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Abstract This paper presents the application of multi scale
techniques to the simulation of sheet metal forming using
the one-step method. When a blank flows over the die
radius, it undergoes a complex cycle of bending and un-
bending. First, we describe an original model for the pre-
diction of residual plastic deformation and stresses in the
blank section. This model, working on a scale about one
hundred times smaller than the element size, has been im-
plemented in SIMEX, one-step sheet metal forming simu-
lation code. The utilisation of this multi-scale modeling
technique improves greatly the accuracy of the solution.
Finally, we discuss the implications of this analysis on
the prediction of springback in metal forming.

Keywords One step sheet metal forming simulation . Flexure
deformation . Springback . SIMEX .Multi scale forming
simulation

Introduction and state of the art

After the first industrial applications [1, 2], sheet metal
forming simulation is nowadays part of industrial design pro-
cesses. Most of the time, we use so called incremental codes
for this task, where there is a Finite Element model of physical
forming tools and a step-by-step simulation of their contact
with the blank.

An alternative technique, one-step or inverse simulation
[3], uses only the final geometry of the stamped part to predict
metal deformation. This feature makes it easier to integrate
this kind of simulation in the design cycle. For example, we
can use the same Finite Element model for crash and metal
forming simulations, making it much easier to couple the two
processes and leading to much better accuracy in the predic-
tion of performances.

This paper presents an original analytic approach to the
study of the cycles of bending and unbending. This ap-
proach was developed in 2003, but it is receiving attention
in this past months. Flexure bending and unbending is a
process that takes place over a distance comparable to the
thickness of the blank. Capturing the gradient of deforma-
tion would thus require a discretization of the order of the
tenth of a millimeter, whereas typical mesh size for this
kind of simulation is one hundred times larger. We have
used multi scale techniques to integrate this analysis into
our simulation.

Since the beginning of scientific study of metal forming [4]
the attention has been drawn by the cycles of bending and
unbending induced by tool geometrical features such as die
radii or drawbeads to generate both a restraining force and a
permanent plastic deformation.

Cycles of bending and unbending also create residual
stresses, which, in turn generate springback deformations
when the tools are released [5–8].

In this paper, we describe the formulations of the code
SIMEX as an example of one-step sheet metal forming simu-
lations. The first version of SIMEX was released in 1994, and
since 2004 it is integrated in the solution package of ESI
Group. Other commercial one-step simulation codes are
marketed by ALTAIR, AUTOFORM, LSTC, etc. ...

This paper describes the theoretical foundation and the im-
plementation in SIMEX of an equivalent model for the cycles
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of bending and unbending undergone by the blank over the
die radius. This development greatly improved the accuracy of
SIMEX simulation.

One step metal forming simulation

Formulation

The starting point of the inverse simulation is the finite
element model of the stamped part. The algorithm of
inverse simulation enables the user to find the position
of the stamped part’s nodes on the blank’s initial geom-
etry (Fig. 1). This search is carried out without taking
into account the history of the deformation, hence the
naming of Bone-step^. The calculated displacements field
ensures the equilibrium of the stamped part, through the
calculations of the deformation (thinning, elongation) and
of the constraints.

The characteristic feature of the inverse problem is that the
unknowns are distributed between the flat blank (result of the
computation) and the stamped part (starting point of the
computation).

The problem can be posed in mathematical terms as
finding the displacement ux and uy in the plane of the
original blank, so that the stamped part is in equilibrium
under the action of internal stresses, reaction forces, fric-
tion forces and restraining forces.

known quantities unknown quantities

initial geometry Thickness t0,
null stresses, strains

ux, uy displacement,
blank contour

stamped part Geometry uz, displacement,
restraining forces,
blank contour

Thickness t,
stresses and strains,
tool reactions

One-step simulation relies on two simplifying assumption:
The elastic component of the deformation can be ignored

with respect to the plastic component.

The deformation paths are radial (Fig. 2), e.g. at each in-
stant t > 0:

ε1 tð Þ
ε2 tð Þ ¼ α constantð Þ ð1Þ

On the basis of these hypotheses, the equations of the ma-
terial flow (associative plasticity of Von Mises and Hill, [9])
can be integrated to give rise to and explicit relation between
the eigenvalues of the stress and the strain tensors (Eq. 2)

σ1

σ2
¼ EsP−1 ε1

ε2
ð2Þ

Here, Es is the secant modulus, i.e. the ratio between σ and
ioεp from Eq. (3.1)

σ ¼ k ε0 þ εp
� �n ð3:1Þ

P is a matrix, function of the chosen plasticity criterion. For
the Henki-Mises criterion, the P matrix is given by Eq. (3.2),
where R is the Lankford anisotropy coefficient.

P−1 ¼
1þ Rð Þ2

1þ Rð Þ 1þ 2Rð Þ
R 1þ Rð Þ
1þ 2R

R 1þ Rð Þ
1þ 2R

1þ Rð Þ2
1þ Rð Þ 1þ 2Rð Þ

2
6664

3
7775 ð3:2Þ

As for the friction, we Coulomb’s law is the usual choice.
Two friction-contact models can be established:

& Unilateral contact between the metal sheet and the punch.
& Bilateral contact between metal sheet, die and blankholder.

Modeling issues

The most important simplification of the inverse method is
therefore the search of the equilibrium in the final configuration

Fig. 1 One step sheet metal
forming simulation
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of the process. There are two important factors which are not
taken into account:

& The history of deformation.
& The history of the contact between the sheet metal and the

tool.

Achieving accuracy with one-step simulation implies the
design and development of equivalent models, which recon-
struct the history of contact and/or deformation.

The development presented in this article allows for the
reproduction of the effect of some deformation history fea-
tures. Other equivalent models, already implemented in
SIMEX, take into account the history of contact between the
blank and the tools.

In order to understand how the equivalent contact models
work in one-step sheet metal forming simulation, let us con-
sider a simple, U-shaped forming operation.

The model represents the final shape of the part, it contains
1905 nodes and 1600 quadrilateral elements. In order to define
equivalent models, it must be partitioned according to the role
of the different areas in the forming operations (Fig. 3, which
shows also the profile sections on which we shall take profiles
of thinning strains).

We should point out that the Finite Element model presents
sharp edges for the punch and die line, whereas in reality there

will be fillets. This is consistent with the modeling procedures
for stress analysis and crash simulation.

In an actual punch die forming process, the advancing
punch would adhere to the surface of the blank and pre-
vent this portion of material from deformation. As one-
step simulation does not take into account the history of
contact, this effect is not simulated and the blank at the
bottom of the U shape shows significant deformation
(see the “standard bottom” thinning profile in Fig. 4).
Assigning a stick feature to the bottom of the punch
triggers an approximate simulation of the history of con-
tact. The deformation under the punch is negligible and
the results are much more realistic.

Taking into account the history of contact is important but it
is not sufficient to assure the accuracy of the simulation.

Figure 5 shows the thinning distribution (relative to the
case where the bottom is modeled with stick feature). We
can point out the following problems:

The wall deformation (about 17% thinning) is caused es-
sentially by the blankholder force through the friction coeffi-
cient. The force corresponding to this deformation is 200 tons,
corresponding to 667Mpa of pressure for a friction coefficient
of 0.2. This is an extremely high value for the blankholder
pressure with respect to industrial standards.

The thinning distribution on the wall shows significant re-
duction on the extremities. In reality we would have small

Fig. 2 Radial strain path vs.
actual strain path

Fig. 3 U-shape finite element
model
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gradient of thinning but by no means comparable with what
we see in Fig. 5.

The reason for these problems is that, in the physical pro-
cess, the process of bending/unbending over the die radius
controls the wall deformation.

Blankholder restraining force plays a much less important
role. Among other things, bending/unbending would induce a
state of deformation close to a plane strain, greatly reducing
the gradient of deformation along the y axis of our model.

In the following, we describe the theoretical foundation and
the implementation of an equivalent model for the cycles of
bending and unbending undergone by the blank over the die
radius. We shall see that this improve the qualitative distribu-
tion of thinning on the U-shape part and allows for an excel-
lent comparison between experimental and SIMEX results.

We should point out that bending/unbending cycles over
the die radius, apart from inducing a permanent deformation
and thinning on the blank material, lock a gradient of stress in
the fibers thereof. In this analysis we neglect this phenome-
non, which will be the object of further studies. However, this
is the cause curved wall shapes that we find in deep drawn
profiles after springback (Fig. 6).

Flexural deformation in metal forming

Description of the model

In order to understand the physical processes involving flexure
in sheet metal forming, let us consider the very simple U-shape
of Fig. 5. This simple shape can be obtained from two different
processes: bending and forming with punch and die tooling.

In bending, the initially flat blank is bent on the four cor-
ners. Several sequences of bending are possible depending on
the tooling setup. Generally speaking, the deformations of the
different corners are independent on each other and the por-
tion of materials between the bend are not affected by the
deformation process. When we release the tools, each corner
will undergo its own springback and recover part or the im-
posed deformation.

In punch and die tooling, the initially flat blank is set over a
die. Prior to actual forming, a blankholder presses the blank
against the die. The forming of the U-shape is obtained when a
male tool (punch) pushes the blank into the die cavity. The
material flowing into the die cavity undergoes a cycle of
bending/unbending when it flows around the die entry radius.
As a result, although the shape of the part wall may look at
first sight identical to that obtained from a bending process,
this material locks in both a plastic deformation and signifi-
cant residual stresses. The shape of such a part after
springback shows a typical curved wall.

For the case of bending and punch and die forming alike,
the final shape presents four bends, i.e. areas of significant
curvature. However, the deformation processes of the blank
over these bends are very different.

In the case of a bending process, the deformation over the
bends will be purely flexural, and can be written, as long as the
radius of curvature is large with respect to the material thick-
ness as in Eq. (4)

εx ¼ y

RD þ h�
2

ð4Þ
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Fig. 4 Approximate simulation
of history of contact using the
stick feature

Fig. 5 Thinning distribution on U-shape part
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The x and y axis belonging to the curvilinear reference
frame defined in Fig. 7.

In the case of a punch and die forming, this distribution
of deformation will essentially be correct for the two bends

on the punch nose or punch line. However, over the die
radius, the distribution of deformation will vary greatly
along the curvilinear coordinate, as it will be shown in
the following.

For the sake of simplicity, we assume that the effect of
friction is negligible. We also assume that the blank is in the
elastic phase before entering the die radius. The blank, goes
through the following process (Fig. 7):

A: Unloaded elastic state. A relatively small, uniform stress
and strain across the thickness can be present. A resultant
force per unit width, greater than or equal to T will be
present, for equilibrium considerations, over all the sec-
tions of the die radius.

B: After entering the die radius (classical theory of con-
tinuum mechanics suggests a distance approximately
equal to the blank thickness) the section will have a
curvature radius equal to rD + h/2. The energy re-
quired for this deformation is provided by a traction
force TC applied at the end of the die radius by the
punch via the formed material. This force must be
balanced, so that the deformation state of the blank
will be a combination of the flexural deformation (1)
and of a membrane deformation εM

B (Eq. 5).

εx ¼ y

RD þ h�
2

þ εBM ð5Þ

C: At the exit of the die radius, the blank will be flat
again, or in any case the residual radius of curvature
will be much higher than the die radius rD. The defor-
mation will be again constant across the thickness,
equal to a new value εM

C.

Semi-analytical model of deformation

We study the deformation of a material segment (in the sense
of [10]) of blank flowing over the die radius. This treatment
gives us values for the permanent plastic deformation εM

C and
for the traction T = TC at the end of the die bend.

We should point out that the traction force T may be
below yield level (i.e., the ration T/h may be less than
the yield stress σy). However, plastic deformation is usu-
ally present across the whole thickness of the blank.
Further, depending on the strain hardening characteris-
tics, there is usually a gradient of stress across the thick-
ness, leading to a springback deformation when the re-
sidual stresses are released.

Before implementation into SIMEX, we present the results
of a semi-analytical analysis. In this connection, we make a
few simplifying assumptions.

Fig. 6 U-shape part after springback (courtesy of FIAT Research Center

Fig. 7 History of deformation over the die radius
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The first assumption is that plain sections remain plane,
i.e. we can define a flexural component of the deformation
(Eq. 6):

ε f ¼ y

RD þ h�
2

ð6Þ
Maximum flexural deformation will take place on the up-

per (sup) and lower (inf) skin of the blank (Eq. 7)

εsupf ¼ h

2 RD þ h�
2

� � ; εinff ¼ −
h

2 RD þ h�
2

� � ð7Þ

The second assumption is that bending and unbending
cause the same amount of membrane deformation across the
thickness of the blank (Eq. 8).

The third assumption is that the material hardening behav-
ior is isotropic, i.e. the yield surface expands without shifting
when the Von Mises stress increases according to the
Krupkowsky-Swift law (3.1). Analysis of the effect of differ-
ent hardening behaviour will be presented in a future
publication.

The last assumption is that we shall neglect the elastic
component of the deformation.

Fig. 8 Stress/strain paths of upper and lower surface

Fig. 10 a Stress and strain after bending loading. b Stress and strain after
bending unloading

Fig. 9 Hardening curve for the material studied
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The mechanical deformation of the material going over the
die radius is described by Eq. (8).

Tδx ¼ ∫
V
σijδεijdV ð8Þ

In Eq. (8), T = Tc is the traction force at the exit of the die
radius, δx is the corresponding infinitesimal displacement, V
is the volume of material over the die radius σij and εij are
respectively the tensor field of stress and strain.

As all the fibers of the material move along the curvilinear
coordinate x, Eq. (8) simplifies into Eq. (9).

Tvxδt ¼ ∫
V
σxδεxdV ð9Þ

The infinitesimal perturbation δεx is a material perturbation
[9], which can be written as in Eq. (10).

δεx ¼ ∂εx
∂t

δt þ vx
∂εx
∂x

δt ð10Þ

Equation 10 becomes Eq. (11) for a stationary material
flow.

δεx ¼ vx
∂εx
∂x

δt ð11Þ

Substituting (11) into (8) we obtain Eqs. (12.1) and (12.2)

Tvxδt ¼ vxδt∫
h=2
−h=2dy ∫

L

0
σx

∂εx
∂x

dx ð12:1Þ

T ¼ ∫h=2−h=2dy ∫
L

0
σx

∂εx
∂x

dx ð12:2Þ

Equations (12.1) and (12.2) can be simplified, as stress and
strain variation take place only in the proximity of points B

and C. Substituting dεx ¼ ∂εx
∂x dx we obtain:

T ¼ ∫h=2−h=2dy ∫ε f þεBM
0 σx εð Þdεþ ∫ε

C
M

ε f þεBM
σx εð Þdε

h i
ð13Þ
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flexural strain
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The flexural deformation εf is given by Eq. (6). The
actual integrals in Eq. (14) depend on the stress-strain
paths of the material, in particular on the hardening char-
acteristics. For an elastic-perfectly plastic material, the ge-
neric strain paths on the upper and lower surfaces are pre-
sented in Fig. 8.

As we can see, there is a profile of residual stresses in the
material section at point C. The resultant of these stresses must
be equal to the traction force T (Eq. 14).

T ¼ ∫h=2−h=2σ
C
x dy ð14Þ

Equations (13) and (14), along with assumption (9), lead to
a system of two equations and two unknowns, enabling us to
predict the values of stresses and strains for a material flowing
over a die radius.

If we neglect the elastic deformation energy, the above
treatment can be immediately extended to a situation where
a traction force is present before the die entry radius (section
A) as it would be the case in the presence of a blankholder
restraining force.

T −TA ¼ ∫h=2−h=2dy ∫ε f þεBM
0 σx εð Þdεþ ∫ε

C
M

ε f þεBM
σx εð Þdε

h i
ð15Þ

Equation (14) stays unchanged.
Finally, we can point out that the stress distribution at the

end of the die radius (point C) gives rise to a moment MC,
defined as in Eq. (16).

MC ¼ ∫h=2−h=2yσ
C
x dy ð16Þ

In order to compute stress and deformation patterns,
we have developed an interactive semi-analytical tool
based on SimTech’s ENKIDOU package. The tool en-
ables the user to enter the relevant parameters for the
die radius geometry and material properties before solv-
ing Eqs. (13) and (14) for the equilibrium of the flowing
blank material.

The first results presented are relative to a typical low grade
steel blank of thickness h = 0.67, drawn over a die radius
R = 5 mm. The hardening curve is given by Eq. (17).

Fig. 13 a Residual moment vs.
flexural strain. b Effect of
restraining force on permanent
deformation
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σ ¼ 491 0:00725þ εp
� �0:182 ð17Þ

This expression (Fig. 9) corresponds to the following ma-
terial characteristics:

Yield strength σy = 200 Mpa
Necking engineering deformation = 20%
Ultimate strength (engineering) Rm = 302 Mpa

No restraining force TA is present at this time. Figure 10a, b
show the deformation profiles across the thickness for section
B (bending loading) and C (bending unloading).

After the bending loading (section B) the fibers of the
material are in traction above the neutral fiber y0, in
compression below the neutral fiber. The value of y0 is
given by Eq. (18).

y0 ¼ εBMRh ¼ εBM
2

Rh

Rh ¼ Rþ h
2

ð18Þ

Fiber stress will be above σy in the extended fibers and
below -σy in the compressed fibers.

During the unbending process, the deformation will be
brought to a constant value εM, but the different fibers will
follow different paths (Fig. 8)

& For y < −y0 (lower fibers) the strain will increase to εM
while the stress will revert above σy.

& For y > y0 (upper fibers) the strain will decrease to εM
while the stress will revert below -σy.

& Finally, for - y0 < y < y0, the strain will increase to εM
while the stress keeps the constant value corresponding to
this plastic deformation.

Fig. 16 Effect of restraining
force stress profile
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Fig. 15 Effect of restraining
force on residual moment
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Our model predicts the restraining (traction) force Tand the
residual moment M. We present the results for this two quan-
tities, normalized with respect to the values corresponding to a
totally plastified section (Eqs. 19 and 20).

Tnorm ¼ T
σyh

ð19Þ

Mnorm ¼ M

σy
h2
.

4

ð20Þ

We can now analyze the behavior of the metal sheet going
through the die radius. It will be determined by the die

geometry, modeled via the flexural strain εf, defined as in
Eq. (21).

ε f ¼ h
2Rh

ð21Þ

Effect of material properties

We analyze here the effect of the material properties, by com-
paring the behavior of a ductile material (low grade steel) with
a perfectly plastic material.

Permanent deformation after die radius has a very similar
pattern for different materials as a function of flexural strain
(Fig. 11).

Fig. 17 construction of element
trajectory

Fig. 18 Effect of different die
radii on thinning profile
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Traction force, on the other hand, is significantly affected
by material hardening. In both cases, value of traction force is
very small for small flexural strains, but it increases much
more rapidly in the presence of significant hardening, to a
value of about 40% of Tnorm (Fig. 12).

Material hardening affects greatly also the resultant mo-
ment of residual stresses (Fig. 13).

Effect of restraining force

If we apply a force prior to point A of Fig. 6, both permanent
deformation and traction force show a significant amount of
variation. As expected, they increase, for a given value of
flexural deformation, as the restraining force increases
(Figs. 14, 15 and 16).

It should be pointed out that the material prior to point A is
well into the elastic phase, the restraining force being, in all
the cases considered, well below yield values. However, due
to the effect of flexure cycling, a significant amount of perma-
nent deformation is gained.

Implementation in simulation code

The above described methodology has been imbedded in the
Bbending^ boundary condition of SIMEX code. Even though
the mesh size is roughly the order of magnitude of the die
radius, this boundary condition models the bending/
unbending cycle which takes place on a much lower scale.

During the simulation iteration, for each element labelled
BWALL^ (cfr. Figure 3), the code computes an approximated
trajectory. This is the projection of the total displacement vec-
tor on the extended final part geometry. The extension is ob-
tained superposing the (computed) initial geometry to the final
geometry, which is the original data of the one-step simulation
(Fig. 17).

If an element is detected as crossing the flexure boundary
condition line, the system composed of Eqs. (14) and (15) is
solved to find the strain tensor induced by the flexural/bending
and unbending. This tensor is added to the membrane strain to
yield corrected stresses and internal forces.

The implementation of this model in SIMEX allows for the
simulation of bending/unbending cycle over the die radius.
Figure 18 shows the profiles of thinning for the U shaped part
described in BOne step metal forming simulation^ section. For
a blankholding pressure of 50 MPa, the figure presents the
thinning profiles relative to three different die entry radii, 4,
6 and 12 mm respectively.

Application to industrial part

The French RNTL MACARENA project addressed the gen-
eral issue of coupling crash computation with metal forming

Fig. 19 RENAULT MACARENA rail Fig. 21 SIMEX mesh for MACARENA rail

Fig. 20 MACARENA rail with measurement points
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simulation. SimTech was a partner in MACARENA along-
side, among others, PCA Peugeot Citroen and RENAULT.

One of the problems addressed within MACARENA
was the accuracy of one-step sheet metal forming simula-
tions. In order to validate the new features of SIMEX, we
referred to the component shown in Fig. 19. RENAULT
had designed, built, instrumented and measured this com-
ponent to reproduce deformation patterns of actual indus-
trial components, even though it not correspond to any
actual vehicle component.

Formedmaterial was a steel with the following characteristics:

& thickness = 1.97 mm
& yield strength = 315 Mpa
& ultimate strength = 425 Mpa
& necking elongation = 18%
& Lankford coefficient = 1.43

The relevant process data were:

& Blankholder force = 32 tons
& Friction coeff. = 0.15
& die entry radius = 3 mm
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Fig. 23 SIMEX vs. measured
thickness on part wall

Fig. 22 SIMEX vs. measured
thickness of central section
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After forming, measurements of residual thickness have
been carried out on 55 points on the part surface (5 replica-
tions). 17 points were situated along a section at part center,
whereas the other 38 points were spread in significant posi-
tions over the part surface (Fig. 20).

The mesh chosen for simulation (Fig. 21) is representative
of coupling with crash, fatigue or other engineering analyses.
It consists of a total of 5321 elements (4034 trias, 1287 quads).

The mesh is divided in three parts, approximatively model-
ing the forming process:

1.550

1.600

1.650

1.700

1.750

1.800

1.850

1.550 1.600 1.650 1.700 1.750 1.800 1.850

measured thickness

si
m

ex
 th

ic
kn

es
s

experimental

simex
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& A bottom part, sticking to the punch
& A wall part, which flows over the die radius during the

forming process
& A blankholder part, subjected to the 32 ton holding force

Flexure conditions are generated along the die entry radius
to simulate the flexure cycle.

Figure 22 presents the comparison of the residual thickness
along the central line. SIMEX results are shown with respect
to experimental measurements. The qualitative comparison is
excellent, The peaks of deformation are correctly reproduced
as well as the region of low deformation. As for quantitative
results, maximum difference between experimental measure-
ment and simulation is 30 μm.

Figure 23 presents the comparison of results on mea-
sure points on the part wall. Here too the agreement
between measurements and SIMEX prediction is very
good, with an average difference of 12 μm and a maxi-
mum difference of 50 μm.

We have also an excellent agreement on the bottom of the
part (Fig. 24), thanks to the effective treatment of punch/blank
contact with the stick model described above. Average and
maximum difference between measurements and SIMEX pre-
diction are respectively 5 and 8 μm.

Comparison is less satisfactory on the corner of the part
(Figs. 25 and 26). However, we should point out that the
average thinning (15%) is the same between measurement
and SIMEX prediction. Also, we find a maximum thinning
of 20% in both cases. Due to its radial strain hypothesis,
SIMEX concentrates the deformation on the corner, whereas
in reality the adjacent areas are most strained.

Conclusions

Material flow over a die radius and the associated cycles
of bending and unbending happen on a relatively small
scale, with respect to the average element size in one
step simulation. We have developed a semi-analytical
model for the prediction of the residual strains and
stresses in the sections after the die radius and we have
implemented it into SIMEX code.

The application of this model has greatly improved the
prediction capabilities of the code. On the industrial parts
studied, the agreement between numerical results and
SIMEX prediction is excellent.
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