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Abstract For polycrystalline materials, the experimental de-
termination of residual stresses neglects the so-called 2nd or-
der fluctuations arising from e.g. plastic or thermal incompat-
ibilities from grain to grain. This constitutes a serious limita-
tion of the classical measurements methods, since these 2nd
residual stresses are known to have a major influence on the
mechanical behavior of metallic alloys, especially if these are
strongly textured. In the present paper, a newmethodology for
the treatment of the measured data is described and compared
to classical ones. In order to do so, the simulation of a tensile
test is performed using a self-consistent elasto-plastic model,
in order to constitute a virtual experimental data set. The 1st
and 2nd order stresses are extracted from the simulation for
various macroscopic stress levels. Two approaches (the clas-
sical sin2ψ method and a method based on the simultaneous
analysis of several X-ray diffraction peaks) are then used to
quantify the 1st order stresses from these Bexperimental^ data.
It is clearly shown that the method based on multi-peak

analysis allows to minimize the error made by neglecting the
so-called 2nd order stresses and leads to a better quantitative
estimation of the 1st order stresses.

Keywords Residual stresses . Hcp structure . Titanium
alloys . Self-consistent model . X-ray diffraction (XRD)

Introduction

Residual stresses are stresses which are retained within a body
when no external forces are acting. They arise because of
misfits (or incompatibilities) between different regions of the
investigated material sample or component, which are a direct
consequence of what these have been subjected to. Residual
stresses can be classified according to their origin (e.g. [1, 2]),
the scale over which they equilibrate (e.g. [3]), or their effect
on the macroscopic behavior of a structural piece (e.g. [4]). As
they can have beneficial or detrimental effects on the life time
of mechanical components, indeed, the three aspects (origin,
distribution and influence on mechanical behavior) are impor-
tant. In the case of polycrystalline materials, the most common
origins of the misfits are non-uniform plastic flow, steep ther-
mal gradients or phase transformations. And due to the poly-
crystalline nature of the materials, these stresses indeed vary
from point to point within the microstructure, and thus, several
orders of stresses are generally distinguished [2, 5] (see
below).

In many industrial applications, in which materials and
components are subjected to severe and complex
thermomechanical treatments (including forming, heat treat-
ment, welding, machining, …), the origin of the existing re-
sidual stresses is usually a combination of several misfit
sources (e.g. plasticity and thermal contraction due to rapid
cooling [6]), which are not easy to know a priori. The so-
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called macroscopic 1st order stresses (which are averaged on a
quite large volume and thus neglect the underlying micro-
structure) are of primary importance, since they are indeed
the ones which have the greatest influence on the life time of
mechanical parts of a structure. They are more and more often
determined through X-RayDiffraction (XRD), and this is why
some standards (e.g. [7]) have been developed to define the
best protocol to be able to evaluate these stresses from mea-
surements with sufficient quantitative accuracy.

However, all these standards rely on crude assumptions
concerning the material, which are rarely verified for metals
which present a hexagonal close packed (HCP) crystallo-
graphic structure (such as Zr, Ti, Mg, ….), and which are
widely present e.g. in the aeronautic or energy industries.
The two main important assumptions which are mentioned
in these standards are that (i) the investigated material can be
considered isotropic, and (ii) the 2nd order stresses - of inelas-
tic origin - can be neglected. Unfortunately, these two assump-
tions are rarely met for the above mentioned metals, as well as
for dual-phase Ti alloys with complex microstructures, which
are now widely used in the aeronautic industry.

The aim of the present work is thus to propose a modifica-
tion of the classical methodology, which minimizes the error
made on the estimation of the 1st order stress, and thus im-
proves the recommended standard, although it still based on a
priori assumptions. In order to validate this newmethod and to
compare it to the classical methodology, both are applied to a
theoretical case for which the residual stresses are a priori
completely known. It consists into the simulation of a tensile
test of an anisotropic Ti sample with a polycrystalline mean
field model. The paper is thus organized according to the
following outline. The classical definitions of the stresses de-
fined at different scales are first recalled in BDefinition of the
various order stresses for a polycrystalline material^ section;

then, the polycrystalline model, tested material and performed
simulations are presented in BSimulation of a tensile test^
section. The classical standard and proposed methodology
are detailed in BClassical method for the determination of
residual stresses^ section. Results obtained with both methods
are then presented in BResults^ section and compared to those
of the polycrystalline model. The paper ends up with some
general recommendations about the use of these methods and
perspectives.

Definition of the various order stresses
for a polycrystalline material

Let us consider a polycrystalline sample, schematically
represented by a 2 dimensional section in Fig. 1. This
sample has been e.g. machined on the upper surface (per-
pendicular to the figure and identified by the direction
normal to it, labelled ND), which means that it has been
subjected to heterogeneous stress and temperature fields
throughout its thickness. As a result, the internal structure
and mechanical state within the superficial layer has been
modified compared to the lower part of the sample. This
induces misfits between various layers, and thus residual
stresses. During such a machining operation, plastic strain
and heating/cooling are the main processes responsible for
the appearance of residual stresses. Due to the polycrys-
talline structure of the material, plastic deformation, as
well as thermal dilatation/contraction, generally varies
from grain to grain, producing in turn misfits between
grains, i.e. at the intergranular level [8, 9]. And we also
know that in such materials, deformation is rarely homo-
geneous within the grains, resulting in turn into heteroge-
neities at the intragranular level. The various stresses

Fig. 1 Definition of the
investigated V and diffracting Ω
volumes. Illustration of the 1st
and 2nd order stresses in an
unloaded sample
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usually defined in the field of residual stresses are recalled
below. As a result of inhomogeneous boundary conditions
imposed to the whole sample, the stress state depends on
the location. We can thus define stresses at different
levels: σ(x) the local stress at point x of the sample,
σg the average stress for grain g, σV the average stress
on a given investigated volume V containing a large num-
ber of grains and finally σS the stress averaged on the

whole sample, which can be the imposed stress Σimp
S dur-

ing a mechanical test. The investigated volume V can be
for example a part of a superficial layer, whose thickness
will both depend on the measurement method, as well as
the investigated process. It has to be distinguished from
the diffracting volume Ω which is defined latter. In the
context of residual stresses, it is common to decompose
these various stress as follows

σ xð Þ ¼ σg þ σIII
x

σg ¼ 1

Vg
:∫Vgσ xð ÞdV ¼ σV þ σII

g

σV ¼ 1

V
: ∫Vσ xð ÞdV ¼ σS þ σI

V

σS ¼ 1

VS
: ∫VSσ xð Þ dV ¼ Σimp

S

ð1Þ

We see that σIII
x ,σII

g ,σ
I
V are fluctuations around average

values, which are classically called 3rd, 2nd and 1st order
stresses respectively. When the whole sample is unloaded,
thenΣimp =σS = 0 and σV ¼ σI

V . In this case,σ
I
V correspond

to the 1st order residual stress tensor (averaged on the inves-
tigated volume) that we want to evaluate. The 2nd order
stresses, σII

g , which correspond to fluctuations within the

grains around σI
V , are then the 2nd order residual stresses. If

the whole sample has been deformed homogeneously, then, in
the unloaded state, we necessarily have σV ¼ σI

V ¼ 0 and

thus σg ¼ σII
g . The investigated volume can be considered

in this case to be a Representative Volume Element (RVE) for
the material. We will only have 2nd order residual stresses in
this case. In what follows, we will neglect the intragranular
stress fluctuations (σIII

x ) and consider only 1st and 2nd order
stresses.

Simulation of a tensile test

We start simulating a tensile test in a textured polycrystalline
sample (supposed to be initially stress free), in order to esti-
mate the stress distribution within the polycrystalline sample
for various macroscopic stress levels. In other words, we cre-
ate an artificial Bexperimental^ data set, for which the 2nd
order residual stresses will be due to plasticity only. The con-
sidered material is commercially pure titanium (grade 2),
whose initial texture in presented in Fig. 2. The texture is
typical from rolled and annealed titanium, and is composed
of two main texture components, which are the so-called tilted

0001f g 1120
� �

and tilted 0001f g 1100
� �

orientations [10].
This texture statistically respects the orthotropic symmetry
arising from the rolling process and is far from isotropy (the
maximum is larger than 6 for the {0002} pole figure). The
Orientation Distribution Function is calculated from pole fig-
ures using the LaboTex® Software and a dataset of 50,000
orientations is extracted, to represent the texture for further
calculations.

The original elasto-plastic SCmodel, initially developed by
Kröner [11] for the case of elasticity, and further extended to
the treatment of thermo-elasto-plasticity by Hutchinson [12]
and Turner et al. [6] has been used here, since it has been
shown to be well adapted to the calculation of 1st order stress-
es arising from plasticity or thermal treatment for HCP mate-
rials [13, 14]. Compared to other polycrystalline models used
un the context of residual stresses (see e.g. [15, 16]), it has also
the advantage of being solely based on mechanical interac-
tions between one grain and the surrounding material, without
the addition of any fitting parameter. It is used here to simulate
a tensile test along RD up to 5% total strain, i.e. in elasto-
plasticity (thermal effects are not considered here). It is then
possible to extract the stresses σI

V and σII
g within each grain

of the material at various stages of the loading process. The
use of this model is based on the following procedure:

(i) The material is considered to be heterogeneous, i.e. com-
posed of a discrete set of grains of various orientations
composing the texture; here, the sole consideration of the
distribution of orientations is taken into account and not
their position;

Fig. 2 Pole figures measured by
X-ray Diffraction on a rolled and
annealed titanium sample. RD
and TD stand for rolling and
transverse directions respectively.
The intensities aremultiples of the
random intensity
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( i i) The simulation is performed on a so-called
Representative Volume Element (RVE), on which the
boundary conditions of the simulated test are imposed;

(iii) The localization step allows establishing relationships
between the macroscopic quantities (at the level of the
RVE) and the microscopic ones (at the level of each
grain) and the knowledge of the local constitutive law
allows getting the unknown macroscopic quantities
through the homogenization step.

Only the principal equations relating stress and strain
tensors (or stress and strain rate tensors) will be recalled
below, and the reader is referred to the work of Turner,
Tome et al. [4, 6, 17, 18] for further details concerning this
model. It is important to note that during plastic deforma-
tion, the model not only allows the quantifications of these
tensors but also to calculate the grain shapes and texture
evolutions due to slip on several systems within each grain.
For the performed simulations, because of the limited
amount of imposed strain, the grain shape will be consid-
ered to be constant, which reduces the computing time, but
texture evolution, although expected to be limited, will be
considered.

If the model is used in the elastic range, then the local law
relating elastic strain εg and stress σg at the level of the grains
reads

σg ¼ Cg : εg
εg ¼ Sg : σg

ð2Þ

With Cg and Sg the 4th order elastic stiffness and compli-
ance tensors respectively.

The localization step allows to write

σg ¼ Bg : Σ
εg ¼ Ag : Ε

ð3Þ

whereΣ and Ε are the macroscopic quantities (at the level of
the RVE) and Bg and Ag are the 4th order tensors of stress
concentration or strain localization respectively. The average
of these 4th order tensors over the grains contained within the
RVE (represented below by the symbol 〈.〉RVE) is equal to
the identity tensor, since by definition we have

σg
� �

RVE ¼ Σ and εg
� �

RVE ¼ E ð4Þ

We can then write macroscopic constitute laws – a priori
unknown – of the same form as the local ones,

Σ ¼ ~C : Ε
Ε ¼ ~S : Σ

ð5Þ

where ~C and ~S are called the 4th order macroscopic stiffness
and compliance tensors.

Then, if we assume that each grain is a homogeneous el-
lipsoidal inclusion embedded into an infinite medium, the
average localization strain tensor reads

Ag ¼ I þ SE : ~C−1 : Cg−~C
� �h i−1

ð6Þ

with SE, the Eshelby tensor, which depends on the shape of
the grain g and on the infinite medium. This equation leads to
the determination of all local and global quantities from mac-
roscopic imposed boundary equations.

Now, the extension of this model to the case of elasto-
plasticity (EP) requires considering incremental laws. The
crystal plasticity law assumes that plastic strain takes places
within each grain g by slip on specific slip systems, which are
potentially active when

σg : Rs ¼ τ sc with γ
:s≥0 ð7Þ

Rs is the Schmid tensor, τ sc the critical resolved shear stress
and γs the shear rate for system s. The components of the
Schmid tensor are classically defined by

Rs
ij ¼

1

2
ms

i n
s
j þ ms

jn
s
i

� �
ð8Þ

with m!s
and n!s

being unit vectors representing the slip
plane normal and slip direction of system s and ms

i and nsj
being the individual components of these vectors.

By decomposing the total strain into the sum of the elastic
and plastic parts, we get

ε:g ¼ Sg : σ
:
g þ ∑

p
Rpγ:p ¼ Mg : σ

:
g ð9Þ

The Hooke’s law which relates the stress rate to the elastic
strain rate now writes

σ:g ¼ Cg :

 
ε:g−∑

p
Rpγ

: p

!
¼ Lg : ε

:
g ð10Þ

The previous elastic stiffness Cg and compliance Sg tensors
are then replaced by tangent Lg and Mg modulus tensors.
Again we can write macroscopic laws

Σ
: ¼ ~L : Ε

:

Ε
: ¼ ~M : Σ

: ð11Þ

in terms of strain and stress rates, in which ~L and ~M are
called the 4th order macroscopic effective moduli.
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After Yoshida et al. [19], we consider the following satu-
rating hardening law for the slip systems

τ:Sc ¼ ∑
p
hspγ:p

withhsp ¼ qþ 1−qð Þδsp½ �h0 1þ h0γa
τ ref n

� 	n−1 ð12Þ

In this equation, γa ¼ ∫t0 ∑
s
γsj jdt is the total strain, q , h0

and n are hardening parameters and τref is the reference critical
shear stress of the so-called easy glide systems. The selected
slip systems families and associated parameters, which have
been identified on experimental tensile curves obtained by
Benmhenni et al. for commercially pure titanium [20], are
listed in Table 1.

The single crystal elastic constants are taken equal to:
C11 = 162.4 GPa, C12 = 92 GPa, C13 = 69 GPa, C33 = 180.7
GPa, C44 = 46.7 GPa [21]. It is worth mentioning that the
HCP single crystal presents transverse isotropy, which means
that the Young modulus in tension is constant in the basal
plane. It is also seen in Fig. 3 (left) that it varies from
10.4 GPa in the basal plane to 14.4 GPa along the <c > axis.
In other words, the single crystal elastic anisotropy is limited
but not completely negligible. When the SC model is used to
calculate the macroscopic Young’s modulus of the textured
polycrystal as a function of the tensile direction, the range is
still reduced to 10.8 to 12.4 GPa but small variations are now
observed within the (X,Y) plane (Fig. 3 right). Thus, we can
say that the material is macroscopicallymoderately elastically
anisotropic.

Now, the boundary conditions imposed to the RVE to sim-
ulate a tensile test are the following

Ε
: ¼

Ė11 ? ?
? ? ?
? ? ?

0
@

1
A and Σ

: ¼
? 0 0
0 0 0
0 0 0

0
@

1
A ð13Þ

In other words, we solely impose a macroscopic uniaxial
stress tensor together with the magnitude of the tensile strain
rate Ε11. The simulated curve is shown in Fig. 4 (left). The

principal strains (width and thickness strains) are also present-
ed in Fig. 4 (right). It is worth noting that this plot highlights
the plastic anisotropy of the material, since these two strains
would be equal for an isotropic sample. It is seen on this curve,
that these two strains are indeed almost equal at the very
beginning of the deformation, i.e. in the elastic range, as ex-
pected from the calculation of the Young’s modulus in this
range.

Apart from the initial state characterized by the point la-
belled 0 and which corresponds to zero stress everywhere in
the RVE, 4 points have been identified along the curve, at
which 1st and 2nd order stresses will be calculated. For that
purpose, the RVE will represent the investigated volume de-
scribed above (i.e. a part of a larger sample), subjected to the
calculated macroscopic stress state, which will thus be equiv-

alent to a residual stress state ΣV ¼ σI
V . It is worth noting that

the classical situation in which residual stresses are usually
measured corresponds actually to point 4, i.e. a state at which
residual stresses due to an heterogeneous plastic strain field
have been previously introduced into the material at the level
of each grain (σII

gEP ) as well as at the level of the RVE (σI
V ),

which thus remains elastically loaded, although being a part of
an unloaded sample. For each of these points, the macroscopic
stress as well as the distribution of stresses inside the grains
will be extracted from the calculations. For each of these
points, we can write

At point 0:

σg ¼ σI
V ¼ 0 ð14aÞ

At point 1(elastic range):

σI
V≠0 andσg ¼ Bg : σ

I
V ð14bÞ

with Bg the elastic stress concentration tensor.
At point 2 (elasto-plastic range):
σI
V≠0 but no simple relationship exists between global and

local stresses, since the final stress state depends on the whole
strain path; from the definitions given in Eq. 1, we can write

σg ¼ σV
I þ σ II

gEP ð14cÞ

where σII
gEP are intergranular fluctuations around the aver-

age value σI
V due to the elasto-plastic strain. This can be

re-written as

σg ¼ Bg : σ
I
V þ I−Bg

� �
: σI

V þ σII
gEP ð14dÞ

At point 3 (unloading):

σI
V ¼ 0 and σg ¼ σII

gEP ð14eÞ

Table 1 Selected slip systems for titanium and associated hardening
parameters

Slip family (number of systems)
τSc (MPa)

q = 1.003

h0 = 81300 MPa

n = 0.047

τref = 105 MPa

1100

 �

1120
� �

(3)
105

0001f g 1120
� �

(3)
125

1011

 �

1123
� �

(12)
215

Int J Mater Form (2018) 11:341–355 345



At point 4 (elastic range):

σg ¼ Bg : σ
I
V þ σII

gEP ð14f Þ

Thus, because of the rewriting of Eq.14c, at each step of the
loading path, the stress state within grain g, can be expressed
by the general expression

σg ¼ Bg : σ
I
V þ σII

gNE ð15Þ

i.e., the sum of two terms, the 1st one associated with
the macroscopic 1st order stress state σI

V , and the second
one associated with the fluctuations - of Non Elastic
(NE) origin – arising from the overall thermomechanical
history of the sample and related in the present case
solely to elasto-plastic incompatibilities (EP). However,
in the context of stress measurements associated with
severe processes such as machining or additive
manufacturing, plasticity generally occurs concurrently
with thermal expansion or phase transformations, and
the term σII

gNE is then a consequence of all these process-

es occurring heterogeneously within the material.

However, unlike in the case of elasto-plasticity, the quan-
titative prediction of this term is still a challenge, which
necessitates complex numerical tools (see e.g. [16, 22]).
In the present case, reduced to elasto-plasticity, σI

V , as

well as σII
gEP (and thus σII

gNE) can be extracted from our

simulations, for all the points highlighted on the curve
(in Fig. 4). Due to the definition of the 2nd order stress-

es, we also have σII
gEP

� �
RVE

¼ 0⟹ σII
gNE

� �
RVE

¼ 0.

Classical method for the determination of residual
stresses

As already mentioned, residual stresses are necessarily asso-
ciated with residual elastic strains ensuring the compatibility
of the total strain. But, as seen previously from the above
detailed equations, they may simultaneously depend on elas-
tic, thermal and plastic properties of the material. Diffraction
(of neutrons or X-rays) is now a widely-used technique to
measure these elastic strains. It is also worth noting that this

Fig. 4 Simulated tensile curve for a textured titanium sample (left) and Evolution of the transverse and thickness strains (the dashed line corresponds to
y = x) (right)

Fig. 3 Calculated Young’s
modulus for a Ti HCP crystal
expressed in the crystal frame
(left) and for the T40 sample
expressed in the macroscopic
frame (right). The values are
expressed in GPa
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technique is ideally suited for comparison with mean – field
models (such as the one described above), since both method-
ologies allow the determination of the global response of a
large number of grains, without explicit account of their posi-
tion within the sample. Several types of experimental set-up
exist to measure these strains, from classical laboratory de-
vices to neutron sources which allow the characterization of
large volumes [23] or third generation synchrotron sources
such as the European Synchrotron Radiation Facility (ESRF)
which provide intense beams of high energy X-rays that are
much more penetrating than characteristic laboratory X-ray
devices [24]. The experimental devices and set-up depend also
to a certain extent whether we need to examine thin films or
thick samples [25]. Recently, a new device has been devel-
oped, which allows a rapid determination of a 2D X-ray im-
age, composed of several peaks [26]. Whatever the precision,
penetration depth and experimental set up, all these devices
are based on the same type of analysis, which relies on the
measurement of elastic strains, averaged, not on the whole
investigated volume, but on a so-called diffracting volume Ω
(see Fig. 1), only composed, for a given diffracting direction,
of all grains in diffracting orientation.

For a given X-ray source of wavelength λ, and an imposed
diffraction vector K, characterized by the plane indices {hkl}
and the two angles ψ and ϕ with respect to the sample refer-
ence frame (see Fig. 5), it is possible to measure the actual
lattice parameter of the screened plane family, averaged on all
grains in diffraction position, i.e. those composing the
diffracting volume Ω. The Bragg’s law reads in this case

2 d hklf g
� �

Ωsinθ hklf g ¼ nλ ð16Þ

with θ{hkl} the Bragg angle associated with the plane family
{hkl} and the X-ray source, and〈d{hkl}〉Ω the lattice param-
eter in the direction of the diffraction vector averaged on all

diffracting grains. From this, we can get the elastic strain,
again averaged onΩ, provided that the initial lattice parameter
(under zero stress) d0{hkl} is known. This average elastic strain
reads

εϕψ
� �

Ωmes:
¼ d hklf g
� �

Ω−d0 hklf g
d0 hklf g

ð17Þ

This strain (which indeed constitutes one single com-
ponent of the strain tensor) is measured along the direc-
tion characterized by the direction (ψ, ϕ), i.e. in the
reference frame linked to diffraction. We denote by A
the rotation matrix between the two references frames
(sample and diffraction), such that

X
0
i j ¼ AikA jlX kl ð18Þ

where Xkl and X
0
i j are the components of a given

tensor, expressed in the reference frames linked to the
sample and to diffraction respectively. This rotation
matrix reads

A ¼
cosϕcosψ sinϕcosψ −sinψ
−sinϕ cosϕ 0

cosϕsinψ sinϕsinψ cosψ

0
@

1
A ð19Þ

And we can thus write

εϕψ
� �

Ωmes: ¼ ε33
0

g

D E
Ωmes:

ð20Þ

Now, in order to see how this quantity is related to the
residual stresses, we first suppose that the measured elastic
strains are the sole consequence of a prior heterogeneous
elasto-plastic strain field within the sample, similar to the
one simulated above with the SC model. We can then calcu-
late the same quantity with the model as the one measured by
first expressing the relationship between calculated elastic
strain and stress tensors for one grain g, in the diffraction
reference frame (by using Eq. 15)1

ε
0
gcal: ¼ S

0
g : σ

0
gcal: ¼ S

0
g : B

0
g : σ

0 I
Vcal: þ σ

0 II
gNEcal:

� �
ð21Þ

then by averaging this elastic strain on all diffracting grains

ε
0
g

D E
Ωcal:

¼ S
0
g : B

0
g

D E
Ω
: σ

0 I
Vcal:

þ S
0
g : σ

0 II
gNEcal:

D E
Ω

ð22Þ

Fig. 5 Definition of the two reference frames, linked to the sample (X1,
X2, X3) and to the diffracting vector, characterized by the two angles ψ
and ϕ and the axes (L1, L2, L3)

1 Of course, in this equation, as in Eqs. 22 to 24, the stress tensors are not the

only calculated quantities: the tensor B
0
g is also calculated with the model.
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and finally by extracting the component of interest

ε33
0

g

D E
Ωcal:

¼ S
0
33ijg : B

0
ijklg

D E
Ω

: σ
0 I
klVcal: þ S

0
33ijg : σ

0 II
ij gNEcal:

D E
Ω

ð23Þ

Now, if we want the 1st order residual stress σI
V to be

expressed in the reference frame linked to the sample, we
can write

εϕψ
� �

Ωcal: ¼ ε33
0

g

D E
Ωcal:

¼ S
0
33ijg : B

0
ijklg

D E
Ω
: AkmAlnσ

I
mnVcal: þ S

0
33ijg : σ

0 II
ij gNEcal:

D E
Ω

ð24aÞ

or more globally

εϕψ
� �

Ωcal: ¼ εϕψ
� �I

Ωcal: þ εϕψ
� �II

Ωcal: ð24bÞ

Assuming now that the same relationship holds between
the measured strain and the 1st and 2nd order stress tensors
underwent by the sample and constituting grains, a priori un-
known, we can also write2

εϕψ
� �

Ωmes:
≅ εϕψ
� �

Ωmod:

¼ S
0
33ijg : B

0
ijklg

D E
Ω
: AkmAlnσ

I
mnVmod: þ S

0
33ijg : σ

0 II
ij gNEmod:

D E
Ω

ð25aÞ

Or more simply

εϕψ
� �

Ωmes:
≅ εϕψ
� �

Ωmod:
¼ εϕψ
� �I

Ωmod:
þ εϕψ
� �II

Ωmod:
ð25bÞ

Equation (25a) thus relates a quantity which can be mea-

sured by X-ray diffraction ε33g
0� �

Ωmes:
with (i) the 1st and 2nd

order stress tensors that we want evaluate, σI
V and σ

0II
gNE (of

various origins) and (ii) some additional unknown tensor
B′g (which describes the sole elastic behavior of the material).
The matrix A is defined experimentally and the stress compo-

nents S
0
33i jg

derived from the elastic constants of the single

crystal are usually taken from the literature.
Unfortunately, in the general case of an anisotropic and

strongly textured material, it is difficult to get a quantitative

estimation of all stress tensors from the sole measurements
(there are indeed too many unknowns in both terms of
Eq. (25a)); this difficulty can be overcome by making some
addi t iona l assumpt ions based on the fo l lowing
considerations:

(i) The second term εϕψ
� �II

Ωmod: ¼ S
0
33ijg

: σ
0II
ij gNEmod:

D E
Ω

depends on the whole thermomechanical history of
the material and thus the only way to get a precise
estimate of all included 2nd order stress tensors is to
simulate this history with sufficient precision, which
is, as already mentioned, an extremely difficult task,
still out of reach for many complex processes, such
as e.g. welding; however, as these 2nd order stresses
arise from fluctuations around average values, we
assume that they can be neglected (1st assumption)
and concentrate on the determination of the 1st order
stress tensor. In fact, in some studies, the second
term is even completely omitted, without any justifi-
cation [25]. Eq. (25) can then be re-written as:

εϕψ
� �

Ωmod: ¼ S
0
33ijg : B

0
ijklg

D E
Ω
: AkmAlnσ

I
mnVmod:

¼ S0eq
33ijAkmAlnσ

I
mnVmod: ð26Þ

In this expression, the matrix A depends solely on
the measurement direction but the tensor S′eqdepends
in quite a complex way on the single crystal elastic
constants as well as on the diffraction volume (and thus
the texture of the material). If we want to avoid requir-
ing to a model to assess it, we can make the following
assumptions:

(ii) In the general case, the stress tensor σI
V has 6

independent components, but it often reduces to
3, since it is usually considered that the stress
state measured on the surface of the material is
a plane stress state, because of the free surface
(2nd assumption);

(iii) If the material can be considered to be elastically isotro-
pic (3rd assumption), the S′eq tensor does not depend
anymore on the diffracting plane and volume, but solely
on the macroscopic elastic constants which are known a
priori (called S1M and S2M in Eq. (27) below, defined
from E and ν, the macroscopic Young Modulus and
Poisson ratio) [7]. In this case, Eq. (26) reduces to the
well-known sin2ψ linear fit (because 〈εϕψ〉Ω be-
comes linear as a function of sin2ψ, see Eqs (27) and
(28)) and only one peak and three ϕ values (to extract

2 We distinguish here the calculated (calc.) quantities from the modelled
(mod.) ones: the first ones refer to the predicted quantities using the SCmodel;
the second ones refer the approximated expression we will fit on the measure-
ment points. This expression can be more or less simple and may also need the
use of the SC model, as seen below.
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the 3 stress components) are needed. For hexagonal ma-

terials, the 1233

 �

peak is generally recommended, be-

cause of the high multiplicity of this crystallographic
plane family.

εϕψΩmod: ¼ 1þ ν
E

σI
11mod:cos

2ϕþ σI
12mod:sin2ϕþ σI

22mod:sin
2ϕ

� �
sin2ψ

−
ν
E

σI
11mod: þ σI

22mod:

� � ¼ 1

2
S2M :σϕmod::sin

2ψþ S1MTrσmod:

with S1M ¼ −
ν
E

and
1

2
S2M ¼ 1þ ν

E
σϕmod: ¼ σI

11mod:cos
2ϕþ σI

12mod:sin2ϕþ σI
22mod:sin

2ϕ

ð27Þ

(iv) In any other case, the S′

eq

tensor has to be calculated
with a polycrystalline model describing the elastic re-
sponse of the material, like e.g. the one used above to
simulate the tensile curve [8, 11], and the modelled av-
erage strain then reads

εϕψ
� �

Ωmod:
¼ 1

2
S

0 eq
Ω1:σϕmod::sin

2ψþ S
0 eq
Ω2Trσmod: ð28Þ

The terms S
0eq
Ω1 and S

0eq
Ω1 – called the Diffraction Elastic

Constants (DEC) –which now depend on the diffracting plane
as well as on diffracting volume Ω (relative to the texture of
the material) replace the macroscopic quantities, and can also
be calculated with the SC model in it elastic version. It is
worth mentioning though that, if the SC model has proven
its excellent predictive capacity in elasticity, some other
models, such as Voigt, Reuss (or the average of the two pre-
vious ones, also called Hill estimation) can also be selected
since they provide explicit relations for the macroscopic
Hooke’s law and are thus much simpler to use while still
providing an acceptable accuracy [27].

The 3 macrostress components are then estimated by the
least square method, i.e. by minimizing the following expres-
sion, in which the sum is generally performed – for one se-
lected diffraction peak – on all measured points (i), associated
with varying angles (ψ, ϕ).

∑i εϕψ
� �

Ωmes:− εϕψ
� �

Ωmod:

n o2
¼ Min ð29Þ

In this equation, 〈εϕψ〉Ωmod.is represented either by
Eq. 27 if we assume elastic isotropy or by Eq. 28 if we do
not assume elastic isotropy. In this case, the material can
further be untextured (i.e. macroscopically isotropic) or

textured. In the first case, it is easy to show that the average
elastic strain is again linear with respect to sin2ψ, but with a
slope which varies with the diffraction plane. In any other
case, the variation generally becomes non linear. In most
cases, the minimization is realized on a series of measure-
ments performed for one single peak, but some recent pro-
cedures rely on multiple peak minimization [28, 29]. It has
also been suggested by the French standard that the DEC
can also be experimentally determined if the material is
single-phased using 4-points bending test with XRD, but
it is rarely done in practice [7, 30].

For industrial applications, the material is most often con-
sidered elastically isotropic, which suppresses the necessity to
go through a complex calculation. We now consider our pre-
dicted data as a virtual experimental data set and evaluate the
impact of the proposed simplifying assumptions on the preci-
sion obtained on the quantitative estimate of the sole 1st order
macroscopic stress.

Results

For each of the 4 selected points along the predicted tensile
curve, macroscopic elastic strains〈εϕψ〉Ωcal. have been cal-
culated with the elasto-plastic model for 2 diffracting peaks

1233

 �

and {0006} (the 1st one associated with a high mul-
tiplicity and the 2nd with a very low multiplicity) and several
values of ψ and 2 values of ϕ. For these calculations, both
elastic and textural anisotropies have been taken into account
and the averaging have been made on all grains in diffracting
position, with an additional spread of 5° around them. These
calculated elastic strains are represented in Figs. 6, 7, 8 and 9
and the associated diffracting volumes (evaluated at 0 strain)
are shown in Fig. 10. For points 2 and 4, for which the elastic
strains contain two components (see Eq. (24b)), these two
components have been also represented separately.
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These figures call for the following comments:

(i) It is interesting to note, that for both peaks, the predicted

evaluations of the 1st order strain component εϕψ
� �I

Ωcal:

appear quasi-linear for the 4 points, in spite of the fact that
the material is both (weakly) elastically and (strongly)
texturally anisotropic. This is presumably because the
elastic anisotropy is small.

(ii) For the {0006} measurements, some points are
Bmissing^ in the figures on the curves corresponding
to ϕ = 0, since the influence of the texture is quite
strong in this case, and for some ϕ values, there is
no grain in diffracting position (see also Fig. 10). It is
worth mentioning though that this situation is very
often encountered in stress measurements, since the
most studied materials in this context (steels and tita-
nium alloys) are generally strongly textured (see e.g.
the experimental diffracting volume fractions in [30],

which are on the same order of magnitude as the ones
calculated here). Due to the discrete description of the
texture in the present case, the evaluation of the
diffracting volume depends strongly on the selected
spread (taken here equal to 5°, which is quite small),
but a diffracting volume equal to 1% still corresponds
here to 500 orientations.

(iii) As soon as 2nd order stresses are created within the
material, some non linearity appears clearly on both

total strain 〈εϕψ〉Ωcal. and 2nd order strain εϕψ
� �II

Ωcal:

profiles (see Points 2 to 4).
(iv) For point 4 – which is similar to a case where 1st order

stresses are classically determined – the total strain pro-
file deviates significantly from linearity for both peaks,
and especially for ϕ = 0.

(v) We can also estimate from these curves, the quanti-
tative influence of the 2nd order term, whenever it is
present; it is seen on all concerned curves that

Fig. 7 Calculated elastic strains〈εϕψ〉Ωcal. as a function of sin
2ψ for Point 2 (elastoplastic loading) on the tensile curve; the macroscopic elastic strain

depends on 1st and 2nd order stress tensors: εϕψ
� �

Ωcal: ¼ εϕψ
� �I

Ωcal: þ εϕψ
� �II

Ωcal:

{1233} = 0
{1233} = 90
{0006} = 0
{0006} = 90

Fig. 8 Calculated elastic strains 〈εϕψ〉Ωcal. as a function of sin2ψ for
Point 3 (unloading after elastoplastic loading) on the tensile curve; the
macroscopic elastic strain depends only on the residual 2nd order stress

tensor: εϕψ
� �

Ωcal: ¼ εϕψ
� �II

Ωcal:

{1233} = 0

{1233} = 90

{0006} = 0

{0006} = 90

Fig. 6 Calculated elastic strains 〈εϕψ〉Ωcal. as a function of sin2ψ for
Point 1 (elastic loading) on the tensile curve; the macroscopic elastic
strain depends only on the macroscopic 1st order stress tensor:

εϕψ
� �

Ωmod: ¼ εϕψ
� �I

Ωcal:
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εϕψ
� �I

Ωcal: and εϕψ
� �II

Ωcal: are of the same order of

magnitude, although not always of the same sign;
generally, the 2nd order term is smaller than the 1st
order one, but it can sometimes be larger (for exam-

ple, for point 4, at ϕ = ψ = 0 for the 1233

 �

peak, we

have εϕψ
� �II

Ωcal: ¼ 0:001 and εϕψ
� �I

Ωcal: ¼ −0:0005 ).

The total strains calculated for the 1233

 �

peak atϕ = 0 are
now replotted in Fig. 11 for the 4 points. The influence of the
imposed macroscopic stress on the maximal strain value is
quite clear: this maximal value is close to 0.002 for an im-
posed stress equal to 200 MPa in the elastic range (after the
establishment of plastic residual stresses (Point 4) or not
(Point 1)), whereas it reaches 0.004 for an imposed stress close
to 500MPa in the elasto-plastic range, and is reduced to 0.001
in the unloaded condition (which would correspond to the
case of a macroscopic residual stress equal to 0).

Now, considering that these calculated elastic strains are
experimental data, we can estimate the 1st order stresses for
the 4 studied points through the minimization procedure ex-
plained above by neglecting the 2nd order term (1st
assumption) and by assuming that the material is either (i)
elastically isotropic (IE) (3rd assumption, Eq. 27), (ii) elasti-
cally anisotropic but macroscopically isotropic (IT) (Eq. 28)
or (iii) elastically and macroscopically anisotropic (FA) (again
Eq. 28). Two examples of this adjustment are shown in Fig. 12
and all resulting stress determinations are presented in Table 2.
The stress state is also assumed to be plane stress, which is
completely consistent with the imposed boundary conditions
(2nd assumption). The minimization has been performed on
points associated with one single peak (as in recommended

standards) – here the 1233

 �

peak or the {0006} peak, or with
two peaks simultaneously (proposed method) (see Eq. 29).

The data presented in Fig. 12 correspond in a sense to two
extreme cases. The 1st one (Fig. 11 left) concerns the

Fig. 9 Calculated elastic strains〈εϕψ〉Ωcal. as a function of sin
2ψ for Point 4 (elastic reloading after elastoplastic loading and unloading) on the tensile

curve; the macroscopic elastic strain depends again on both 1st and 2nd order stress tensors; εϕψ
� �

Ωcal: ¼ εϕψ
� �I

Ωcal: þ εϕψ
� �II

Ωcal:

{1233} = 0

{1233} = 90

{0006} = 0

{0006} = 90

Fig. 10 Calculated diffracting volumes as a function of sin2ψ for the two
investigated profiles

Fig. 11 Calculated elastic strains〈εϕψ〉Ωcal. as a function of sin
2ψ for

the four investigated points. 1233

 �

peak, ϕ = 0
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estimation of a sole 1st order stress tensor in the absence of
2nd order stresses. In this case, the adjustment is necessarily
better than in all other cases, since the neglected term is 0.
Also, the influence of elastic or textural anisotropy is quite
limited, since all curves are linear and the calculated error
parameter is indeed quite small for all performed adjustments.
The 2nd case presented in Fig. 12 (right) corresponds to the
worst case for stress estimation, since both terms are present in
the predicted value. It is seen that the 4 calculated profiles are
non linear in this case (see also Fig. 9). The adjusted profiles
look however linear, in spite of the fact that the texture is taken
into account. This is again presumably due to the weak elastic
anisotropy.

Now, from the close inspection of the estimated stress
values for each point and associated error parameter
(Table 2), we can say that:

(i) For Point 1, for which the only origin of stress is elastic-
ity, the adjustment is quite good for all cases, but always
slightly better by taking into account both elastic and
plastic anisotropy; the minimization on two peaks is also
better than the minimization on one single peak;

(ii) For Point 2, for which the level of stress is quite high,
again taking into account both elastic and textural
anisotropy improves the quality of the fits, except
for the {0006} one for which it has been seen that
the diffracting volume was reduced for a lot of mea-
surement points; minimizing on two peaks however
still provides a better estimation than the minimiza-
tion on one single peak;

(iii) Point 3 corresponds to the situation in which the pseudo-
experimental elastic strain is composed on the sole term
which is neglected in the minimization procedure.
Whatever the selected peak, the error appears smaller

when the elastic (and thus also textural) anisotropy is
neglected.

(iv) For Point 4, taking into account the anisotropy of the
material does not improve the quality of the fit, when the
minimization is performed on one single peak.
However, when the fit is performed simultaneously on
two peaks, the quality of the fit is significantly im-
proved, and especially when all sources of anisotropy
are taken into account. In such a case, the error param-
eter is indeed divided by 1.12 when going from the
recommended standard (1st adjustment line, last column
χ = 124.9) to a double peak minimization (9th adjust-
ment line, last column χ = 56.4).

It is thus clear from Table 2 that the adjustment on one
single peak is acceptable only when there is no 2nd order
stress of inelastic origin (point 1 only) but also that in the 3
other cases, the adjustment is considerably improved by
performing the minimization on both peaks simultaneously.
This is nicely illustrated graphically in Fig. 13. The proposed
multipeak minimization performed by taking into account
both elastic anisotropy and texture (results highlighted in
pink in Table 2) provides a much better estimation of the
macroscopic stresses than the procedure recommended by ac-
tual standards (results highlighted in grey in Table 2) for the
situations where 1st and 2nd order stresses are present. This is
a very interesting result, since most of the cases for which
stresses are estimated in practice correspond to cases for
which both 1st and 2nd order terms (of various origins and
not only of plastic origin) are present. It is also worth noting
that although the calculated curves may appear quite close for
Points 1 and 4 (see Fig. 11), the corresponding adjusted stress
values resulting from a single peak minimization can be quite
different (see Table 2).

 = 0, calc. 
 = 0, mod. 
 = 90, calc. 
 = 90, mod. 
 = 0, calc. 
 = 0, mod. 
 = 90, calc. 
 = 90, mod. 

 = 0, calc. 
 = 0, mod. 
 = 90, calc. 
 = 90, mod. 
 = 0, calc. 
 = 0, mod. 
 = 90, calc. 
 = 90, mod.

Point 1 – IE Point 4 – FA

Fig. 12 Comparison of pseudo-experimental (calc.) and adjusted (mod.)
elastic strains through the least square procedure given by Eq. (29) for:
(left) point 1 (elastic loading), assumption of isotropic elasticity and

(right) point 4 (elastic loading after elasto-plastic loading and unloading),
assumption of anisotropic elasticity and texture
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Table 2 Comparison of calculated and adjusted principal stresses for the 4 investigated points and 3 different assumptions concerning the
material. The least square procedure has been applied on 1233


 �
and {0006} peaks, first separately and then together. The calculated error

parameter χ is equal to: χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11cal:−σ11mod:ð Þ2 þ σ22cal:−σ22mod:ð Þ2 þ σ12cal:−σ12mod:ð Þ2

q

Point 1 (elastic loading) Point 2 (elasto-plastic loading)

11 22 12 11 22 12

Calculated 200 0 0  478 0 0  

{123 3}peak

Mod. IE 213 -8 2 15.4 433 -115 -15 124.4

Mod. IT 215 -7 2 16.7 439 -117 -15 124.2

Mod. FA 211 3 2 11.6 424 -97 -14 111.9

{0006} peak

Mod. IE 178 -7 0 23.1 556 -9 58 62.7

Mod. IT 203 -8 1 8.6 633 -10 66 168.0

Mod. FA 198 0 1 2 619 16 63 155.0

{123 3} + {0006}  peaks

Mod. IE 210 -8 0 12.8 494 -62 13 63.3

Mod. IT 214 -8 -1 16.5 509 -70 13 77.6

Mod. FA 209 3 -2 9.7 493 -44 11 47.8

Point 3 (unloading) Point 4 (elastic reloading)

11 22 12 11 22 12

Calculated 0 0 0  200 0 0  

{1233} peak

Mod. IE -79 -98 -17 127.0 134 -105 -15 124.9

Mod. IT -80 -99 -17 128.4 135 -106 -15 125.2

Mod. FA -87 -105 -16 137.3 125 -101 -14 126.6

{0006} peak

Mod. IE 126 7 21 127.9 305 0 22 107.3

Mod. IT 144 9 25 146.4 346 0 26 148.3

Mod. FA 141 15 24 143.8 338 14 25 140.9

{123 3} + {0006} peaks

Mod. IE 7 -48 2 48.5 209 -56 2 56.7

Mod. IT -9 -58 5 58.9 205 -66 4 66.3

Mod. FA -15 -59 6 61.2 195 -56 4 56.4

χ χ

χ χ
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Conclusions and perspectives

We have detailed in the present paper the classical procedure
for the 1st order stress estimation from XRD and calculated
with a model the 1st and 2nd order stresses and associated
elastic strains arising from an elasto-plastic deformation in a
Ti tensile sample. The purpose of this calculation was not to
estimate the predictive capacity of the model or to compare
experimental and calculated data as in previous studies [30,
31], but simply to produce a virtual experimental data set.
Thus, by considering the calculated data as pseudo-
experimental data, we were able to apply on them the method
recommended by all standards for stress determination, and to
compare the results to a method based on multi-peak
minimization.

For the tested case, we have shown that

– Neglecting the 2nd order stresses in the determination of
the 1st order ones induces a significant error when the
standard method is employed (i.e. minimization on one
single peak); this point has already been underlined by
several authors, which compared in the past experimental
and calculated profiles [30, 31]. However, these authors
did not quantify the error made by completely neglecting
the 2nd order term as in the present case (aimed at eval-
uating the capacity of the proposed minimization proce-
dure to estimate the 1st order stress without being
obliged to calculate the 2nd order term), and introduced
rather an additional adjusting parameter to minimize the
error made between experimental and calculated profiles
[15], and thus to evaluate the predicting capacity of one
model in simple cases. The use of an additional adjusting
parameter has also been employed by other authors more
recently [14, 32].

– This error is considerably reduced when minimization is
performed on two peaks, although the reason for this
improvement is not completely clear yet;

– When minimization is performed on two peaks, taking
into account elastic anisotropy (IT or FA hypotheses)
and texture only very slightly improves the result com-
pared to the IE hypothesis.

As the presented data obviously depend on the selected
material (texture) and sampling procedure, this work is now
continued to test the validity of the multi-peakminimization in
other cases, that is for different texture and different stress
origins (and especially with residual stresses due to thermal
origin or phase transformation), in single and dual phase Ti
alloys. Also, some experimental data obtained with the new
portable device [26, 28] are presently analyzed to confirm the
validity of a multi-peak analysis. Indeed, with this device, it is
possible to measure elastic strains during a tensile test (in
order to know a priori the value of the 1st order macroscopic
stress, just like in the present work), Also, the analysis of the
data, which is performed with the software MAUD3 is based
on Rietveld refinement, i.e. based on a multi-peak
minimization.
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