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Abstract
Incremental tube forming is a combination of free-form bending and spinning, which enables the direct production of curved
tailored tubes under greatly reduced forming forces. To predict the effect of radial and circumferential superposed stresses,
generated by the spinning rolls, on the bending moment, an analytical model is proposed. The model takes into account the
isotropic hardening behaviour of the material as well as the amount of diameter and thickness reduction, simultaneously. The
analytical model is validated by experimental studies with various spinning and bending parameters. The bending moment from
the analytical model is used to calculate the springback. The calculated springback ratio is in agreement with experiments and
shows a deviation of only 5% for the studied material.
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Introduction

Bent tubular parts are required in almost all industrial sectors.
However, manufacturing of these parts, especially parts made
of high strength steels, requires high bending forces that lead
to large amounts of springback [1].

Several investigations were conducted to predict, compen-
sate and reduce the springback in different profile bending
processes. Gu et al. [2] established an FE (finite element)
model for the NC-bending (numerical control bending) of
thin-walled tubes and investigated the effects of geometry
and process parameters on springback. The results showed
that the springback angle increases with the increase of the
bending angle. Jiang et al. [3] investigated the coupling effects
of the material properties and bending angle on the springback
angle of a titanium alloy tubes. They observed that any in-
crease in the bending angle, yield stress, and hardening coef-
ficient increase the springback angle, and any decrease in
Young’s modulus, the hardening exponent, and the thickness
anisotropy exponent leads to a decrease in springback angle.

Al-Qureshi and Russo [4] developed an analytical model to
predict the springback and residual stress distributions of thin-
walled aluminium tubes by assuming an elastic-perfectly plas-
tic material behaviour. A mathematical model which can con-
sider the hardening behaviour of the steel tubes was proposed
by El Megharbel et al. [5].

The most effective method to suppress springback is to
reduce the bending moment. Wang and Hu [6] used the local
induction heating to bend a pipe to a small bend radius. Hu [7]
also developed an elasto-plastic solution to predict the
springback under local induction heating. In recent years,
stress superposition has been used as a useful method to re-
duce bending forces and springback. In the bend-rolling pro-
cess, for instance, Tozawa and Ishikawa [8] combined bend-
ing with rolling. The results of their investigations showed that
the flattening of the cross-section completely vanishes and
springback is reduced. Nakamura et al. [9] combined a tube
expansion and bending process. In this method, an internal
tool is used to increase the diameter of the tube while simul-
taneously applying a bending moment resulting in a reduction
of the applied bending forces. Another process is the Torque
Superposed Spatial (TSS) bending process, which uses multi-
axial stress superposition and allows bending profiles with
arbitrary cross-sections to arbitrary 3D contours [10]. In the
TSS bending process, a bending force reduction of about 20%
was recorded by Becker et al. [11]. Free-form bending and
spinning were combined by Hermes et al. [12] to produce
tailored tubes with reduced bending moments as well as
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springback. In this so called incremental tube forming (ITF),
the tube diameter is reduced by three spinning rolls while a
bending roll applies a bending force. This results in a bending
moment superposed into the forming zone to achieve the de-
sired curvature. Initial studies showed a significant reduction
of the bending moment in comparison to conventional bend-
ing methods. A process model was proposed for ITF by
Becker et al. [13], which can predict the bending moment as
well as the springback for a combination of diameter reduction
and simultaneous bending. However, the interaction of the
strains by spinning with strains from bending was not consid-
ered in their investigation. Becker and Tekkaya [14] showed
that the wall-thickness of tubes can be controlled to some
extent during manufacturing by varying specific process pa-
rameters. However, the influence that this alteration of wall-
thickness has on the process forces has not been considered up
until now. Additionally, the variation of the wall-thickness by
using a mandrel has not yet been considered.

The aim of the current investigation is to develop an ana-
lytical model that can predict the bending moment and
springback in incremental tube forming by considering both
diameter and wall-thickness reduction together with interac-
tion of the strains from spinning and bending. The analytical
model predicts the bending stresses in the presence of radial
and circumferential stresses. This model is validated using
experimental and simulation data.

Process description

The forming tools of ITF include three spinning rolls, a bend-
ing roll, and a mandrel, as shown in Fig. 1. The spinning rolls
can bemoved radially into the tube and rotate around it, which
leads to a reduction in tube diameter and press the material
against the mandrel. By using the mandrel, the material flows
into the axial direction of the tube. The thickness of the tube

can be adjusted by controlling the axial position of the man-
drel relative to the spinning rolls. Simultaneously, a bending
force is applied by a bending roll to generate a curved tubular
part.

Analytical solution for combined bending
and spinning process

Here, an analytical solution is developed to predict the effect
of the radial and circumferential stresses induced by the spin-
ning process on the axial bending stresses. The solution can
predict the effect of the diameter and thickness reductions on
the axial bending stress. A finite element model was devel-
oped using ABAQUS/ Explicit to validate the distribution of
the axial stress over the tube cross- section.

The combination of the spinning and bending process leads
to a complex state of stress and strains. For an analytical in-
vestigation, it is assumed that if the spinning rolls spin at
infinite rotational speed around the profile, the rolls would
touch every part of the circumference of the tube in the
forming zone at the same time. In this state, the spinning
process can be replaced by a simple die, as shown also by
Becker et al. [13], meaning that the whole cross-section expe-
riences the diameter and thickness reduction at the same time
(Fig. 2a). Additionally, it is assumed that the tube consists of
several radial segments, placed at different distances from the
bending plane (Fig. 2b). Thus, the stress state can be studied in
each individual segment at an arbitrary distance from the hor-
izontal symmetry plane, of which the stresses in the axial
direction can be used to evaluate the stress distribution over
the cross section of the tube as well as for calculating the
bending moment. For the analytical calculations, an isotropic
material with ideally plastic behaviour is investigated as well
as isotropic material with linear hardening behaviour. The
linear hardening behaviour can be represented by:

σy �εp
� � ¼ σ0 1þ α�εp

� �
; ð1Þ

where, εp is the equivalent plastic strain, σ0 is the initial yield
stress and α is a material hardening constant.

Stress and strain states

The stress state is assumed to be three dimensional with zero
shear stress components. The three normal stress components
in an arbitrary element are σrr in the radial direction, σθθ in the
circumferential direction and σzz in the axial direction.

The strain components are calculated from the shape
change by bending and spinning, which include three compo-
nents, namely εrr, sp, εθθ, sp and εzz, b. These strain components
result from stresses in radial, circumferential and axial direc-
tions and can be calculated as:
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εrr;sp ¼ t1−t0
t0

; ð2Þ

εθθ;sp ¼ d1−d0
d0

; ð3Þ

εzz;b ¼ y
rm

; ð4Þ

where t0 and t1, are the initial and the reduced thickness re-
spectively, d0 and d1 are the initial and the reduced outer
diameter, respectively, rm is bending radius, and y is the dis-
tance of each segment from the horizontal symmetry plane of
the tube. The parameter γ defines the ratio of the circumfer-
ential strain rate (diameter change by spinning) to the axial
strain rate by bending, whereby the parameter η defines the
ratio of the radial strain rate (thickness change by spinning) to
the axial strain rate by bending. By assuming proportional
loading, these ratios remain constant for each individual seg-
ment and, by additionally assuming linear strain paths, equal
to the ratio of the final strains.

γ ¼ ε
:
θθ;sp

ε
:
zz;b

¼ εθθ;sp
εzz;b

ð5Þ

η ¼ ε
:
rr;sp

ε
:
zz;b

¼ εrr;sp
εzz;b

ð6Þ

Elastic loading

In the beginning of the forming process, considering the as-
sumption of proportional loading, strains increase linearly
from zero to the elastic limit. The components of the stress
and strain tensors can be written as:

S ¼
σrr 0 0
0 σθθ 0
0 0 σzz

2
4

3
5; ð7Þ

ε ¼
εrr 0 0
0 εθθ 0
0 0 εzz

2
4

3
5 ¼ εzz;b

η−υ−υγ 0 0
0 γ−υ−υη 0
0 0 1−υγ−υη

2
4

3
5;
ð8Þ

where, υ is the Poisson’s ratio in elastic loading. The stress-
strain relation in the elastic part for an isotropic material can be
written by:

S ¼ 2G
υ

1−2υ
trεð ÞI þ ε

h i
; ð9Þ

where, the constant G is known as the shear modulus and can
be defined by Eq. (7).

G ¼ E
2 1þ υð Þ ð10Þ

Here, E is the Young’s modulus. By placing Eqs. (7) and
(8) into Eq. (9), the stress components in elastic loading can be
calculated as:

σrr ¼ 2G 1þ υð Þηεzz;b ¼ Eηεzz;b; ð11Þ

σθθ ¼ 2G 1þ υð Þγεzz;b ¼ Eγεzz;b; ð12Þ

σzz ¼ 2G 1þ υð Þεzz;b ¼ Eεzz;b: ð13Þ

During the elastic deformation, εzz, b increases from 0

to the value at the yield limit (εy0zz;bÞ, where the yield cri-

terion is satisfied by the stress state. By using the von
Mises yield criterion, εyzz;b at initial yield can be calculated

by:

εy0zz;b ¼
�σyffiffiffi

2
p

G 1þ υð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−γð Þ2 þ η−γð Þ2 þ η−1ð Þ2

q : ð14Þ

The stress components at yield can be determined by
inserting Eq. (14) into Eqs. (11), (12) and (13). This results
in:

σy0
rr ¼ σrr εy0zz;b

� �
¼ −

ffiffiffi
2

p
ησyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−γð Þ2 þ η−γð Þ2 þ η−1ð Þ2
q ; ð15Þ

σy0
θθ ¼ σθθ εy0zz;b

� �
¼ −

ffiffiffi
2

p
γσyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−γð Þ2 þ η−γð Þ2 þ η−1ð Þ2
q ; ð16Þ

σy0
zz ¼ σzz εy0zz;b

� �
¼ � ffiffiffi

2
p

σyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−γð Þ2 þ η−γð Þ2 þ η−1ð Þ2

q : ð17Þ

where, σy0
rr , σ

y0
θθ, σ

y0
zz are radial, circumferential and longitudi-

nal stress components at initial yield, respectively.
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Plastic loading

After reaching the initial yield point, and since the loading
remains proportional, any changes in stresses depend on the
hardening behaviour of the material. First, a linear hardening
behaviour is considered as mentioned in the previous section.
The stress components can be written as follows:

S ¼
σp
rr þ σy0

rr 0 0
0 σp

θθ þ σy0
θθ 0

0 0 σpzz þ σy0
zz

2
4

3
5 ¼

σrr 0 0
0 σθθ 0
0 0 σzz

2
4

3
5;

ð18Þ

where, σp
rr, σ

p
θθ and σp

zz are added to the stress values at the
initial yield point during plastic deformation due to the
hardening.

For any points in the plastic region, the stress-strain rela-
tionship for a material with isotropic hardening can be de-
scribed by the following constitutive equations [15]:

S˙
D ¼ 2G ε

:D−
3GSD⋅ε:D

σ2
y 2Gþ 2

3
σ

0
y εp
� �� � SD

0
BB@

1
CCA; ð19Þ

trS ¼ 2G 1þ υð Þ
1−2υð Þ trε: ð20Þ

where, SD and εD are deviatoric stress and strain tensors, σy
and σ

0
y εp
� �

are yield stress and change of yield stress in re-
spect to equivalent plastic strain εp

� �
. The equivalent plastic

strain, εp, can be written as [15]:

εp ¼ ∫
t

0
εp tð Þ ¼

2G ṠD⋅ε:D
			 			

σy 2Gþ 2

3
σ

0
y εp
� �� � ; ð21Þ

where, εp˙ tð Þ is equivalent plastic strain rate.
The strain rate tensor (ε̇ ) can be written as follows:

ε
: ¼

ε
:
rr 0 0
0 ε

:
θθ 0

0 0 ε
:
zz

2
4

3
5 ¼ ε

:
zz;b

η−υp−υpγ 0 0
0 γ−υp−υpη 0
0 0 1−υpγ−υpη

2
4

3
5;

ð22Þ
where, parameter υp is the ratio of the transverse strain incre-
ment to axial strain increment during plastic deformation and
can be determined by:

υp ¼ 0:5E þ υEp

E þ Ep
: ð23Þ

Here, Ep is the plastic tangent modulus. Derivation of
Eq. (23) is given in the appendix.

Using Eqs. (7) and (22) in combination with Eqs. (19) and
(20) results:

2σ
:p
zz−σ

:p
θθ−σ

:p
rr ¼ 2G 1þ υp

� �
2−γ−ηð Þ−G⋅A⋅ 2σzz−σθθ−σrrð Þ
 �

ε
:
zz;b;

2σ
:p
θθ−σ

:p
zz−σ

:p
rr ¼ 2G 1þ υp

� �
2γ−1−ηð Þ−G⋅A⋅ 2σθθ−σzz−σrrð Þ
 �

ε
:
zz;b;

σ
:p
rr þ σ

:p
θθ þ σ

:p
zz ¼

2G 1þ υð Þ
1−2υð Þ 1−2υp

� �
γ þ ηþ 1ð Þε:zz;b;

8>>>>><
>>>>>:

ð24Þ
with

A ¼ 2σzz−σθθ−σrrð Þ 1−υpγ−υpγ
� �þ 2σθθ−σzz−σrrð Þ γ−υp−υpγ

� �þ 2σrr−σzz−σθθð Þ γ−υp−υpγ
� �
 �

σ2
y 2Gþ 2

3
σ′
y �εp
� �� � : ð25Þ

Solving the above system of equations, the ratio of the
radial, circumferential, and longitudinal stress increments to

the increment of axial strain (caused by bending) in the range
of plastic loading can be written as:

dσp
rr

dεzz;b
¼ −2

3
G 1þ υp

� �
1þ γ−2ηð Þ−G⋅A⋅ σzz þ σθθ−2σrrð Þ− 1þ υð Þ

1−2υð Þ 1−2υp

� �
γ þ ηþ 1ð Þ

� 
; ð26Þ

dσp
θθ

dεzz;b
¼ 2

3
G G⋅A⋅ σzz−2σθθ þ σrrð Þ− 1þ υp

� �
1−2γ þ ηð Þ þ 1þ υð Þ

1−2υð Þ 1−2υp

� �
γ þ ηþ 1ð Þ

� 
; ð27Þ

dσp
zz

dεzz;b
¼ 2

3
G 1þ υp

� �
2−γ−ηð Þ−G⋅A⋅ 2σzz−σθθ−σrrð Þ þ 1þ υð Þ

1−2υð Þ 1−2υp

� �
γ þ ηþ 1ð Þ

� 
: ð28Þ
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Eqs. (26)–(28) are ordinary differential equations, which in
combination with Eq. (21) can be solved numerically with

boundary conditions of σp
rr εy0zz;b

� �
¼ 0, σp

θθ εy0zz;b

� �
¼ 0, σp

zz

εy0zz;b

� �
¼ 0. In plastic loading, εzz, b will change from εy0zz;b,

which can be calculated by Eq. (17), to the final value, which
can be calculated from Eq. (4).

It should be mentioned that solving of Eqs. (26)–(28) re-
sults in values of stress change with respect to the initial yield
stresses during plastic deformation. The final stress values can
be calculated by adding them to the values of the initial yield
stresses as follows:

σrr ¼ σp
rr þ σy0

rr ; ð29Þ
σθθ ¼ σp

θθ þ σy0
θθ; ð30Þ

σzz ¼ σp
zz þ σy0

zz : ð31Þ

FEM model for combined bending and spinning

A finite element model of combined bending and spin-
ning is established in ABAQUS/ Explicit. The model is
used to validate the distribution of the calculated axial
stress distribution over the cross-section. In order to
reduce the computational time, the tube is modelled in
two parts, as shown in Fig. 3. The first part which goes
under plastic deformation is meshed with 8-node re-
duced integration solid elements (C3D8R). The second
part is just for transferring the bending moment from
bending roll to deformation zone. Linear 4-node reduced
integration shell elements (S4R) are used for this pur-
pose. The forming tools, such as spinning rolls, bending
tool, and mandrel are modelled as rigid Part. A surface

to surface contact is defined between the forming tools
and the tube.

A case study to investigate the axial stress
development

A numerical solution is presented to study the effect of
superposed radial and circumferential stresses on the
bending moment required for the generation of specific
bending radii. The calculations are done for a hypothet-
ical material with linear isotropic hardening, as shown
in Fig. 4.

Eq. (31) gives the value of the axial stress for a
segment at an arbitrary vertical distance from the neutral
bending plane. For investigating the axial stress over the
cross-section, this equation should be solved separately
for each segment. However, to investigate how the axial
stress is developed in the presence of radial and circum-
ferential stresses, first, this equation is solved together
with Eqs. (29) and (30) just for the single segments at
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inner and outer fibres. Figure 5 shows that the required
axial stress is reduced dramatically in the presence of
the superposed radial and circumferential stresses. The
amount of the reduction depends on the magnitude of
the superposed stresses.

The distribution of the axial stress over the cross-
section with and without stress superposition is shown
in Fig. 6. Depending on the position of the rolls, the
axial stress over the cross-section can be changed.
However, the average value of the axial stresses during
one revelation of the spinning rolls, from the simulation
results, is used as a comparison. It can be seen that
both analytical and simulation results show a high re-
duction of axial stresses for all segments in the presence
of superposed radial and circumferential stresses.
However, there is a difference between the analytical
and simulation values, which might be due to the initial
assumptions. Two main assumptions were used in the
analytical solution. First, the spinning rolls are replaced
with a fixed die. Hence, the local plastification and the

shear stresses, which can be induced by spinning, are
neglected. Second, it is assumed that the strain incre-
ments are proportional. As a result, both spinning and
bending processes are started at the same time.
However, in the real process, the tube is first plastified
by the spinning process and subsequently is influenced
by the bending stresses. Hence, bending stresses only
play a secondary role in plastifying the tube in the real
process. These two assumptions in the analytical calcu-
lations lead to a deviation in the results, while the FE
model is based on the real process and does not include
mentioned simplifications.

Simplified analytical model

The method presented in the previous section needs a
numerical solution of Eqs. (26)–(28). By neglecting the
hardening effect, parameters α and υp will be 0 and 0.5,
respectively. A comparison between the distribution of
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the axial stress over the cross-section for the case with-
out and with different hardening constants (α) is shown
in Fig. 7. The dashed lines show the result with
neglected hardening. It can be seen that considering an
elastic-ideally plastic material model leads to just a
small deviation in the calculation of the axial stress
distribution over the cross-section, which will depend
on the position of the fiber from bending plane and also
hardening constant. Considering the process and materi-
al parameters of the case study, the error in calculated
axial stress at the outermost fiber is 10% and the error
at the innermost fiber is 5%.

Since the strain increments are proportional and that the
strain paths are linear, the ratio of the principal strains during
the loading process remains constant. By neglecting the work
hardening behaviour, the solution presented in Section 3.3 can
be simplified even more as is described in the following.
When the loading process is started, the stresses will increase
gradually from zero to the values that satisfy the initial yield
criterion. It is expected that these values remain constant dur-
ing plastic deformation when neglecting the hardening behav-
iour because of the normality rule, as shown in Fig. 8 for a
plane stress case. In other words, by assuming proportional
loading, linear strain paths, and elastic-ideally plastic material
behaviour, it is sufficient to solely consider elastic loading and

the yield criterion, which reduces the calculation effort to the
equations presented Section 3.2.

Figure 9 compares the results of the elastic calculation
using Eq. (17) with the one from numerical solution of the
elastic-plastic calculation using Eq. (31), considering elastic-
ideally plastic material behaviour. The presented stress distri-
bution is virtually identical. It can be seen that when the stress-
es satisfy the yield criterion, then by continuing straining the
material in the direction of the initial load path, the magnitudes
of the stresses do not change after reaching the yield locus.
Stresses at the initial yield point can be considered as final
stresses and can directly be used to calculate the bending
moment.

Bending moment

The resulting bending momentM can be obtained by integrat-
ing the axial stress over the cross section of the tube:

M ¼ ∫
dA
σzz yð Þ⋅ydA: ð32Þ
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In Eq. (32), σzz not only depends on the distance of each
segment from the neutral plane of the tube, but also to the
value of the γ and η. The values of these two parameters are
different for each segment, because of differences in the
amount of εzz. In order to obtain a closed-form analytical

model, these two strain ratios can be considered as constant

values and equal to the values at y ¼ �d0
4 . By using these

constant strain ratios, the distribution of axial stress will be
linear over the cross-section and the bending moment can be
written as follows:

M ¼ π
ffiffiffi
2

p

4

t1 d1−t1ð Þ3�σy

d1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γð Þ2 þ η−γð Þ2 þ ηþ 1ð Þ2

q −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−γð Þ2 þ η−γð Þ2 þ η−1ð Þ2
q

2
64

3
75: ð33Þ

Figure 10 compares the normalized bending moment
based on the stress calculation from Eq. (31), which in-
cludes the hardening behaviour, with the normalized bend-
ing moment from Eq. (33), which include all the previously
stated simplifications, for different values of diameter and
thickness reduction as well as different bending radii. Eq.
(33) is in a good agreement with the bending moment from
Eq. (31).

Experimental validation

For the validation of the analytical model, experiments
were carried out with the ITF machine IRU2590 (transfluid
Maschinenbau GmbH) using a cold drawn steel tube
(E235 + C). The standard tensile test was used for material
characterisation according to DIN EN ISO 6892–1 (DIN
(2009)). The results are shown in Fig. 11. This material
shows a low uniform elongation before necking and low
hardening.

A comparison between experimental and analytical re-
sults for different thickness reductions and bending radii
is given in Fig. 12. It can be seen that the experimental
ITF results show a bending moment reduction up to 97%.
The analytical model predicts a bending moment reduc-
tion up to 91%, whereby the calculated bending moment
is lower at increased values of thickness reduction. This is
in-line with the experimental results, which also show that
the bending moment required to produce a specified radi-
us is reduced when increasing the amount of thickness
reduction. However, the absolute value of the predicted
bending moment is still four to six times higher than the
experimental values. The deviation between the analytical
bending moment and the experimental values could be
explained by the assumption of proportional loading and
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replacing of the spinning rolls by a fixed die in the ana-
lytical model.

The bending moment from the analytical model can be
used to calculate the unloaded bending radius after
springback.

1

RU
¼ 1

RL
−
M
E⋅I

ð34Þ

Here, RU is the unloaded bending radius, RL is the load-
ed bending radius, and I is the second moment of inertia of
the tube cross-section. The springback ratio can be defined
Eq. (35).

S ¼ RU−RL

RL
⋅100% ð35Þ

A comparison between the calculated springback ratio
after unloading and experimental values is done in Fig.
13. It can be seen that, although deviations up to 15%
exist in the calculation of the bending moment reduction,
the deviation of the springback ratio is as low as 5%.

Conclusion

An analytical solution for the required bending moment
during the combined loading in incremental tube
forming (ITF) process is presented based on proportion-
al loading and linear strain paths. Isotropic hardening
and perfect plasticity are considered to describe the
plastic material behaviour. It is observed that the calcu-
lated axial stresses for elastic-ideally plastic material be-
haviour are in a good agreement with the results of
isotropic hardening behaviour. Based on these findings,
a simplified analytical model is proposed that just uses
the elastic loading step to calculate the stresses in com-
bined axial, radial and circumferential loading. This
model considers both thickness and diameter reduction
to predict the bending moment and produces results in
accordance with the more complex elastic-plastic analyt-
ical solution, developed in section 3.3, which can only
be solved numerically.

The simplified analytical model is validated by exper-
iments. It is shown that the analytical model for ITF pro-
cess can predict the bending moment reduction up to 77–
90% in comparison to conventional bending, where the
experimental results show a reduction of 94–98%.
However, the absolute value of the predicted bending mo-
ment is still three to four times higher than experimental
values. Despite the deviation in the absolute values of
bending moments, the amount of springback can be cal-
culated with high accuracy (deviations of 5%), since the
bending moments are small in ITF process. As an out-
look, it is necessary to investigate the effects of non-
proportional loading in future studies. As already men-
tioned, the tube is plastified first by spinning. Hence, the
bending forces do not play any role in bringing the mate-
rial from solid state to plastified state. It is also necessary
to consider the deformation mode with spinning rolls in
the further studies. Considering those two issues, initial
assumptions are required to be modified and the devia-
tions can be reduced.
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Appendix

Derivation of the Eq. (23) is done here for a uniaxial case.
However, it can be extended to a loading case with three
normal stresses. In a uniaxial loading, with loading in x direc-
tion, the stress and strain tensor can be written as follows:

S ¼
σxx 0 0
0 0 0
0 0 0

2
4

3
5 ð36Þ

ε ¼
εxx 0 0
0 εyy 0
0 0 εzz

2
4

3
5 ð37Þ

For an isotropic material, parameter υp is defined as a ratio
of the lateral strain to the axial strain as follows:

a ¼ −
εyy
εxx

¼ −
εzz
εxx

: ð38Þ

Using Eqs. (36)–(38) in combination with Eq. (20) leads to
the following:

υp ¼ 1

2
−

1

2
−υ

� �
σ
:
xx

Eε
:
xx
: ð39Þ

It can be seen that for an elastic loading, where
σ
:
xx ¼ Eε

:
xx , parameter υp is equal to poisson’s ratio and for

an ideal plastic material, where σ̇xx ¼ 0, parameter υp is equal
to 0.5.

The relation between σ
:
xx and ε

:
xx during plastic deforma-

tion can be written as [15]:

σ
:
xx ¼ EEp

E þ Ep
ε
:
xx: ð40Þ

Using Eqs. (39) and (40), parameter υp can be written as

υp ¼ 0:5EþυEp

EþEp
:
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