
fields must be made. Often, plane stress is assumed,
provided the thickness of specimen is small in comparison
to the other two dimensions and the loading is in plane. The
measurements provide in-plane kinematic quantities and
the out-of-plane stresses are considered negligible (σ13 =
σ23 = σ33 = 0). However, when the PVW is formulated
in the reference configuration (8), the 2D Cauchy stress
must be pulled-back from Bt to B0, as shown in Eq. 7.
In reality, the gradient of deformation is fully 3D and so
some additional assumptions must be made. Assuming that
for a thin specimen the out-of-plane shearing is negligible
(F13 = F23 = F31 = F32 = 0), the Jacobian (det(F)) can
be now expressed as:

det(F) = F33(F11F22 − F12F21). (11)

The in-plane values are measured, however, the out-of-plane
term is still unknown. It can be approximated by calculating
the out-of-plane strain during stress reconstruction using the
elasto-plastic constitutive law:

Δε33 = − ν

1 − ν

(
Δεe

11 + Δεe
22

)− (
Δε

p

11 + Δε
p

22

)
(12)

Here, the Hooke’s law was assumed for the elastic part
and the isochoric flow for the plastic part of the strain
increments. This strain can be then used to calculate the
missing component:

F33(t) = 1 + ∂u3

∂x3
= 1 + ε33(t) = 1 +

∫ t

t0

Δε33dt . (13)

It should be noted that if the isochoric flow assumption
becomes questionable, back-to-back camera systems can be
used to determine an average value of ε33, as shown in [14].
Finally, with known Jacobian it is possible to pull-back the
Cauchy stress to the reference configuration.

Sensitivity-based virtual fields

The test functions (virtual fields) in Eq. 10 are arbitrary and
must be selected before the identification is conducted. The
selection of virtual fields has a significant impact on the
accuracy of the identification. These functions influence the
amount of error introduced to the cost function by selecting
which data points, and with what weight, are introduced to
the cost function. The main difference between virtual fields
arises in the way they propagate experimental noise.

In linear elasticity, an automated procedure has been
published in 2004, relying on the minimization of the impact
of noise on the identified parameters, i.e., finding the virtual
fields leading to the maximum likelihood solution for a
given basis of functions to expand the virtual fields [3].
This is now routinely used by the VFM community and
also implemented on the commercial DIC/VFM platform
MatchID [29]. An attempt at extending this to non-linear

laws, namely, isotropic elasto-plasticity, was published in
2010 [34]. The idea there was to use a piecewise linear
definition of the virtual fields based on the tangent stiffness
matrix. The method did improve results but was found
to lack flexibility as it required an expression for the
tangent matrix. Also, for non-linear models where strains
are generally larger, sensitivity to noise is not necessarily
the most relevant criterion to select virtual field.

Recently, a new type of virtual field for the non-linear
laws was proposed [28]. They are automatically generated
during the identification procedure with very limited user
input. These fields, called sensitivity-based virtual fields,
are based on the reconstructed stress field and so, easily and
automatically adapt to any geometry and material model.
They were shown to outperform the user-defined virtual
fields for isotropic small-strain plasticity and seemed very
promising for more complex problems. They were also
shown to outperform the tangent-matrix fields from [34],
though only marginally for this particular case.

The main idea behind the sensitivity-based virtual fields
is to find areas during the test, both in space and time,
where the information about each parameter is contained.
A separate virtual field is constructed automatically for
each constitutive parameter which allows the cost function
to represent each parameter with maximised sensitivity. In
order to locate areas where the information is encoded
for the i-th parameter, an incremental stress sensitivity is
calculated. By perturbing the value of the i-th parameter
during the stress reconstruction for a given set of current
parameters, a change in stress field is noted, highlighting
areas where the parameter is active in influencing the
stress. This information is encoded in a map called stress
sensitivity:

δP(i)(χ , t) = P(χ + δχi, t) − P(χ , t) (14)

where δχi is a perturbation of the i-th parameter, typically
−0.2χi ≤ δχi ≤ −0.1χi . The negative sign is taken
to expand the VFs over points currently not active, as
opposed to penalizing points that just became active (e.g. in
the case of yield stresses). Furthermore, incremental stress
sensitivity maps are found as:

δP̃(i)(χ , t) = δP(i)(χ , t) − δP(i)(χ , t − 1)

Δt
. (15)

These sensitivity maps, either incremental (15) or total (14)
can be used as virtual strains to provide relevant weight
to the stresses in the PVW equation. This incremental
approach was proposed in order to effectively decouple
the influence of yielding-related parameters from hardening
parameters which act at different time scales.

The incremental sensitivity maps cannot however be
directly used in the PVW as the corresponding virtual
displacements, needed in the PVW, are unknown. However,
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it is possible to construct virtual displacements such that
the resulting virtual strain fields ‘look like’ the incremental
sensitivity maps. This can be achieved by performing a
least-square match, under some constraints, between virtual
strain fields and incremental stress sensitivity.

An effective way to solve the matching problem is
to construct a virtual mesh, which consists of virtual
nodes connected through virtual elements. The virtual
mesh defines the virtual displacements at the nodes and
interpolate them within an element using classical FE
shape functions. The nodes are connected with 4-node
quadrilateral elements and the interpolation is done using
standard bi-linear shape functions (N). The virtual fields
can be calculated using the values of virtual displacements
at each of the node and the spatial derivatives of the shape
functions. For every point of measurement, the virtual strain
fields can be found as a function of virtual displacements
of the neighbouring nodes. This function is linear with
respect to the displacements and can be expressed using
the strain-displacement matrix Bel , which relates virtual
displacements at the nodes to the virtual strains at the
considered data point:

∂U∗

∂X
= BelU∗ (16)

where U∗ is a vector containing the virtual displacements of

the element nodes and
∂U∗

∂X
is a vector containing values of

virtual strains1 at the data point. It is chosen here to express
the virtual fields in the reference configuration, as a results
Bel does not change with deformation. It can be expressed
as:

Bel =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∂N1

∂X1
0

∂N2

∂X1
0

∂N3

∂X1
0

∂N4

∂X1
0

0
∂N1

∂X2
0

∂N2

∂X2
0

∂N3

∂X2
0

∂N4

∂X2
∂N1

∂X2
0

∂N2

∂X2
0

∂N3

∂X2
0

∂N4

∂X2
0

0
∂N1

∂X1
0

∂N2

∂X1
0

∂N3

∂X1
0

∂N4

∂X1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

(17)

For every point, matrix Bel can be generated and then
assembled into a global strain-displacement matrix (Bglob)
which relates virtual displacements from all virtual nodes
to the virtual strains at all data points. The global strain-
displacement matrix has then to be modified to account
for virtual boundary conditions. Often, it is necessary to

1‘virtual strain’ is used here inaptly, to relate to the application of the
PVW in small deformation framework. In fact, here, we should say
‘virtual displacement derivatives’ or ‘virtual displacement gradients’
but ‘virtual strain’ is more compact and convenient.

constrain the virtual displacement in the direction of applied
loading to be constant across the loading edge, so that
only the resultant load appears in the PVW equation and
not its (unknown) distribution. This simplifies the traction
contribution to the PVW (6, 8) to become:

∫

∂B0

(PN) ·U∗d∂B0 = U∗ ·
∫

∂B0

PNd∂B0 = U∗ ·Fload , (18)

where Fload is the total force applied. Imposing these con-
straints into Bglob, a modified global strain-displacement
matrix is found, B̄glob. In order to solve the least-square
problem, a pseudo-inverse of this matrix is found which can
be used to generate the corresponding virtual displacements:

U∗(i)(t) = pinv(B̄glob)δP̃(i)(χ , t). (19)

These virtual displacements now produce virtual strain
fields that ‘look like’ the incremental stress sensitivity maps
and obey the necessary virtual boundary conditions. The
virtual strain fields are finally found with the following
formula:

∂U∗(i)

∂X
= BglobU∗(i). (20)

Note that the construction of the sensitivity-based virtual
fields must be performed at every time step. However, as
mentioned before, if the reference configuration is chosen
for the PVW, the matrix Bglob is assembled only once for
the entire identification.

Computing stress sensitivities significantly increases the
identification time, as it virtually doubles the number of nec-
essary stress reconstructions. To improve the computational
efficiency, a selective updating scheme can be employed.
Recall that any continuous virtual displacement fields con-
stitute a valid choice, including the sensitivity-based virtual
fields based on incorrect (e.g. initial) parameters. Effec-
tively, these can be used to put the minimisation algorithm
in the neighbourhood of the solution without updating
them, but carrying across the iterations. As the algorithm
converges, the virtual fields can be updated with parame-
ters much closer to the correct values, saving many stress
reconstructions and significantly improving computational
efficiency.

Finally, in order to balance the contributions from
each virtual field, a scaling is introduced. The virtual
displacements are scaled by a factor dependent on the
current internal virtual work contributions (Wint ). For each
iteration, Wint is calculated (10), and then sorted according
to the absolute values over all time steps. The scaling
parameter is calculated as a mean out of the top xth
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percentile of the sorted values. This ensures that virtual
fields contributions associated with each parameter are of
similar orders of magnitude.

Numerical simulations

The standard way to test anisotropic materials is to conduct
tensile tests on dog-bone specimens cut at different angles
to the rolling direction of the sheet (typically 0◦/45◦/90◦).
If the material model under inspection includes a parameter
related to biaxial yield stress, an additional test is required,
either a bulge test or equibiaxial tension on a cruciform
specimen. The major limitation of this approach is that a
single test provides only one data point on the yield locus
and many tests are needed to match the yield surface.

An alternative is to run a test with enough stress
heterogeneity to identify all necessary parameters at once.
Some of the heterogeneity in the tensile test can be obtained
by means of material orientation, geometric features, and
loading. Rossi et al. [39] proposed a test on a deep-notched
specimen under tensile loading capable of identifying the
Hill48 model using a single specimen. The test is replicated
here and combined with the sensitivity-based virtual fields
to test their applicability to large strain anisotropic plasticity.
This does not mean that this test is optimal in any way, but
it can serve as a clear comparison on how VFs selection
impacts the identification. Many different geometries have
been proposed in the literature to produce heterogeneous
states of stress and strain, it is beyond the scope of the
present paper to investigate this. However, future work will
look at specimen optimization, in the same spirit as for
composites testing in elasticity [16].

FEmodel

The test proposed by Rossi et al. involved tensile loading
applied to a flat coupon with two circular notches, which
introduce heterogeneous deformation [39]. It was simulated
in Abaqus (v. 6.13) to generate synthetic data which were
then used to test the identification algorithm. The geometry
of the specimen is presented in Fig. 2. The mesh density was
chosen according to a convergence study. The thickness of
the plane stress elements was chosen as 0.74 mm, similar to
that used in [38] and typical of thin anisotropic metal sheets
for the automotive industry. The bottom edge was fixed,
while a constant vertical displacement of 6.75 mm was
applied across the top edge, which was additionally fixed
in the lateral direction to simulate the effect of the grip of
a test machine. The initial material orientation was defined
by specifying the angle (θ ) between the rolling direction
and the horizontal axis of the model, indicating the principal
material axes (Ξ,H ) needed to describe the anisotropic

45

6
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R
11 R

11

ROI

6
7

.5

X

Y
Ξ

H

Fig. 2 Geometry of the specimen used in the simulated test.
Dimensions in mm

properties (see Fig. 2). Overall, total vertical strains of about
40% were obtained with the model.

Constitutivemodels

In the VFM, the stress field is reconstructed explicitly
from the kinematic measurements through an assumed
constitutive law. In this work, two different large strain
plasticity models were considered: Hill48 and Yld2000-2D.

The elastic response was modelled with Hooke’s law
extended to finite deformation:

Δσ = DΔεe
L, (21)

where Δσ is the rate of change of the Cauchy stress, D is
the elastic operator for plane stress and Δεe

L is an increment
of the elastic part of the Hencky strain. Here, we assume
that both Young’s modulus E, and Poisson’s ratio ν needed
to construct D are known. They can be identified from
full-field data using the noise-optimised virtual fields in
elasticity [4], considering only the initial elastic steps.
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In order to ensure the objectivity of the model, a
corotational frame was adopted. The reference frame at
each material point rotates with the material. Fig. 1 presents
the corotational and material frames in both reference and
current configurations. Initially, the corotational frame (i, j )
is co-linear with the global frame. The angle between the
material coordinate system (Ξ, H) and the global reference
frame is known. This angle can be used to construct a tensor
(Rmat) rotating the local coordinate system to the material
one. Due to deformation, the corotational frame rotates with
R and in the current configuration is denoted (1, 2). The
angle between the current material coordinate system (ξ, η)
and the corotational frame is fixed and related to Rmat. The
strain increment in the current material frame (ξ, η) can
be expressed in terms of the strain increment in the global
frame (i, j ):

ΔεL
(ξ,η) = RT RT

matΔε
(i,j)
L RmatR. (22)

More complex strategies could be employed to account for
the evolution of material texture such as that presented in
[31]. They would have to be implemented in the constitutive
routine used to reconstruct stress (Fig. 4). Consequently, an
inverse rotation could be performed in order to represent the
reconstructed stress tensor in the global coordinate system,
in which the PVW is expressed.

The strain increments in the global coordinate system are
simply calculated as the difference between two consecutive
total strains:

Δε
(i,j)
L (t) = ε

(i,j)
L (t) − ε

(i,j)
L (t − 1) (23)

For each of the two plastic models investigated, Hill48
and Yld2000-2D, an associated flow rule was assumed, as
well as an additive decomposition of strain increments:

ΔεL = Δεe
L + Δε

p
L, (24)

where Δεe
L is the elastic strain increment and Δε

p
L is the

plastic strain increment.
A yield criterion, in general, can be written as:

f = σeq − σy ≤ 0. (25)

where σeq is an equivalent stress formulated differently
for each plasticity model and σy is a yield stress evolving
according to a hardening law. A shared feature of both
models is that they are formulated in terms of Cauchy stress
expressed in the current material frame (ξ, η in Fig. 1).

Hill48 is a popular model for anisotropic plasticity [19].
When plane stress is assumed the equivalent stress can be
expressed as:

σHill
eq =

√
Gσ 2

11 + Fσ 2
22 + H(σ11 − σ22)2 + 2Nσ 2

12 . (26)

This model depends on 4 independent parameters defining
the anisotropy. A suitable way to express the governing
parameters is to relate them to mechanical quantities
measured in an experiment. In this paper the plastic
potentials (Rij ) are used to define the criterion:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F = 1

2

[
1

R2
22

+ 1

R2
33

− 1

R2
11

]

G = 1

2

[
1

R2
11

+ 1

R2
33

− 1

R2
22

]

H = 1

2

[
1

R2
11

+ 1

R2
22

− 1

R2
33

]

N = 1

2

1

R2
12

(27)

where Rij = σ
y
ij

σ0
. Note that σy

11 and σ
y

22 are the yield stresses

identified in planar uniaxial tests conducted at 0◦ and 90◦
respectively and σ

y

33 is the through-thickness yield stress.
Finally, σ

y

12 is the yield stress identified under pure shear.
Furthermore, it was assumed that the yield stress in the
hardening law is equal to σ

y

11, i.e. σ0 = σ
y

11, as this reduces
the number of variables to be identified by one, and does not
affect the formulation of model.

Although the model is popular in literature, it suffers
from poor performance when used in context of sheet
materials subject to biaxial loading [30, 39, 44]. This is
mostly due to the quadratic nature of the law which does not
represent real materials accurately. It was found that non-
quadratic models such as Yld2000-2D or Stoughton2009
predict the behaviour of sheet metals such as steel or
aluminium more accurately [44].

Yld2000-2D [8] was developed strictly for plane stress
conditions for which the equivalent stress can be calculated
as:

σYld
eq =

[
1

2

(|X′
1 −X′

2|a +|2X′′
2 +X′′

1 |a+ |2X′′
1 + X′′

2 |a)
]1/a

(28)

where a is an exponent based on the metal micro-structure
(a = 8 for FCC and a = 6 for BCC) and X′

1, X′
2 and X′′

1 ,
X′′

2 are principal values of two stress tensors X′, X′′ which
are defined as linear combinations of the Cauchy stress:
{

X′ = L′σ
X′′ = L′′σ (29)

Matrices L′ and L′′ are given by:

L′ =

⎡

⎢⎢⎢
⎣

2α1

3
−2α1

3
0

−2α2

3

2α2

3
0

0 0 α7

⎤

⎥⎥⎥
⎦

(30)
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Table 1 Reference parameters defining the plastic anisotropy of the material

Hill48 Yld2000-2D

R11 R22 R33 R12 α1 α2 α3 α4 α5 α6 α7 α8

1.000 1.054 1.276 0.738 1.11 1.35 1.21 1.11 1.07 0.96 1.21 1.15

The parameters were adapted from [39]

L′′ =

⎡

⎢⎢
⎣

8α5 − 2α3 − 2α6 + 2α4

9
−4α6 − 4α4 − 4α5 + α3

9
0

−4α3 − 4α5 − 4α4 + α6

9

8α4 − 2α6 − 2α3 + 2α5

9
0

0 0 α8

⎤

⎥⎥
⎦

(31)

The model involves 8 independent parameters, α1–α8,
and can accurately represent the behaviour both in simple
tension as well as biaxial loading.

Two different hardening laws were adopted here: linear
(32) and the power law hardening (33):

σy = σ0 + Hε̄p (32)

σy = σ0 + H
(
ε̄p
)n (33)

Linear hardening is defined with two parameters: initial
yield stress σ0 and hardening modulus H . The non-
linear power law includes 3 parameters: initial yield
stress σ0, hardening modulus H , and an exponent n. The
equivalent plastic strain ε̄p is integrated over the history of
deformation by means of summing the equivalent plastic
strain increments obtained at each increment:

Δε̄p = σ : Δεp

σy

. (34)

The reference parameters used to generate the models are
presented in Tables 1 and 2.

For each of the constitutive models a routine was
produced integrating the constitutive equations using an
implicit scheme with a radial-return algorithm, returning the
state of stress and out-of-plane strain at each time step, with
both being rotated back to the global coordinate system.

For Hill48, 6 data sets were generated in total, consider-
ing both hardening models at the three different material ori-
entations (30◦, 45◦, 60◦). Due to its computational intensity,
only one model was considered for Yld2000-2D, simulating
linear hardening with a material orientation of 45◦.

Table 2 Reference parameters for the hardening laws based on prop-
erties of BH340 steel alloy

Linear Power law

σ0 H σ0 K n

256 855 203 439 0.3195

While in this work the constitutive modelling was
kept simple, the proposed methodology is valid for
any chosen material model. In practice, the investigator
supplies a constitutive law to be identified (see Fig. 4).
The model can be arbitrarily complex, as long as it is
capable of reconstructing the stress field based on the
measured kinematic data (e.g. deformation gradient) and
internal state variables that can be carried over between
different load levels. By choosing more complex models
that account for e.g. multiplicative decomposition of
deformation gradient [27], hyperelasticity [42], anisotropic
hardening [10] or even complete anisotropic elastoplasticity
[40] more complex material description could be reached,
but this has not been considered in this work.

Data processing

Following the FE simulations, raw displacements and
positions of data points were extracted from Abaqus and
exported into Matlab (2016a). The cloud of points was
then interpolated onto a rectangular grid of 409 × 349 data
points, corresponding to the data density typical of a DIC
measurement. The region of interest was then trimmed to
a grid of 362 × 202 points spanning the region of interest
(ROI) (Fig. 2), which produced 57,392 data points. In the
case of Yld2000-2D model, to reduce the computational
time, a coarser data grid was used: 214 × 119 producing
20,024 points in total.

The displacements were then corrupted with a Gaussian
white noise, with standard deviation of 0.3 μm, representa-
tive of a real experiment. For each data point, displacements
were smoothed using spatial and temporal filters, as typi-
cally done for experimental data. Temporal smoothing was
performed using the Savitzky-Golay method with a poly-
nomial order mtemp and a window size of wtemp. This
was complemented with a spatial smoothing using a Gaus-
sian filter of standard deviation σspat, with the window
size adjusted to be the maximum odd number smaller than
3 × σspat × 2. While temporal smoothing was performed
on all 400 time steps obtained from Abaqus, only some of
the temporal data points were passed to the identification
procedure. The main reason for that was to decrease the
computational effort, but also this increased the size of the
strain increments mitigating the impact of strain noise on
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the error in the stress reconstruction. The time steps used
for the identification are graphically presented on the global
force-displacement curves in Fig. 3.

For each model, a different number of time steps was
taken. In the case of Hill48 with linear hardening, the
calculations were relatively fast, thus having many temporal
points was not a problem. Ultimately, 83 frames were
considered. In the case of the power law hardening, during
deformation a plastic instability occurred and the strains
began to localize in a very small band, causing a geometrical
softening. This data was discarded, as shown in the figure.
Overall, only 60 frames were used, with a maximum plastic
strain of about 30%. Finally, for Yld2000-2D only 27 time
steps were used, as the constitutive law itself is much more
computationally demanding, and having more points would
just lead to inconvenient computational times, unnecessary
at this first validation stage.

After smoothing and down-sampling were performed,
the deformation gradient F was calculated using central
finite difference, which was then used to calculate V with
Eq. 4, R with Eq. 3 and εL with Eq. 5. The set of the
three quantities (F,R, εL) for all data points constitutes the
kinematic data used to identify the material parameters.

The kinematic data was then used as an input to an
in-house Matlab code implementation of the VFM. The
stresses were calculated using the deformation data and an
initial guess for the material parameters. The SBVFs were
calculated during the stress reconstruction process which
allowed the values of the cost function to be calculated with
Eq. 10. The material parameters were refined iteratively by
means of the Matlab function fmincon minimising (10)
with a sequential quadratic programming algorithm (SQP).
Starting points were selected randomly from the interval
between 50% and 200% of the reference values using a
random number generator. Two starting points were used for
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Fig. 3 Reaction force vs imposed vertical displacement obtained in
Abaqus. Markers indicate time steps taken for identification

each data set in order to ensure that the identified parameters
corresponded the the global minimum. The identification
algorithm is summarized in Fig. 4 in the form of a flowchart.
Finally, the identified parameters were compared against the
reference values to quantify the accuracy of procedure.

The SBVFs were updated when the first-order optimality
[1] fell below certain threshold (1 × 10−4), indicating
convergence of the procedure. The virtual fields were
recomputed and stored in memory, and the threshold was
scaled down by a factor of 2.3 to allow further refinement.
Sometimes, after selective updating was performed, the
value of cost function would increase, creating an apparent
local minimum terminating the minimisation. To prevent
this, the value of cost function was offset below previous
iteration when the update was performed. This scheme leads
to an increasing rate of updates as the solution converges,
providing valid values of virtual fields at the optimum. In
total, about 10–15 virtual fields were computed throughout
the identification consisting of more than 100 iterations,
with the number controlled indirectly by the two parameters
(first-order optimality threshold and threshold refinement
parameter).

User-defined virtual fields

This works aims at extending the SBVFs to large
deformation anisotropic plasticity. As mentioned earlier, the
specimen design was previously proposed by Rossi et al.
[39] who employed UDVFs to identify Hill48 parameters
using a single test, as well as Yld2000-2D parameters using
a combination of three tests. In this work, their user-defined
virtual fields were used as a benchmark to test the suitability
of the SBVFs. They showed that suitable VFs for the test
consisted of a combination of three virtual fields, defined
with the following virtual displacements:
{

u
∗(1)
x = 0

u
∗(1)
y = y

H

(35)

⎧
⎨

⎩
u

∗(2)
x = x

W

(|y| − H)

H
u

∗(2)
y = 0

(36)

{
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x = 1

π
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(
π x
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)
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(
π
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)
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∗(3)
y = 1

π
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(
π x

W

)
cos

(
π

y
2H

) . (37)

The virtual displacements are defined in the coordinate
system presented in Fig. 5. The virtual fields are constructed
in a way to include all stress components in the cost
function.

It is worth noticing, that only the first virtual field (35)
includes the virtual work of external forces. This impacts the
balance of contributions from each virtual field to the cost
function. Traditionally, the residual is scaled by the virtual
work of external forces to provide a dimensionless value
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Fig. 4 Flowchart representing the algorithm for material identification. There are three major parts: generation of raw data, processing of raw data
and material identification with the VFM

[33]. This was not possible here, as two of the virtual fields
do not include the contribution of the external forces. To
overcome this problem, scaling by the maximum value of
the internal virtual work was introduced, which normalises
the peaks of the internal virtual work to 1. To balance all
three fields even further, the residual coming from the first
virtual field was scaled by a factor 500, which was found
to produce the best results. This workaround scaling shows
that the manually defined virtual fields lack generality, and
must be individually tailored for each application, which is
a significant disadvantage.

Fig. 5 The coordinate system used to define virtual fields manually
within the region of interest

Error quantification

As the number of material parameters in the constitutive
models increases, quantifying the accuracy of identification
becomes a challenging task. Often, these models are defined
with parameters that lack physical meaning, and on its own
have limited impact on the model outcome, which is driven
by the compound action of all of the parameters, as for
Yld2000-2D. It is therefore important to establish tools to
compare different sets of identified parameters in order to
quantify the accuracy of the identification meaningfully.

Because of the rather large number of parameters
and their individual lack of physical meaning, a direct
comparison between reference and identified parameters
on a one to one basis is not always relevant to draw
meaningful conclusions. The apparent uniaxial yield stress
σ̂ as a function of material orientation was found to
provide a convenient and physical-based way of evaluating
identification errors. Assuming a yield criterion of the form
of Eq. 25 and a uniaxial state of stress at angle θ with
respect to the material coordinate system, the stress state in
the material coordinate system can be expressed as:

σ =
⎡

⎣
cos2(θ)σ̂

sin2(θ)σ̂

cos(θ) sin(θ)σ̂

⎤

⎦ . (38)
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This stress can be introduced into the expression of σeq and
the criterion can now be algebraically transformed into:

σ̂ = σ̂ (θ, ε̄p, ξ) (39)

Using Eq. 39, it is possible to reconstruct the variation of
the yield stress with angle θ and equivalent plastic strain
ε̄p. Such map can be calculated for both the reference
and identified parameters, so that they can be meaningfully
compared. The error can be quantified by looking at the map
of relative error:

r(θ, ε̄p) =
∣∣∣∣
σ̂ref − σ̂ident

σ̂ref

∣∣∣∣ . (40)

The map can be used to investigate whether the error is
associated with the variation of yield stress with material
orientation and/or hardening. Alternatively, the mean of the
error map, r̄ , gives a single numerical value for the accuracy
of the identification, later referred to as the global error:

r̄ = 1

π/2 × ε̄
p
max

π

2∫

0

ε̄
p
max∫

0

r(θ, ε̄p)dθdε̄p . (41)

This approach enables the reference and identified sets of
parameters to be compared in a more meaningful way as
opposed to parameter by parameter and furthermore, it also
allows for meaningful comparisons across different material
models.

Results

Validation of themethod

As a first validation of the methodology, the six raw FE
data sets generated for the Hill48 model were used. Since

the data did not contain any noise, no smoothing was used.
The following parameters were selected for generation of
the sensitivity-based virtual fields: δχi = −0.15χi , virtual
mesh of 14×14 elements, and the scaling parameters based
on the mean of top 30th percentile of the internal virtual
work terms. As shown before, the choice of the parameters
has a limited impact on the identification and mostly affects
the random portion of the error [28]. The results of the
identifications are presented in Table 3.

Clearly, for linear hardening, all tests were successful at
identifying the material parameters. Although marginal here, it
is worth noting that the mean error for sensitivity-based VFs
is already consistently smaller compared to the user-defined
ones. The single tests performed at either 30◦ or 60◦ were
only performed usig exact data and the linear hardening.
As they are unlikely to be practical when experimental and
modelling errors are introduced, they were disregarded for
the more complex cases. For the power law hardening, the
identified values were also very close to the reference. With
the exception of the combined 30◦+60◦ tests using the user-
defined VFs, the mean error was consistently below 2%,
showing that the methodology adopted here has a potential
of identifying Hill48 parameters using a single test. The
combined test was adopted in order to obtain more data
over uniaxial states of stress, in comparison to the 45◦ test.
The latter, probes the yield envelope under combined shear
and normal loading, with very little data points containing
information about pure σ11 or σ22 behaviour. By including
both 30◦ and 60◦ tests, more information is available about
these regions, as well about shearing behaviour enabling
identification all of the parameters.

Scaling of UDVFs is of crucial importance. Without
introducing the scaling discussed in Section “User-defined
virtual fields”, the UDVFs lead to large identification errors.
In particular, the yield stress is correctly identified only
near the material orientation angle, while the remaining

Table 3 Identified parameters and mean error as defined in Eq. 41 for the Hill48 model using exact data for both linear and power law hardening

Orientation Hardening VFs σ 0
11 σ 0

22 σ 0
33 σ 0

12 H n Mean error [%]

45◦ Linear UD 1.007 1.003 1.001 0.990 1.037 [-] 0.6

45◦ SB 1.002 1.000 1.001 0.997 0.996 [-] 0.2

30◦ UD 1.020 1.029 0.997 0.985 1.025 [-] 1.2

30◦ SB 1.003 1.000 1.001 0.997 0.994 [-] 0.3

60◦ UD 1.012 1.053 1.019 0.999 1.021 [-] 1.6

60◦ SB 1.000 1.009 1.003 1.002 0.995 [-] 0.3

30◦ + 60◦ UD 1.030 1.030 1.002 0.984 1.049 [-] 1.5

30◦ + 60◦ SB 1.001 1.001 1.000 0.996 0.993 [-] 0.4

45◦ Power UD 1.000 1.018 0.989 0.955 1.020 0.973 1.7

45◦ SB 1.020 1.015 1.014 1.005 1.039 1.036 1.1

30◦ + 60◦ UD 1.104 1.102 1.086 1.057 1.136 1.206 3.3

30◦ + 60◦ SB 1.003 1.003 1.003 0.999 1.005 1.008 0.1
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30(a) test without scaling 45(b) test without scaling 45(c) test with scaling

Fig. 6 Error maps as defined in Eq. 40 demonstrating the effect of
scaling between the three UDVFs (35–37) for 30◦ and 45◦ tests with
linear hardening. Without introducing scaling anisotropy is poorly

identified (Fig. 6a and b). The scaling significantly improves the
identification: see the difference between Fig. 6b and c

orientations are characterised incorrectly, as shown in
Fig. 6a and b. The reason for this is most likely due to the
first set of UDVFs (35) being overrepresented in the cost
function. As a result, the vertical component of the stress
field represented in the global frame is the major source
of information, leading to insensitivity of the cost function
to the other two stress components. The identification can
be improved by introducing the scaling which restores
the balance between the three virtual fields. In that case
the anisotropy is recognized much better, as shown in the
difference between Fig. 6b and c.

Effect of noise in the data

Having validated the methodology, the effect of noise on the
identified parameters was studied. Since in practice, spatial
and temporal smoothing are always implemented, we also
implemented this here to simulate the experimental process
more realistically. Without any smoothing, the difference
between UDVFs and SBVFs was even larger, but this
was thought to be a somewhat unfair comparison. First, a
sensitivity study was conducted to determine the optimal
smoothing parameters. The study was performed using
fixed settings, i.e. sensitivity-based virtual fields, linear

hardening and the same level of noise in each run. In total,
30 copies of noise were processed. The spatial smoothing
parameters were chosen under fixed temporal smoothing,
likewise the temporal parameters were chosen under fixed
spatial smoothing. As presented in Table 4, the smoothing
has a limited effect on the magnitude of both systematic
and random errors (global error value and its spread
respectively), which suggests that the choice of parameters
is not critical for the identification here. Generally, the
stronger the smoothing, the smaller the random portion of
error, at a cost of increased systematic error. However, it was
found previously that significant noise can cause spurious
elastic unloadings, which strongly affect both errors [26].
As a result, some smoothing settings can improve both
errors at the same time. In order to balance systematic
and random errors, spatial smoothing with a window of 9
was selected, combined with 11 points temporal smoothing
using 3rd order polynomial.

The selected smoothing parameters were used to study
the effect of the virtual fields on the systematic and random
errors. The identification was run on 30 copies of noise,
as this gives enough statistical representation to establish
the random part of the error. The results are presented in
Tables 5 and 6 for the linear and the power law respectively.

Table 4 Identified parameters and mean errors as defined by Eq. 41 for Hill48 model with linear hardening using different smoothing combinations

σspat/ window wtemp/ mtemp σ 0
11 σ 0

22 σ 0
33 σ 0

12 H Mean error [%]

1.0/5 11/3 0.974 ± 0.27 0.961 ± 0.26 0.998 ± 0.07 1.108 ± 0.15 0.858 ± 0.43 4.08 ± 0.09

1.3/7 11/3 0.967 ± 0.26 0.965 ± 0.242 0.988 ± 0.06 1.031 ± 0.15 0.941 ± 0.43 1.99 ± 0.11

1.5/9 11/3 0.966 ± 0.29 0.968 ± 0.25 0.984 ± 0.06 1.008 ± 0.16 0.963 ± 0.46 1.45 ± 0.13

1.85/11 11/3 0.963 ± 0.31 0.967 ± 0.25 0.980 ± 0.07 0.991 ± 0.17 0.975 ± 0.51 1.70 ± 0.15

1.5/9 11/3 0.966 ± 0.29 0.968 ± 0.25 0.984 ± 0.06 1.008 ± 0.16 0.963 ± 0.46 1.45 ± 0.13

1.5/9 15/3 0.977 ± 0.24 0.971 ± 0.21 0.985 ± 0.06 1.026 ± 0.13 0.975 ± 0.36 1.50 ± 0.08

1.5/9 21/3 1.035 ± 0.33 1.013 ± 0.35 0.999 ± 0.10 1.011 ± 0.54 1.055 ± 0.66 2.33 ± 0.08

The parameters are expressed relative to the reference values and the uncertainty represents a coefficient of variation expressed in %
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Table 5 Identified parameters for Hill48 model with linear hardening

Orientation VFs σ 0
11 σ 0

22 σ 0
33 σ 0

12 H Mean error [%]

45◦ UD 0.954 ± 0.15 1.021 ± 0.20 0.994 ± 0.03 1.034 ± 0.11 0.903 ± 0.35 2.13 ± 0.04

45◦ SBs 0.9656 ± 0.29 0.968 ± 0.25 0.984 ± 0.06 1.008 ± 0.16 0.963 ± 0.46 1.45 ± 0.13

30◦ + 60◦ UD 1.041 ± 0.33 1.042 ± 0.03 1.010 ± 0.01 1.009 ± 0.03 1.048 ± 0.05 2.56 ± 0.01

30◦ + 60◦ SB 0.993 ± 0.08 0.992 ± 0.08 0.994 ± 0.02 1.036 ± 0.09 0.962 ± 0.16 1.29 ± 0.04

The parameters are expressed relative to the reference values and the uncertainty represents a coefficient of variation expressed in %

Hill48 identification

Linear hardening

In the case of linear hardening, the sensitivity-based virtual
fields provide more accurate identification, however with
about three times larger random error compared to the
UDVFs. Although individual parameters exhibit errors as
large as 5%, the global error is significantly smaller,
indicating compensation between parameters. Remarkably,
the overall error is very small, for the level of white noise
added to the displacements. It must be noted that when no
smoothing was used on the data, the accuracy was poor
and the global error was about 20%. By replacing a single
test (45◦) with two combined tests (30◦ + 60◦), the random
part of the error is reduced by a factor of 4. This was
expected as more information is used, which averages out
noise more effectively. The effect on the systematic error
is not as notable; for the sensitivity-based VFs the mean
error is slightly reduced, while for the user-defined VFs it
increased a bit, as shown in Fig. 7a.

Power law hardening

The results are markedly different for the power law
hardening. Firstly, the effect of noise is significantly larger
compared to the linear hardening case, as shown in Fig. 7
(note the difference in scaled between Fig. 7a and b).
The mean errors for the 45◦ tests are between 4 and
5%, compared to about 2% for the simpler hardening
law (Fig. 7). While level of error is still satisfactory,
it must be noted that it represents a lower bound as

the simulation of experimental uncertainties remains very
basic. Unlike the linear hardening case, the random error
was the smallest when the SBVFs were used and the
smallest systematic error was obtained with the UDVFs.
Significant improvement was found when the single test was
replaced by the combined tests, both in terms of systematic
and random errors. This indicates that the additional test
contributes significant data to the cost function. Since the
smoothing parameters were chosen for the linear hardening
model, it is possible that a different combination of
parameters would provide smaller errors, and differentiate
between the two virtual fields types in a different way.

While the single mean error term makes it straightfor-
ward to compare the overall accuracy of the identification
the influence of errors on the yielding and hardening param-
eters can be more readily understood by examining the
error maps, proposed in Section “Error quantification”. In
Fig. 8 the SBVFs provided the larger errors at 45◦, even
though the single test at 45◦ contains direct information
about yielding at this orientation. For the UDVFs the error
was the lowest for angles close to the specimen orientation,
for the single test at 45◦ and for the combined tests at both
ends of the angle spectrum, as expected from a mechanical
perspective. A possible explanation is the overconstraining
of the sensitivity-based virtual fields. As four independent
stress sensitivity components are mapped onto only two vir-
tual displacements maps, the resulting virtual fields are not
reproduced perfectly. This appears to be especially true for
the shearing components as they are cross-derivatives of the
calculated virtual displacements. This might enhance the
error on the shearing yield stress, observed as a slightly
larger error at 45◦. Further study needs to be done to confirm

Table 6 Identified parameters for Hill48 model and the power law hardening

Orientation VFs σ 0
11 σ 0

22 σ 0
33 σ 0

12 H n Mean error [%]

45◦ UD 0.842 ± 1.11 0.891 ± 1.55 0.925 ± 0.68 0.995 ± 0.47 0.849 ± 1.12 0.900 ± 1.18 4.67 ± 0.34

45◦ SB 0.929 ± 0.43 0.929 ± 0.44 0.962 ± 0.38 1.031 ± 0.33 1.045 ± 0.55 1.028 ± 0.75 4.35 ± 0.10

30◦ + 60◦ UD 1.020 ± 0.26 1.021 ± 0.26 1.032 ± 0.28 1.053 ± 0.30 1.042 ± 0.24 1.074 ± 0.59 2.60 ± 0.08

30◦ + 60◦ SB 0.967 ± 0.18 0.968 ± 0.18 0.996 ± 0.17 1.045 ± 0.17 1.026 ± 0.27 1.043 ± 0.40 3.15 ± 0.06

The parameters are expressed relative to the reference values and the uncertainty represents a coefficient of variation expressed in %
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Fig. 7 Bar plot representing
systematic and random errors
for the two tests with different
virtual fields. The height of the
bar indicates the systematic
error, while the error bar
represents ± the standard
deviation
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Manual VFs, noisy
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Sensitivity VFs, exact
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(a) linear hardening (b) power law hardening

this hypothesis. While the Hill48 model is acceptably iden-
tified using either UDVFs or SBVFs it must be noted that
the UDVFs presented in Eqs. 35–37 were the result of a long
process of trial and error by the lead author of [39], which
was time-consuming. The SBVFs provide nearly equiva-
lent results using a systematic procedure without any trial

and error, resulting in a much faster and more rigorous
process.

The quality of the virtual fields can be indirectly
quantified by means of the curvature of the cost function
at the minimum. Theoretically, the more curved the cost
function, the more stable the identification. Additionally,

(a) UDVFs, 45 (b) SBVFs, 45

(c) UDVFs, 30 (d) SBVFs, 3060 60

Fig. 8 Error maps obtained with the mean parameters identified from the tests using manually-defined and sensitivity-based virtual fields
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Fig. 9 Graphical representation of Hessians computed for Hill48 model with the exact data

a much desired feature is to have balanced values on the
diagonal of the Hessian matrix, as this means balanced
sensitivity of the cost function to all of the parameters. The
Hessian can be mathematically expressed as:

HV F = 1

Φident

∂2ΦV F

∂χi∂χj

(42)

where HV F is the Hessian matrix for a given virtual field,

Φident is the value of cost function at minimum, and ∂2ΦV F

∂χi∂χj

is the second derivative of the cost function with respect to
the material parameters. The balance of the terms is mostly
dominated by the mechanics of the test, however it can be
improved by a good choice of virtual fields. In order to
investigate how the balance is affected by this choice, it is
convenient to look at the Hessian scaled by the largest term.
The curvatures of the cost function for the linear hardening
case are presented in the figure below:

By comparing the two Hessians (Fig. 9) it is apparent
that the SBVFs do slightly better job at balancing σ

y

11 and
σ

y

22 (UDVFs have virtually zero sensitivity to σ
y

22), at a cost
of decreased sensitivity to σ

y

12. This is consistent with the
observations made regarding Fig. 8, where SBVFs noted
larger error at about 45◦ compared to the UDVFs.

Yld2000-2D identification

In the case of the Yld2000-2D model, the main goal was
to explore the comparative robustness of the UD and SB
VFs when the model is richer in parameters to be identified.
Only exact data from the 45◦ test were used, as it is already
a good example of the UDVFs underperforming. The
identified parameters are presented in Table 7. It is worth
noting, that in the case of Yld2000-2D, the anisotropic
parameters do not have any obvious physical meaning, thus
comparing them on a parameter to parameter basis is not
so relevant to draw conclusions as discussed in Section
“Error quantification”. The distribution of initial and final
yield stresses are presented in Fig. 10 and the identified
yield loci are shown in Fig. 11. The superiority of the
SBVFs is spectacular. The distribution of anisotropy is
very well identified and the main source of error comes
from the hardening modulus, which is consistent with the
trend observed for Hill48. In the case of the UDVFs, the
identification was highly inaccurate. The parameters found
were significantly different from the reference, and four out
of eight reached identification constraints (set to 50% and
200% of the reference). Most likely, this is due to the generic
nature of the fields. Yld2000-2D is a more complex model

Table 7 Identified values of parameters for the Yld2000-2D from a 45◦ test using exact data

VFs α1 α2 α3 α4 α5 α6 α7 α8 σ0 H Global error [%]

Reference 1.11 1.35 1.21 1.11 1.07 0.96 1.21 1.15 256.00 855.00 [-]

UDVFs 2.22 0.68 1.68 1.49 0.54 0.48 1.04 0.77 241.39 783.14 14.6

SBVFs 1.17 1.41 1.24 1.15 1.11 1.04 1.26 1.20 264.74 934.26 1.6
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Fig. 10 Variation of the yield stress with the θ angle for the Yld2000-
2D model. The identified curves were generated using parameters
identified in a 45◦ test using noiseless data

in which each parameter has a small effect on the overall
yield surface, thus extracting data correctly challenges the
virtual fields much more, compared to the case of Hill48, for
which the used UDVFs were specifically developed. This
can be observed by looking into Hessians, computed with
Eq. 42 and presented graphically in Fig. 12.

In both cases, there is a strong sensitivity to the shearing
components (α7, α8) and a moderate one for α4. When
the UDVFs were used, there was very little sensitivity to
the remaining parameters, except for the cross-correlation
between α7 and three other parameters: α3, α5 and α8. In
contrast, for the SBVFs, many more parameters were active.
There was a cross-correlations between α7 and all other
parameters, as well as small to moderate sensitivities for all
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Fig. 11 Initial shape of the yield stress surface for the Yld2000-
2D model. The identified curves were generated using parameters
identified in noiseless 45◦ test data. The outline is drawn at 0 shear
stress

α parameters, showing that most of the material parameters
were active during the test and the SBVFs were capable of
balancing their contribution.

Computational efficiency

One of the important practical aspects of the type of metho-
dology presented here concerns computational efficiency.
Information on computing times are often left out in publi-
cations on this topic and therefore, it is difficult to compare
computational efficiency with competing techniques moti-
vating our decision to report this information.

The identification was run on a standard PC with an
Intel Core i5 processor (3.20GHz) and 24 GB of RAM
memory. The stress reconstruction routines were coded
in Matlab, however they were automatically translated to
C language and called as mex file using Matlab coder
tool. This procedure improved the efficiency of the stress
reconstruction routine, which is the most computationally
demanding process. The approximate running times of
identification for Hill48 model can be found in Fig. 13. In
case of Yld2000-2D the time needed to obtain the results
were 122 and 278 hours respectively for the UDVFs and
SBVFs.

In the case of Hill48 model, the identification took
approximately six hours for linear hardening and between
eight and ten hours in the case of power law hardening,
due to the additional unknown parameter. The SBVFs
are not significantly slower compared to the UDVFs,
and the difference is mostly due to the additional stress
reconstructions needed to calculate the incremental stress
sensitivities. The number of these reconstructions can
be controlled by the number of times the SBVFs are
updated, and so the difference could be brought down even
more. It should also be emphasized that these computing
times would be significantly reduced using a compiled
programming language instead of Matlab.

In the case of the Yld2000-2D model the identification
times were much longer, mostly due to very slow stress
reconstruction procedure, which on average took ten
minutes for the chosen data density. Additionally, as 10
unknown parameters were sought, the calculations of the
gradients in the minimisation problem call for many stress
reconstructions, further increasing the disparity between
Hill48 and Yld2000-2D. As a comparison, the FEM model
used to generate the data, took 4 hours to complete.

Although the running times were very high, there are
many ways in which they could be improved. First, and as
stated before, efficient implementation in a fast language
would lead to a significant improvement. Second, replacing
the implicit stress reconstruction algorithm with a direct
method such as the one used in [39] would make the stress
reconstruction faster, especially in the case of Yld2000-2D
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Fig. 12 Graphical representation of Hessians computed for Yld2000-2D model with the exact data

for which computing derivatives for the implicit scheme
is a very computationally intensive process. The direct
method is valid only for large deformation data (with
plastic flow well established), however it could be coupled
with the implicit algorithm for elasto-plastic transition. It
was found that when the SQP algorithm was replaced
with the Levenberg-Marquardt algorithm, the computations
were up to 10 times faster, indicating that choosing a
proper tool for minimising the cost function is crucial.
For instance, the identification of the Yld2000-2D model
using the SBVFs was reduced from 278 hours with SQP to
merely 26 with Levenberg-Marquardt. The major advantage
of the Levenberg-Marquardt algorithm is that it requires
significantly fewer iteration to find a minimum, compared to
the SQP algorithm. In the case of Hill48 identifications the
former converged in approximately 8 iterations, compared
to 130 of the latter. However, the efficiency of the

Fig. 13 Average computational time for the exact data presented in the
paper (Hill48 model)

Levenberg-Marquardt algorithm heavily relies on the initial
guess which must be close to the solution to obtain fast
convergence. This is not required by SQP which can find the
solution from any starting point.

Choosing an optimal data density remains an open
problem. In this work, about 60,000 spatial data points
were used for the identification problem. However, this
could potentially be reduced. For DIC measurements, the
number of data points could be effectively controlled by
means of the stepsize. Additionally, the number of load
steps taken into consideration could be varied. It is worth
noting that if temporal smoothing is performed on the entire
collected data, even the time steps not used explicitly in
the identification affect the outcome, as the information is
passed through the temporal filter. The limiting factor for
the temporal resolution is related to the stress reconstruction
algorithm, i.e. in the case of implicit algorithms the larger
the strain increments, the larger the reconstruction error.
More studies are needed on the optimal number of data
points for accurate reconstruction of material parameters.
To define optimal spatial and temporal sampling leading to
acceptable systematic and random errors, the impact of DIC
parameters, and smoothing would need to be assessed with
a synthetic image deformation procedure as in [37].

Conclusions and future work

In this work we extended the sensitivity-based virtual fields,
originally proposed in [28] to large deformation anisotropic
plasticity, which is the main novelty of this contribution. We
tested the performance of the fields using a deep-notched
tensile test, already used in that context by Rossi et al.
[39], and found that the proposed virtual fields can be
successfully applied to the problem.
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It was found that for the Hill48 model both UDVFs and
SBVFs were capable of correctly identifying the parameters
from a single test. It must be noted that the UDVFs were
developed using a trial-and-error approach by the lead
author of [39]. In that context, the systematic procedure
of SBVFs seems to be especially appealing as it removes
the need of an informed input by the user to arrive at
correct parameters. This is especially important with even
more complex models such as Yld2000-2D where deriving
appropriate UDVFs is a challenging task.

The main advantage of the new fields comes from
the automatic generation procedure, with limited input
from the investigator, involved only in setting virtual
mesh density and scaling parameters. It was found before
that these parameters have very limited effect on the
overall identification and can be chosen a priori without
a significant impact on the parameter values [28]. As
a result, high quality virtual fields are generated for
any material model, regardless of the test configuration.
This opens up possible implementation in a user-friendly
VFM software for non-linear model identification, like the
MatchID DIC/VFM platform [29]. We demonstrated the
effectiveness of the method on both Hill48 and Yld2000-
2D, with the latter especially successful in comparison to
the standard approach.

The identifiability of Hill48 model from a single test
has been already established before [13, 39]. Interestingly,
the results suggest that a single test performed at 45◦ may
contain enough information to characterise the Yld2000-
2D criterion as well. In fact, if confirmed experimentally,
it would give an exciting alternative to the standard
test protocol involving three uniaxial tests and one
biaxial, significantly reducing the experimental effort to
characterise a material. This would be possible due to the
ability of the SBVFs to identify in space and time when each
parameter is active and focus exclusively on those regions
when identifying the parameters.

The method is currently being validated experimentally
on an automotive DC04 steel alloy. The results from both
UDVFs and SBVFs will be compared to the parameters
identified with the standard multi-test protocol to confirm
whether the Yld2000 criterion can indeed be identified from
a single heterogeneous test, which would be a significant
step forward to reduce identification costs and time scales.

Although a relatively simple material model was
employed in this work, the presented method is general
and can be used with any constitutive model. There are
no limitations on the complexity of material model used
within the VFM framework, given that it reconstructs
stress field from measured kinematic fields (deformation
gradient) and some internal state variables (that can be
resolved by considering history of deformation). It must be
stressed that usually the more complex the model, the more

material parameters must be identified experimentally. The
method proposed here allows for complete identification of
material parameters given the experiment contains sufficient
information. To the authors’ best knowledge there is no
systematic way of assessing the level of information that a
test contains given a constitutive model. Investigating this in
future would be certainly of importance for designing better
experiments.

The new route to virtual field selection demonstrated
here has potential in many applications, in particular for
non-linear models with large numbers of parameters. An
obvious extension would be hyper-visco-elastic models.
The VFM has been applied to such materials in the past,
see [17] for instance, but always with UDVFs, limiting
the complexity of the considered models. Another area of
interest concerns transient dynamic tests to identify the
high strain rate elasto-plastic response of materials. Finally,
now that a systematic route has been clearly identified to
generated virtual fields automatically for non-linear laws,
the problem of test optimization can be addressed. This has
been studied for linear elasticity in the past, thanks to the
availability of the noise-optimized virtual fields from [3],
and can now be addressed for non-linear models using a
procedure similar to that in [16].
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26. Le Louëdec G, Pierron F, Sutton M, Reynolds AP (2012)
Identification of the local elasto-plastic behavior of FSW welds
using the virtual fields method. Exp Mech 53(5):849–859.
https://doi.org/10.1007/s11340-012-9679-0

27. Lee EH (1969) Elastic-plastic deformation at finite strains. J Appl
Mech 36(1):1. https://doi.org/10.1115/1.3564580

28. Marek A, Davis FM, Pierron F (2017) Sensitivity-based virtual
fields for the non-linear virtual fields method. Comput Mech
60(3):409–431. https://doi.org/10.1007/s00466-017-1411-6

29. MatchID: www.matchid.eu, last accessed 29/06/2018
30. Min J, Carsley JE, Lin J, Wen Y, Kuhlenkötter B (2016)

A non-quadratic constitutive model under non-associated flow
rule of sheet metals with anisotropic hardening: Modeling
and experimental validation. Int J Mech Sci 119:343–359.
https://doi.org/10.1016/j.ijmecsci.2016.10.027
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