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Abstract
Advanced high strength steels are widely used in the automotive industry due to their appropriate strength to weight ratio. This
alloy has unique hardening behavior. In this paper, a novel analytical model is introduced to predict springback in U-shaped
bending process of as-received and pre-strained DP780 dual phase steel specimens. This model is based on the Hill48 yield
criterion and plane -strain condition. The effect of sheet thinning and the motion of the neutral surface is taken into account on the
springback. The modified Yoshida-Uemori two surface hardening model is applied to investigate the effect of work hardening
stagnation. This novel model is examined on the Numisheet 2011 benchmark 4. The effects of the blank holder force and work
hardening stagnation are studied on the sheet springback phenomenon. By comparison of the present model with previous
alternate models, obtaining the more accuracy is tangible. Also, it is demonstrated that the springback parameters have more
changes with increasing the blank holder force. Also, the parameter of the work hardening stagnation has more effect on the pre-
strained specimen as compared to the as-received sample.

Keywords Springback .Advancedhigh-strengthsteel .Yoshida–Uemorimodel .U-drawbending .Two-surfacehardeningmodel

Introduction

Springback is an undesired phenomenon during the forming
process of metallic parts, which must be compensated in the
optimization process. Material with the higher strength and
lower modulus of elasticity have greater springback quanti-
ties. For example; advanced high-strength steels (AHSS) have
more springback compared to conventional steels. Thus,
multi-step forming processes are usually used in forming these
alloys. Therefore, investigating the effect of pre-strain on the
sequent forming operations of this material is significant. The
U-shaped bending processes are used in the producing com-
ponents such as channels, beams, and frames. In this process,
sheet metals experience complex deformation, including
stretch-bending, unbending and reverse bending. Therefore,
after unloading in addition to the springback, the curvature
of the sidewall will be seen. Accurate springback prediction
in this forming process needs hardening models which can

consider complex behaviors of material in reverse loading
stage. Various methods, including analytically, semi-
analytical and finite element method (FEM) are used to predict
springback of bending process. Analytical models can be used
only for simple part geometries. FEM is time-consuming in
comparison with the analytical methods and is sensitive to
numerical parameters such as the type and size of the ele-
ments, integration scheme, yielding criterion and strain hard-
ening rule.

The accuracy of the springback prediction increases when
the mechanical behavior is well described. So, the amount of
springback depends on two main factors, namely; the stresses
in the material before unloading and unloading modules. The
unloading modulus of the material is not constant and is a
function of plastic strain. The mechanical behavior of mate-
rials in reverse loading due to reverse strain in the sheet metal
forming process is highly regarded. Fig. 1 shows the flow
stress curve on the outer surface of the sheet while bending
around die arc and straightening process. Four features can be
seen in this curve that includes: Bauschinger effect, transient
behavior, permanent softening and work hardening
stagnation.

Yoshida and Uemori introduced a hardening model be ca-
pable of reproducing the permanent softening, transient

* Hamid Hajbarati
h.hajbarati@gmail.com

1 Department of Mechanical Engineering, Imam Khomeini
International University, Qazvin, Iran

International Journal of Material Forming (2019) 12:441–455
https://doi.org/10.1007/s12289-018-1427-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s12289-018-1427-2&domain=pdf
http://orcid.org/0000-0001-9317-9596
mailto:h.hajbarati@gmail.com


Bauschinger effect and work hardening stagnation during
large deformations [1]. In the category of two surface plastic-
ity hardening models, only the Yoshida–Uemori model can
capture work hardening stagnation. In this model, the relative
kinematic motion of the yield surface concerning the
bounding surface is a function of the difference between their
sizes, and finally, it reaches to a saturated value. Thus, the
yield surface never overpasses the bounding surface. The
Yoshida–Uemori model can be used in a commercial finite
element software to simulate the material behavior during
the cyclic loading. In this case, Ghaei et al. introduced a
semi-implicit and fully implicit integration scheme for imple-
mentation of the Yoshida–Uemori two-surface model into the
finite element program and predicted the springback during
the forming process [2, 3]. Hu et al. simulated the forming
process and springback of an automobile body panel using
JSTAMP/LS-DYNA and based on the Yoshida-Uemori con-
stitutive model [4]. in addition, Zhang et al. simulated the
stamping process using the LS-DYNA software and predicted
springback for AHSS sheet based on the Yoshida-Uemori
hardening model [5]. Also, Zhu et al. evaluated the accuracy
of Yoshida–Uemori two-surface model in springback predic-
tion after rotary-draw bending of the thin-walled rectangular
H96 tube [6].

In past years a few studies have been introduced for ana-
lytical springback predictions in comparison with the finite
element methods. Kagzi et al. developed an analytical model
for springback prediction in bending of the bimetallic sheet
based onWoo andMarshal constitutive equation and logarith-
mic strain [7]. Yi et al. proposed an analytical model based on
residual differential strains between outer and inner surfaces

after elastic recovery [8]. In the case of a V-bending process,
Yang et al. proposed a model to predict the springback in air-
bending of AHSS, considering Young’s modulus variation
along with a piecewise hardening function [9]. Dong-Juan
Zhang et al. proposed a method for sheet springback after V-
bending based on Hill’s yielding criterion and plane- strain
condition [10]. In the case of the double curvature forming
process, Parsa et al. presented an analytical model based on
the moment-curvature relationships by considering changes of
sheet thickness in double curved sheet metal forming method
[11]. Zhang and Lin developed a solution of springback be-
havior of the sheet metals stamped by a rigid punch and an
elastic die under plane-stress deformation [12]. Xue et al.
established an analytical model based on the membrane theory
of shells and an energy method after a double-curvature
forming operation [13]. In the case of U-bending process,
Pourboghrat and Chu described a technique to study the
springback in the two-dimensional draw bending operation
by using the moment-curvature relationships [14]. Dongjuan
Zhang et al. established an efficient model on the Hill48 yield-
ing criterion, plane- strain condition and the kinematic, isotro-
pic and combined hardening rules to consider the springback
after U-bending [15]. Nanu and Brabie presented a model for
prediction of springback parameters during U stretch–bending
process as a function of stresses distribution in the sheet thick-
ness [16]. Jiang and Dai applied the isotropic hardening rule to
investigate the time-dependent springback behaviors for an
HSLA steel plate in the U-bending [17].

In previous analytical models, the energy method was used
to calculate springback after U-shaped stretch-bending pro-
cess. This method is based on the assumption of linear stress

Bounding surface

̅

Re-yielding

Bounding surface

Transient Bauschinger effect

Work hardening stagnation 

̅

Permanent softening

Fig. 1 The schematic of yield and
bounding surface motion in a
uniaxial forward-reverse loading
[1]
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distribution across sheet thickness while in reality, this as-
sumption is not correct.

In previous papers, authors obtained the springback of
a DP780 strip with and without pre-strain effects after U-
shaped stretch bending process and explained the bench-
mark 4 of the Numisheet 2011 based on the energy meth-
od [18, 19]. These models were established on the aniso-
tropic nonlinear kinematic (ANK) hardening model by
considering the variation of material unloading modulus.
Also, the Hill48 yielding criterion was used at the plane-
strain condition as well as the material transverse isotropy.
It was seen that considering the variable unloading mod-
ulus in these models causes reduction of the accuracy for
the springback prediction as also reported by Yang et al.
[9]. This event can be due to the plane- strain condition
along with some simplifications, which were inserted in
those solutions. Accordingly, in this paper, we present a
novel analytical model based on the modified Yoshida-
Uemori two-surface hardening model with the constant
unloading modulus. The Hill48 yielding criterion is used
based on the assumption of plane - strain condition and
orthogonal axes of anisotropy. In this model, the change
of the sheet thickness during unloading process is
neglected. The effect of the work hardening stagnation
and blank holder force on the springback of as-received
and pre-strained specimens are investigated.

Material models

In this paper, the modified Yoshida-Uemori hardening model
and Hill’s 1948 yielding criterion are used to analyze the ma-
terial behavior of DP780 steel sheets. Also, the plane- strain
condition is considered to calculate the sheet strains and
stresses.

Theory of the modified Yoshida-Uemori two-surface
hardening model

The model of Yoshida-Uemori is a revised model based
on Chaboche model, which can capture phenomenon of
the work hardening stagnation. This model assumes two
surfaces; yield surface and boundary surface in which
the yield surface develops within the bounding
surface as shown in Fig. 2. The yield surface has kine-
matic hardening only while the bonding surface has
both kinematic and isotropic hardening. Firstly, the as-
sociated flow rule for the yield surface is given by the
following equation [1]:

f ¼ σ σ−αð Þ−Y ¼ 0 ð1Þ
Where σ and α denote the Cauchy stress deviator and
center of yield surface, respectively. Also, Y is the size
of yield surface. Moreover, the bounding surface can be
described as follows:

F ¼ σ σ−βð Þ− Bþ Rð Þ ¼ 0 ð2Þ
Where β is the center of bounding surface, and B and R
are the initial size of the bounding surface and isotropic
hardening, respectively. The backstress α is considered
as [1]:

α ¼ α* þ β ð3Þ
Where α∗ is the relative motion of the yielding surface
concerning the bounding surface. Its rate can be calcu-
lated as follows [20]:

α
⋅ * ¼ Cx

Bþ R ε
p� �
−Y

Y
σ−αð Þ−α*

0
@

1
Aε

⋅ p

ð4Þ

In above equation, Cx is a material parameter, and ε⋅p is the
equivalent plastic strain rate. Also, the kinematic hardening of
the boundary surface is expressed as follows:

β
⋅
¼ k

b

Bþ R ε
p� � σ−βð Þ−β

0
B@

1
CAε

⋅ p

ð5Þ

In the modified Yoshida-Uemori hardening model pro-
posed by Eggertsen and Mattiasson [20], the following as-
sumptions are considered:

B ¼ Y ; R ε
p� �

¼ σ ε
p� �
−β ε

p� �
−Y ð6Þ

The function σ �εpð Þ can be determined based on Swift hard-
ening law as follows:

Bounding surface F

O

B+R

β

α *α

Yield surface f

Fig. 2 Schematic of Yoshida-Uemori two surface model [1]
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σ �εpð Þ ¼ K ε0 þ �εpð Þn ð7Þ
where K and n are the parameters of the Swift hardening
equation as are equal to K = 1280.23 Mpa and n = 0.146, re-
spectively [21]. Also, the value of the parameter ε0 for Y =
527 Mpa is equal to 0.00229.

Besides, the stresses during the uniaxial forward tensile
loading can be calculated as follows [20]:

βfowt ¼ b 1−e−kε
p� �

αfowt ¼ σ ε
p� �
−Y

σfowt ¼ σ ε
p� �

8>>>>><
>>>>>:

ð8Þ

Alternately, during the uniaxial reverse compressive load-
ing, we have:

α*
revc≈−R ε

p� �
þ α*0

x þ R ε
p� �� �

e
−Cx ε

p

−ε
p

0

� �

βrevc≈
b −Y þ α*

x

� �
Y þ R ε

p� � þ β0
x−

b −Y þ α*
x

� �
Y þ R ε

p� �
0
B@

1
CAe

−k ε
p

−ε
p

0

� �

αrevc ¼ α*
x þ βx

σrevc ¼ −Y þ αx

8>>>>>>>>><
>>>>>>>>>:

ð9Þ

Corresponding to above procedure during the reverse load-
ing, it can be seen that σx tends toward σ �εpð Þ for the large
values of εp. This fact indicates that the above equations can-
not comprise the permanent softening and the phenomenon of
the work hardening stagnation. For this purpose, Yoshida and
Uemori proposed an additional surface by g in the stress space
as shown in Fig. 3 with the following equation [1]:

g ¼ σ σ−qð Þ−r ¼ 0 ð10Þ
Where q and r denote the center and size of the surface, re-
spectively. It is assumed that the center of the bounding

surface β exists either on or inside the surface g. In addition,
the isotropic hardening of the bounding surface (R) takes place
when tensor of β remains on the surface g as shown in Fig.
3(b) which means:

g ¼ σ β−qð Þ−r ¼ 0
∂g
∂β

: β
⋅
> 0

ð11Þ

If the above condition is satisfied, then R˙ > 0; otherwise
R˙ ¼ 0. The kinematic hardening of the surface g is defined
as [1]:

q
⋅ ¼ μ

⋅
β−qð Þ ð12Þ

With:

μ
⋅ ¼ Γ⋅ − r⋅

r
ð13Þ

Γ
⋅
¼ ∂σ β; qð Þ

∂β
: β

⋅
ð14Þ

Also, the isotropic hardening of surface g is defined as
follows:

r
⋅ ¼ hΓ

⋅
when R

⋅
> 0 ð15Þ

r
⋅ ¼ 0 when R

⋅
> 0 ð16Þ

Where 0 ≤ h ≤ 1 is a material parameter.
If the center of the bounding surface stays on the surface g

then:

r ¼ β−q ð17Þ

And:

μ
⋅ ¼ 1−hð ÞΓ⋅

r
ð18Þ

In the following procedure, by including stretching,
compressive bending and straightening, the effect of
work hardening stagnation will be investigated during
one loading cycle. By substituting Eq. (17) into Eq.
(14), the following equation can be obtained during
stretching process:

Γ
⋅
¼ β

⋅
ð19Þ

By substituting Eqs. (18) and (19) into Eq. (12), we have:

q
⋅ ¼ 1−hð Þβ

⋅
ð20Þ

q

rβ

O O

g

q

β

(a) (b)

g

Bounding surface F

Fig. 3 Schematic of surface g in stress space. a Non-isotropic hardening
(Ṙ ¼ 0 ); and b isotropic hardening (Ṙ > 0 ) [1]
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Moreover, by substituting Eq. (19) into the Eq. (15), the
following equation can be obtained for the stretching process:

r
⋅ ¼ hβ

⋅
ð21Þ

The work hardening stagnation stops during the reverse
compressive loading when the following condition is satis-
fied:

βwhs
revc ¼ −r þ q ð22Þ

In above equation, βwhs
revc is equal to the critical value which

the work hardening process starts after reaching βrevc to its
value By substituting Eqs. (20) and (21) in the above equation,
the following critical value can be obtained:

βwhs
revc ¼ 1−2hð Þβfowt ð23Þ

Moreover, the following equations will be obtained during
the compressive bending:

r
⋅ ¼ −hβ

⋅
ð24Þ

q
⋅ ¼ 1−hð Þβ

⋅
ð25Þ

After the work hardening process, the center and radius of
surface g can be updated by integrating the Eqs. (24) and (25)
as follows:

r ¼ hβfowt−h βrevc−β
whs
revc

� � ð26Þ

q ¼ 1−hð Þ ⋅β f owt þ 1−hð Þ ⋅ βrevc−β
whs
revc

� � ð27Þ

During the straightening stage after compressive bending,

the following critical value for βwhs
revt can be obtained:

βwhs
revt ¼ r þ q ¼ β f owt þ 1−2hð Þ ⋅ βrevc−β

whs
revc

� � ð28Þ

Where βwhs
revt is equal to a critical value. The work hardening

process starts after reaching βrevt to that. The parameters of the
modified Yoshida-Uemori model are given in Table 1 for
DP780.

Hill’s 1948 yielding criterion

In the previous model, however, the blank was considered
with the transverse isotropy while in this model, the axes of
material anisotropy are assumed to be orthogonal. By
neglecting the shear stresses and (σr = 0), the Hill48 yield
criterion can be expressed as follows [23]:

Fσz
2 þ Gσθ

2 þ H σθ−σzð Þ2 ¼ σ
2

ð29Þ

Differentiating both sides of Eq. (29) and considering dσ
¼ 0 leads to write:

dσz

dσθ
¼ Gþ Hð Þσθ−Hσz

Hσθ− F þ Hð Þσz
ð30Þ

According to the principle of plastic normality, we have:

dεz
dεθ

¼ −
dσz

dσθ

� �−1

¼ εz
εθ

ð31Þ

Thus:

εz
εθ

¼ F þ Hð Þσz−Hσθ

Gþ Hð Þσθ−Hσz
ð32Þ

Since εz = 0, the following relation will be obtained:

σz ¼ H
H þ F

σθ ð33Þ

Substituting the above equation into the yield function re-
sults

σ ¼ σθj j
Ch

ð34Þ

W h e r e Ch ¼ H þ Fð Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F þ Gð ÞH2 þ 2FGH þ Gþ Hð ÞF2

p
is the hardening pa-

rameter. Based on the equivalent plastic work principle, we
have:

σdε
p
¼ σθdεθ þ σzdεz ð35Þ

Substituting Eq. (34) and considering (dεz = 0) in the pre-
vious equation leads to:

ε
p
¼ Ch εθj j ð36Þ

The value of the constants in Eq. (29) are provided in the
benchmark material data sheet and are F = 0.4640, G =
0.5615, and H = 0.4385.

Analysis of the sheet stretch-bending process

In this section, the general assumptions which are considered
in the sheet deformation analysis are described. Also, an ap-
proach for determining the sheet stretching force and strain
through the sheet thickness is introduced.

General assumptions

Deformation of the sheet at the edges of the punch and die can
be considered as a stretch-bending process as shown in Fig. 4
with examining the following assumptions:
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1. The shear stresses in the sheet thickness can be neglected.
2. The principal direction for stresses and strains are consid-

ered along with the sheet thickness, width, and the length.
3. According to the plane strain condition, the strains in the

width direction of the sheet are zero (εz = 0).
4. The stress in the radial direction (σr) can be neglected.
5. Volume conservation law during the stretch-bending pro-

cess is considered.
6. During the stretch-bending process, the sheet thickness is

assumed to be equal at all cross-sections of the die and
punch corners.

7. During the unloading process, the change of the sheet
thickness is neglected.

8. During reverse bending process, the sheet thickness and
the tensile force in sidewall section remains unchanged.

Determination of the sheet thickness

The strains must be determined to calculate the stresses
through sheet thickness. For this purpose, the thickness
of the sheet in different regions must be calculated.
Determination of the sheet thickness is based on the

equilibrium equations. The stretching force in areas IV,
II and III as shown in Fig. 4 can be calculated with the
following equations [15]:

FIV ¼ μPbheμϕ ð37Þ
FIII ¼ FC ð38Þ
FII ¼ FCe−μϕ ð39Þ

In above equations, μ is the friction coefficient between the
tools and sheet, Pbh is the blank holder force. Also, ϕ repre-
sents the angular position of each cross-section at regions IV
and II be relative to points B and E as shown in Fig. 4. The
distribution of the tensile force throughout the sheet thickness
can be obtained by using the above equations, and therefore
the width of the sheet can be calculated.

Calculating the strains through the sheet thickness

According to the geometric relation which is shown in Fig. 5,
the following equation can be obtained [15]:

Rn

Rm
¼ t

t0
ð40Þ

Where Rn and Rm are the curvature radiuses of the neutral and
middle surface of the sheet, respectively. Furthermore, t and t0
represent the sheet thickness after and before stretch-bending
process.

According to assumption (3), the strain at the width direc-
tion is zero (εz = 0). Also, the tangential engineering strain at
curvature radius (r) among the thickness is then achieved by
the following equation:

εθ ¼ r
Rn

−1 ð41Þ

For the pre-strained blanks, the value of the initial thickness
can be obtained based on the assumption (5) as follows:

t0 ¼ 1−εpreθ

� �
t0 ð42Þ

In Eq. (42), the parameter εpreθ is equal to the amount of
plastic strain after the pre-strain process. As illustrated, the
sheet is stretched firstly under a tensile force applied by the
punch and then bent around the die radius. During the pro-
gressive loading, the equivalent plastic strain caused by bend-
ing around the die or punch corner can be expressed based on
Eqs. (41) and (36) as follows:

I
II

III

IV
V AB

C

D

EF

Region II

Region IV

Fig. 4 Scheme of different sheet sections after U-shaped stretch-bending
process

Table 1 Material parameters of the Yoshida-Uemori model for DP780 [22]

Parameter Cx b(Mpa) k h Y(Mpa) εlim E(Gpa) ν

value 137.9 165.7 29.1 0.99 527 0.198 198.8 0.3
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ε
p

fow ¼ Chεθj j−εyield þ ε
pre

¼ Ch
r
Rn

−1
� �				

				−εyield
þ ε

pre
ð43Þ

In this equation, εpre ¼ Chε
pre
θ . Also, εyield is equal to the

strain at which the material yields during the forward loading
process after the pre-stretch process. It can be calculated re-
spectively for tensile and compressive forward loading by:

ε
t

yield ¼
KCh ε0 þ ε

pre� �n

E1
ð44Þ

ε
c

yield ¼
Ch −Y þ α ε

pre� �� �
E1

ð45Þ

In these equations, E1 = E/(1 − ν2) is elastic modulus in the
plane strain condition, and ν is Poisson’s ratio.

After separation from the contact surface, the sheet will be
straightened and enters the sidewall section as shown in Fig. 6.
During this process, there is a reverse tangential strain, which
is equal to the forward tangential strain. The equivalent plastic
strain during the reverse loading process can be expressed as
follows:

ε
p

rev ¼ Ch
r−Rn

Rn

� �				
				− 2ChY

E1
þ ε

p

fow ð46Þ

Calculation of sheet springback
after U-shaped bending

The non-uniform distribution of stress in the cross-section of
the layer leads to deform and create springback during
unloading. The sheet U-shaped bending springback occurs

in the regions II, III and IV, while regions I and V remain
straight before and after unloading.

Accordingly, the change of the tangential stress after
unloading process can be calculated with:

Δσθ ¼ E1Δεθ ¼ E1 εubθ −εbθ
� � ð47Þ

The tangential strain during the bending process can be
calculated as follows:

εbθ ¼
r−Rn

Rn
¼ zþ Rm−Rn

Rn
ð48Þ

In which the parameter z as shown in Fig. 7 is defined as:

z ¼ r−Rm ¼ r
0
−R

0

m ð49Þ

Where the parameters r
0
and R

0
m are contributed to the

situation after unloading stage. Also, the tangential
strain during the unloading process (εubθ ) can be calcu-
lated as follows:

εubθ ¼ r
0 −R0

n

R
0
n

¼ zþ R
0
m−R

0
n

R
0
n

ð50Þ

L

L

Element shape after the stretch-bending process

Fig. 5 The schematic of a small
element located in die or punch
corner during the stretch-bending
process

Middle surface 

Neutral surface 

Before bending
After bending

 After straightening

Fig. 6 The shape of a small element located at point C of sidewall section
during the straightening process
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Where parameters R
0
m and R

0
n are respectively equal to:

R′m ¼ Rmπ
πþ 2Δθ

ð51Þ

R′n ¼ Rnπ
πþ 2Δθ

ð52Þ

The change of the bending moment can be calculated as
follows:

ΔM ¼ w∫
t
2

− t
2
Δσθzdz ¼ w∫

t
2

− t
2
E1

1

R
0
n
−

1

Rn

� �
z2dz ð53Þ

The parameter w in Eq. (53) is equal to the width of the
sheet andΔM = −M. Thus the change of the curvature radius
can be calculated as follows:

Δ
1

Rn

� �
¼ −M

w∫
t
2

− t
2
E1z2dz

ð54Þ

The bending angle is equal to:

θ ¼ L
Rn

ð55Þ

where L is equal to arc length. The bending angle changeΔθ
can be calculated with:

Δθ ¼ LΔ
1

Rn

� �
¼

−MRn
π
2

w∫
t
2

− t
2
E1z2dz

ð56Þ

Finally, the bending moment can be calculated as follows:

M ¼ w∫Ro

Ri
σfow
θ r−Rmð Þdr ð57Þ

In the above equation, the bending moment is calcu-
lated at cross-section with ϕ = π/4 from the punch and
die corner.

Calculating the tangential stress of sheet
cross-sections

In this section, firstly the thickness of the sheet during the
stretch-bending process will be obtained. Then, the approach
for estimating the bendingmoment and springback parameters
will be discussed in the sidewall section of the sheet.

Punch and die edge sections

According to Eqs. (1), (7) and (43) the tangential stress distri-

bution (σfow
θ ) in the thickness direction can be expressed by

the following equations:

σfow
θ ¼

KCh ε0 þ ε
p

fow

� �n
Rn þ ct < r≤Ro

E1
r−Rn

Rn
Rn−cc≤r≤Rn þ ct

Ch −Y þ α ε
p

fow

� �� �
Ri≤r < Rn−cc

8>>>><
>>>>:

ð58Þ

Where ct and cc are the thickness of the elastic region in tensile
and compressive stress zones respectively during the forward
loading, as follow:

ct ¼ Rn � ε
t

yield ð59Þ

cc ¼ Rn � ε
c

yield ð60Þ

The sheet tensile force can be obtained by substituting Eq.
(58) into the following equation:

F ¼ w∫Ro

Ri
σfow
θ ⋅dr ð61Þ

The thickness of the sheet after stretch-bending can
be determined using Eqs. (61) and (37). Finally, the
radius of the neutral surface, tangential strain, and stress

́

Middle surface 

New neutral surface

Old neutral surface 

Fig. 7 The relation between
different parameters before and
after unloading
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distribution can be achieved by using Eqs. (40), (41)
and (58).

The sidewall section

During the reverse loading process material, the yield occurs
when εprev ¼ εpfow; Thus, the curvature radius in which the mate-

rial yield occurs during the reverse compressive and tensile load-
ing (Rrc

y ;R
rt
y ) can be obtained by solving the following equation:

r−Rn

Rn

				
				− 2Y

E1
¼ 0 ð62Þ

The thickness of the sheet can be divided into three sub-
intervals to calculate the tangential stress in the reverse load-
ing process as follows:

1) Sub-interval (a): Ri < r < Rn − cc

Stop

Input conditions

Calculating the sheet thickness, and and updating 

the stagnation surface

Check for work hardening 

stagnation and updating and 

Updating the stagnation surface

Check for work hardening 

stagnation and updating and 

Upgrading the stagnation surface

Calculating the bending moment

Calculating the strains and 

check the state of stress

Start

Plastic

Elastic

Yes

No

Yes

Plastic

Calculating the strains in reverse 

loading and check the state of stress
Elastic

No

Fig. 8 Flowchart used in the
calculation of sidewall bending
moment
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σsw
θ ¼

Ch Y þ α ε
p

rev

� �h i
Ri < r < Rrt

y

σfow
θ þ E1

Rn−r
Rn

� �
Rrt
y < r < Rn−cc

8><
>: ð63Þ

2) Sub-interval (b): Rn − cc < r < Rn + ct

σsw
θ ¼ 0 ð64Þ

3) Sub-interval (c): Rn + ct < r < Ro

σsw
θ ¼

σfow
θ þ E1

Rn−r
Rn

� �
Rn þ ct < r < Rrc

y

Ch −Y þ α ε
p

rev

� �h i
Rrc
y < r < Ro

8><
>: ð65Þ

The change of the tangential stress of the sidewall section
can be achieved from:

Δσsw
θ ¼ E1

z
ρsw

� �
ð66Þ

Also, the change of the sidewall bending moment can be
calculated from:

ΔM ¼ w∫
t
2

− t
2
Δσsw

θ zdz ¼ w∫
t
2

− t
2
E1

z
ρsw

� �
zdz ð67Þ

where ΔM = −Msw, and parameter Msw is equal to:

Msw ¼ w∫Ro

Ri
σsw
θ r−Rmð Þdr ð68Þ

Thus the final curvature radius of the sidewall can be cal-
culated by using the following expression:

ρsw ¼ −
w∫

t
2

− t
2
E1z2dz

Msw
ð69Þ

In the above equation, the sidewall bending moment (Msw)
is calculated at the die corner cross-section with ϕ = π/2. The
bending angle of the sidewall section after unloading process
can be obtained with:

Δθsw ¼ Lsw
ρsw

ð70Þ

Equations (53) and (68) can’t be integrated analyti-
cally. Thus, a Simpson type numerical integration meth-
od is used for this purpose. The appropriate algorithm
which is used to calculate the bending moment is
shown in Fig. 8.

θ1, θ2, and ρsw are springback parameters which are shown
in Fig. 9. Supposing the springback angle of regions II and III
and IV, are equal to Δθ1 and Δθsw and Δθ2 respectively angles
θ1 and θ2 can be calculated with the following equation [15]:

θ1 ¼ 90° þ Δθ1 þ Δθsw
2

ð71Þ

θ2 ¼ 90° þ Δθ2−
Δθsw
2

ð72Þ

2 mm

Punch

R 7 mm
27 mm 89 mm

89 mm

50 mm

R 5 mm

Blank

Die

Holder

Fig. 10 A schematic of
Numisheet2011 benchmark
problem 2-D draw bending

1θ

Z (mm)

X (mm)

2θ

2

2

Fig. 9 Schematic for springback measurement method
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Calculation of critical sheet holder force

The ultimate strain determines bending capability of the
sheet. An increase of holding force reduces the springback
but causes sheet thinning and increase of the tensile strain.
It is also possible that the tensile strain on the outer sur-
face of the sheet exceeds the ultimate strain and creates
initial cracks outside the sheet. The sheet strain has a
maximum value at the outer surface of blank, which is
bent around the die corner. The maximum value of the
tangential strain (εmaxθ ) can be calculated as follows:

εmaxθ ¼ εlim þ ε
t

yield−ε
pre

Ch
¼ Ro−Rn

Rn
ð73Þ

Based on the Eq. (73), the value of the critical thick-
ness will be obtained. By comparing the tensile force in
different regions of the sheet, it can be seen that the
tension in region III is the greatest. The maximum value
of the sheet tensile force (Flim) can be obtained based
on the Eq. (61). Corresponding to Eq. (37) the maxi-
mum blank holder force can be obtained from:

Pmax ¼ Flim

μeμ
π
2

ð74Þ

Results and discussion

This analytical model can be used for the analysis of two-
dimensional stretch-bending process proposed in the Numisheet
2011 benchmark problem [24]. Since the side wall experiences
bending, unbending and reverse bending, this problem is suitable
to examine the ability of different hardening models to predict
material mechanical behavior under the reverse loading.

The geometry and dimensions of the U-shaped stretch-
bending problem have been reported in the Numisheet2011
benchmark and are shown in Fig. 10. Dual-phase DP780 steel
sheet with a thickness of 1.4 mm is used in this test. Two types
of specimens are used for this test: one with the as-received
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Fig. 11 The effect of blank holder force Pbh on the sheet springback
based on the ANK [19] and present YU model in comparison with
experimental data [26] a angle θ1 and b angle θ2

Table 2 The comparison between
the results obtained from present
and previous analytical
model with experimental data

Without pre-strain

Hardening model Yield criterion Solution method θ1(
°) θ2(

°) ρsw(mm) Average error %

Experimental [25] 115.8 79.2 118.2

ANK Hill48 Previous model [19] 113.7 77.6 106.4 4.6

YU Hill48 Present model 113.3 78.3 109.7 3.5

With 8% pre-strain

Hardening model Yield function Solution method θ1(
°) θ2(

°) ρsw(mm) Average error %

Experimental [25] 118.2 77.6 98.9

ANK Hill48 Previous model [19] 115.9 76.9 98.1 1.2

YU Hill48 Present model 116.2 77.0 97.8 1.1
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material (without pre-strain) and the other with pre-stretching
by 8% in engineering strain along the rolling direction.
Rectangular specimens were used with a width of 30 mm
and 360 mm length. The pre-strained samples were first
stretched along the rolling direction. The length of grip end
is 25.0 mm, and then the specimen was cut-out from the cen-
tral portion. The length of the sample after 8% pre-strain and
trimming process is equal to 324 mm. During the forming
process, the blank-holding force is equal to 2.94 kN and the
punch speed is equal to 1 mm/s, while the punch stroke after
the first contact between the punch and the sheet is equal to

71.8 mm. Moreover, the friction coefficient between the tools
and sheet is equal to 0.1. According to Eq. (74), the maximum
value of blank-holding force for the standard and the pre-
strained blank is equal to 311.7 kN and 260.2 kN, respectively.

Comparisons of the springback parameters driven from
current and previous models (see ref. [18, 19]) are illustrated
in Table 2 with the experimental results, in order to validate
our new model. All geometrical and mechanical parameters
are the same as the Numisheet2011 benchmark 4. It can be
seen that presented new model has less error in comparison
with the previous type (ANK model) being closer to the
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experimental data. Also, it can be seen that the modified
Yoshida-Uemori hardening model has more ability to describe
the hardening behavior of the material in comparison with the
ANK hardening model.

In our previous papers [18, 19], the effect of the blank
holder force, blank thickness, anisotropy coefficient, pre-
strain and hardening parameters on the springback have been
investigated. To make continuity of the relation between
springback results obtained from present and ANK model,

the blank holder force and work hardening stagnation are
examined.

Figure 11(a) and (b) show the effect of blank holder force
on springback of the as-received blank with 1 mm thickness
for previous and present models, respectively. They are com-
pared with experimental data [26]. It can be seen blank holder
force almost does not affect the springback parameters pre-
dicted by analytical models while in the experimental results,
the springback decreases gradually from the beginning.
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Figure 12(a) and (b) illustrates the effect of blank holder
force on springback parameters of previous and present model
respectively for as-received and pre-strained specimens. It can
be seen that the blank holder force almost does not affect the
springback parameters predicted by the previous model before
it reaches 270 kN and springback decreases suddenly while in
the present model the springback decreases gradually from the
beginning. It can be seen that the sheet springback can be
reduced by increasing the blank holder force.

Figure 13(a) and (b) illustrates the effect of work hardening
stagnation parameter (h) on the springback measurements of
the as-received and pre-strained specimens. It can be seen that
increasing the parameter (h) almost does not affect over the
springback of the as-received sample until reach value of 0.8.
While for pre-strained specimen, the springback gradually de-
creases from the beginning.

Conclusion

A novel analytical model has been introduced here based
on Hill48 yield criteria and plane- strain conditions to
predict the springback of the U-shaped stretch-bending
process explained in Numisheet2011 benchmark 4.
Moreover, the plastic behavior is described based on the
modified Yoshida-Uemori two surface hardening model.
Also, the variation of the sheet thickness during the
unloading process is neglected. This analysis is done for
the as-received and pre-strained specimen to investigate
the effect of blank holder force and work hardening stag-
nation. The obtained results show good agreement with
the experimental data. This model can take into account
the hardening characteristics of the material such as the
Bauschinger effect, permanent softening, transient behav-
ior, and work hardening stagnation in the reverse loading
process. Also, the axes of material anisotropy are assumed
to be orthogonal. The results obtained from the present
model are compared with our analytical model published
previously. It is seen that current results have fewer errors
when both models are compared with the available
experiments.

The effects of the work hardening stagnation and blank
holder force on springback prediction are investigated. It can
be seen that increase of the work hardening stagnation param-
eter (h) until value 0.8 almost does not affect the springback of
the as-received specimen. But, in the case of pre-strained
blank, it gradually decreases from the beginning. The increase
of the blank holder force causes declining springback in the
case of the as-received specimen. It can be seen this variation
of springback is suddenly in the previous analytical model,
while in present novel model, the change is gradual. During
the last model for pre-strained blanks, the springback almost

has not variation with increasing the blank holder force while
in this model, the variations are continuous.
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