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Abstract For a sheet metal forming optimization problem,
time related design variables are seldom considered in practice.
The purpose of this work is to handle time dependent sheet
metal forming problems. Because it is difficult to investigate
all time points during the entire forming procedure, some key
time points should be extracted. Therefore, the number of design
variables should be significantly increased due to introduce aux-
iliary time design variables. However, curse of dimensionality is
a formidable difficult issue to be solved. To solve such medium-
scale problems, Gaussian Process Assisted Firefly Algorithm
(GPFA) is suggested. The main idea of the suggested method
is to construct a surrogate model-aware search mechanism with
Firefly Algorithm (FA) for simulation-based optimization effi-
ciently. Compared with other FAs, the distinctive characteristic
of GPFA is to generate new sample points adaptively based on
maximum Expected Improvement (EI) criterion, so that the lo-
cal and global search can be well balanced, and a small prom-
ising area can be quickly focused on. Numerical studies on
benchmark problems with 20 variables and a real-world appli-
cation of time dependent sheet metal forming optimization re-
veal that the GPFA is capable to solve such similar problems.

Keywords Surrogate . Time dependent . Sheetmetal
forming . Firefly algorithm (FA) . Expected improvement (EI)

Introduction

In sheet metal forming process, expensive computer simula-
tions are frequently used to optimize the process parameters.
Compared with physical trial and error approaches, the Finite
Element (FE) simulation outperforms in time and cost reduc-
tions. The utilization of sheet metal forming simulations has
been widely studied. In the early stage of sheet metal forming
optimization, some classical optimization methods have been
integrated with the FE simulation. Ohata et al. [1] integrated
the sweeping simplex method and FE analysis to optimize the
punch travel and forming stages with a uniform thickness
distribution. Batoz and Guo [2] optimized the blank shape
and the drawbead restraining forces by using Sequential
Quadratic Programming (SQP) method. Ghouati et al. [3, 4]
used gradient optimization method with static and dynamic
implicit algorithms to control the springback. Park et al. [5]
suggested a method for determining the optimal blank dimen-
sions of a square cup by combining the ideal forming theory
with a FE deformation path iteration method. Guo et al. [6]
also applied the SQP to shape optimization of blank contours.
Naceur et al. [7] used the IA (Inverse Analysis or Approach) to
optimize the drawbead restraining forces to improve the sheet
metal formability in a deep drawing process. Kleiber et al. [58]
used the Adaptive Monte Carlo (AMC) as the system reliabil-
ity assessment technique to perform sheet stamping optimiza-
tion. To obtain the global optimal solution, some heuristic
methods, such as Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO), have been used to forming de-
sign. Azaouzi et al. [8] developed an automatic numerical
procedure based on commercial FEM code and Heuristic
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Optimization Algorithms (HOA) for blank shape design of
high precision metallic parts. Wei et al. [59] used a Multi-
Objective Genetic Algorithm (MOGA) to optimize sheet met-
al forming process. Naceur et al. [9] developed an approach
based on the coupling between the IA and an Evolutionary
Algorithm (EA) to deal with the optimization of the blank
contour of a square cup. Although most of heuristic methods
might obtain the global solution, such methods are not easy to
be employed in practice due to the large number of expensive
evaluations. To improve the efficiency of classical optimiza-
tion methods, Surrogate Assisted Optimization (SAO) has
been widely used for forming optimization. Ohata et al. [10]
used the Response Surface Method (RSM) to find the anneal-
ing conditions suitable for a sheet metal forming process.
Jansson et al. [11] applied Space Mapping (SM) with RSM
to the optimization of sheet metal forming process. Breitkopf
et al. [12] used a successive RSM to optimize the initial blank
of the Twingo dashpot cup. Jansson et al. [13] integrated the
RSM and the SM for optimization of automotive sheet metal
part. They also used a design hierarchy and RSM to avoid
failure in material and, simultaneously, reach an acceptable
through thickness strain. Huang et al. [14] presented an effi-
cient method based on a combination of FEM and RSM to
optimize the intermedial tool surfaces and therefore minimize
the thickness variation in the multi-step sheet metal stamping
process. Bonte et al. [15] proposed a surrogate-based robust
optimization and applied it to a deep drawing process. Wang
et al. [16] used Adaptive Response Surface Method (ARSM)
based on Intelligent Sampling (IS) method. Wang et al. [17]
also used a surrogate-based optimization method by integra-
tion of Support Vector Regression (SVR) and IS strategy to
optimize sheet metal forming process. Kahhal et al. used
MOGA by integrating RSM to minimize objective functions
of fracture and wrinkle simultaneously. Wiebenga et al. [18]
made use of regularization in the fitting procedure of Kriging,
Radial Basis Function (RBF) and Artificial Neural Networks
(ANNs) surrogates to alleviate the severe deteriorating effect
of numerical noise on the approximation quality of surrogates
in sheet metal forming optimization. Obviously, the sheet met-
al forming optimization gained significant progress and the
surrogate modeling techniques have attracted much attention
to improve the efficiency of optimization for sheet metal
forming problems in recent 20 years.

In our opinion, most of sheet metal forming problems
should be analyzed considering the time dependence of pro-
cess parameters. Unfortunately, few studies focused on time
dependent sheet metal forming optimization. Jakumeit et al.
[19] have optimized VBHF (Variable Blank Holder Force) of
a deep-drawing process by using an iterative parallel Kriging
algorithm. In their application, three time points are investi-
gated to control the deep-drawing simulation. In Goel’s [20]
work, the deformation process should be divided into multiple
steps and intermediate flange contour is designed for each

stage. However, with the increase of key time points and load
time, the number of design variables should increase corre-
spondingly. Therefore, most of time dependent problems are
medium-scale problems and curse of dimensionality seems to
be a formidable difficult issue of time dependent sheet metal
forming optimization. Recently, Surrogate Assisted
Evolutionary Algorithms (SAEAs) appeared as a promising
approach for dealing with such computationally expensive
optimization problems. Zhou et al. [21] used the GP model
as a global surrogate model and Lamarckian evolution as a
local surrogate model coupling with Evolutionary Algorithms
(EA) for an aerodynamic problem with 24 parameters. Lim
et al. [22] used an ensemble surrogate to assist EA.
Reasonably good results on benchmark problems with 30 de-
sign variables have been obtained. Bo et al. [23] proposed a
GP model assisted EA for dealing with a circuit design prob-
lem with 17 design variables. Therefore, EA seems a poten-
tially useful method for high dimensional problems.
Moreover, another important issue is to select a suitable sur-
rogate for the EA. Theoretically, any surrogates can be inte-
grated with the EA. Among them, Polynomial Regression
(PR), also known as RSM, SVR, ANN, RBF and GP, also
referred to as Kriging or Design and Analysis of Computer
Experiment (DACE) models are the most prominent and com-
monly used [24–26]. Using these surrogates, complex optimi-
zation problems with computationally expensive objective
functions and constraints can be performed more efficiently.
Moreover, the search time of the EA can be significantly re-
duced. In this work, GP modeling is used according to the
following considerations.

1) GP modeling exhibits better performance in modeling
accuracy than many other surrogate modeling methods,
especially when the size of sample points is small and the
optimization problems in engineering show strong non-
linear behavior. Because it is a theoretically principled
method for determining a much smaller number of free
model parameters [27, 28].

2) GP modeling is good at estimating the model uncertainty
at each predicted point. Thus, effect of smoothing noisy
data on constructing a high-performance model can be
greatly deteriorated. Furthermore, the search algorithm
can find a better promising area based on the model un-
certainty and improve the modeling accuracy efficiently
[27, 28].

3) GP modeling can be better combined with some good
available prescreening methods in optimization. For ex-
ample, GPmodeling with the Expected Improvement (EI)
prescreening [29] has demonstrated its ability to balance
the local and the global optimization [30].

The rest of this paper is organized as follows. The basic
theories of GP modeling technique and EI assisted
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prescreening strategy are introduced in “Gaussian process
modeling and Expected Improvement-based Prescreening
(EIP) strategy” sections, respectively. The framework of the
suggested method is then presented in “Gaussian process
assisted firefly algorithm (GPFA)” section. The experimental
results of the suggested GPFA method on some commonly
used mathematical benchmark problems and a real-world ap-
plication of medium scale expensive time dependent sheet
metal forming optimization is described in “Numerical bench-
marks” section. “Time dependent assisted variable blank hold-
er force optimization” section gives the final conclusions.

Gaussian process modeling

Considering a problem of approximating an underlying func-
tion of interest y = f(x), x∈Rd., GP modeling supposes that f(x)
at any sample point x is a Gaussian random variable whose
mean and variance is μ and σ2 respectively, and one can ex-
press the function f(x) with Gaussian distribution in closed
form, such as

f ∼N μ;σ2
� � ð1Þ

Therefore, for any sample point x, a Gaussian model pos-
tulates a combination of a fixed constant μ and departures of
the form:

f xð Þ ¼ μþ Z xð Þ ð2Þ
where Z(x) is assumed to be a random function of x
representing the ‘localized’ deviations and is Normal (0, σ2).
For any two sample points x, x’∈Rd., the correlation between
Z(x) and Z(x’) can be described by the covariance function

Cov Z xð Þ; Z x
0

� �h i
¼ σ2R x; x

0
;θ

� �
ð3Þ

where R(x, x’, θ) is the correlation function between x and x’
and can be expressed as

R x; x
0
; θ

� �
¼ exp − ∑

d

l¼1
θl xl−x

0
l

�� ��pl� �
ð4Þ

where θ = [θ1, θ2,…,θd]
T is the positive correlation parameter

vector used to fit model, its lth component θl indicates the
importance of xl on f(x), and parameter 1 ≤ pl ≤ 2 is related
to the smoothness of f(x) with respect to xl. More details relat-
ed to GP modeling can be found in [31].

Given K sample points x1, x2,…, xK∈Rd. and their corre-
sponding function values y1, y2,…, yK. Suppose that response
at any one sample point x can be approximated by the linear
combination of y1, y2,…, yK

f̂ xð Þ ¼ cTy ð5Þ

where c = [c1, c2,…, cK]T, y = [y1, y2,…, yK]T, then the hyper
parameters μ, σ2 and the correlation parameter vectorθ can be
estimated by maximizing the likelihood estimation function
that f(x) = yi at x = xi (i = 1, 2,…, K)

1

2πσ2ð ÞK=2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
det Rð Þp exp − y−eμð ÞTR−1 y−eμð Þ=2σ2

h i
ð6Þ

where R is a K × K matrix whose (i, j)-element is R(xi, xj, θ),
the concrete expression of R(xi, xj, θ) is given in Eq.(4), and
e = [1, 1,…, 1]T. In this study, Differential Evolution (DE) is
used to optimize the likelihood function. As a result, estimates
of predictor and standard deviation at x, respectively noted
byf xð Þ ands xð Þ, can be obtained by combining the condition
of uniformly minimum variance unbiased estimation with
Lagrangian multiplier method:

f̂ xð Þ ¼ μ̂þ rTR−1 y−eμ̂
� �

ð7Þ

ŝ
2
xð Þ ¼ σ̂

2
1‐rTR−1rþ 1−eTR−1r

� �2
=eTR−1e

h i
ð8Þ

where

μ̂ ¼ eTR−1e
� �−1

eTR−1y ð9Þ

σ̂
2
¼ y−eμ̂

� �T
R−1 y−eμ̂
� �� �

=K ð10Þ

r ¼ R x; x1;θ
� �

;⋯;R x; xK ;θ
� �
 �T ð11Þ

The details of estimating the hyper parameters μ, σ2, θl and
pl for l = 1, 2,…, d and obtaining estimates of the predictor
f xð Þ and the standard deviations xð Þ can be found in [32].

Expected improvement-based prescreening (EIP)
strategy

Suppose there areM untested sample points xK+1, xK+2,…, xK+
M∈Rd., it is a key issue how to rankM untested sample points
without real function evaluations. A simple and direct way to
solve this problem is to build a GP model based on the exact
evaluated (xi, yi) (i = 1, 2,…, K) data, and calculate the eval-
uation criterion of each untested sample point and then rank
them according to a certain evaluation criterion. This process
is called prescreening.

According to different evaluation criteria, several different
prescreening strategies are available for the GP modeling in
optimization, such as Lower Confidence Bound-based
Prescreening (LCBP) [33], EI-based Prescreening (EIP) and
Probability of Improvement-based Prescreening (PIP) [34]. In
the suggested algorithm, the EIP is integrated to generate the
most promising solution according to the following
considerations.
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1. The EIP is better at balancing the local and the global
search than the LCBP and PIP.

2. The EIP is a theoretically prescreening algorithm for de-
termining a smaller number of subjective parameters than
the LCBP and PIP.

The concept of EI was suggested in the literature as
early as 1978 [35]. Recently, it has been applied to some
optimization algorithms, such as EGOs (Efficient Global
Optimization). In EGOs, the EI function can be expressed
as follows:

EI xð Þ ¼ f min−ŷ
� �

Φ
f min−ŷ

ŝ

 !
þ sφ

f min−ŷ

ŝ

 !
ð12Þ

where fmin = min(y1, y2,…, yK), yi is the function value of
xi (i = 1, 2,…, K), Kis the number of initial sample points,
y and s represent the DACE predictor and its standard
error at a unknown sample pointx, respectively. Φ(·
)andφ(·)denote Cumulative Probability Density Function
(CDF) and Probability Density Function (PDF), respec-
tively. Considering the derivative of EI function as given
in (12) with respect toy or s, the corresponding expres-
sions are shown as follows.

∂EI xð Þ
∂ŷ

¼ ‐Φ
f min−ŷ

ŝ

 !
< 0 ð13Þ

∂EI xð Þ
∂ŝ

¼ φ
f min−ŷ

ŝ

 !
> 0 ð14Þ

It is clear that the EI function is monotonic iny and in s.
It suggests that the EI is larger the lower isy and the
higher is s. Generally, the first term of Eq. (12) reflects
the exploitation ability of EGO and makes EGOs focus on
a relatively small region, which is near to the fmin value
sample point. The second term of Eq. (12) exhibits the
exploration performance of EGO and makes EGOs focus
on unexplored promising areas, where the standard error
is higher. In a word, the EGO achieves a good balance
between local exploitation and global exploration when
using the EI criterion. In the suggested method, M untest-
ed sample points should be ranked according to the EI
criterion. A new good sample point with the maximum
EI value can be obtained from the untested sample points
without exact function evaluations. The procedure of EIP
method can be described as follows.

Suppose the training data is x1, x2,…, xK∈Rd. and y1,
y2,…, yK, the prescreened sample points are xK+1, xK+2,…,
xK+M∈Rd. Sequentially, the estimated best promising solu-
tion among xK+1, xK+2,…, xK+M without exact function

evaluations can be obtained by the EIP strategy. The pro-
cedure of EIP is presented as follows:

Step 1. Construct a GP (Gaussian Process) model by
using xi and yi data (i = 1, 2,…, K), and then use this
model to calculate the EI value of each xK+ j

(j = 1,2,…,M).
Step 2. Find the sample point with the maximum EI func-
tion value among xK+1, xK+2,…, xK+M and regard it as the
estimated best promising solution.

Although the EI is a feasible prescreening algorithm
and has been widely integrated with several optimization
methods, the major bottleneck is that the variance is of-
ten underestimated and the distribution of initial sample
points is sensitive to the convergence ratio. Actually, if
the initial distribution of sample points is given, a deter-
ministic result should be determined. It suggests that the
EI assisted optimization methods, such as EGO might
fall into the local convergence. Recently, some methods
have been used to keep the diversity of the sequential
samples, such as Multi-Surrogate EGO (MSEGO) [36].
However, medium-scale problems are still difficult to be
handled. Therefore, it is expected that the random char-
acteristic of the EA will enhance the diversity of sample
points to obtain global optimum efficiently. Considering
the performances of recently developed EAs, FA is used
in this study.

Gaussian process assisted firefly algorithm (GPFA)

Firefly algorithm (FA)

FA is used as the search engine in the suggested GPFA
method. The FA is one of the latest EAs proposed by
Yang [37]. It was inspired by flashing behavior of fire-
flies. Based on the biological tropism behavior, new can-
didate solutions can be generated. The basic idea is that
each firefly moves towards the position of a brighter
firefly, where the firefly brightness is proportional to
the fitness value. As a firefly’s attractiveness is propor-
tional to the light intensity seen by adjacent fireflies, the
variation of attractiveness β with the distance r can be
updated according to

β ¼ β0e
−yr2 ð15Þ

where β0 is the initial attractiveness at r = 0, γ is an
absorption coefficient which controls the decrease of
light intensity [38, 39], and r is the distance between
any two fireflies i and j, which are located at xi and xj
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respectively, and the (i, j) element of r is described as a
Cartesian distance by Eq.(16), wherexik is the kth compo-
nent of spatial coordinate xi of the ith firefly and d is the
number of dimensions [38, 39].

rij ¼ xi−x j
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑d

k¼1 xik−x
j
k

� �2q
ð16Þ

The movement of a firefly i, which is attracted by another
more attractive (i.e., brighter) firefly j, is determined by the
following form:

xtþ1
i ¼ xti þ β0e

−γr2ij xtj−x
t
i

� �
þ αtεti ð17Þ

wherextþ1
i ¼ xti þ β0e

−γrij2 xtj−xti
� �

þαtεti is the position or

the solution of a firefly at time t, the second termtrepresents
the attraction of a firefly to be seen by adjacent fireflies; the
third term αtεti is randomization with αt being the randomiza-
tion parameter, which is determined by the problem of interest
and set to [0,1], andεti is a vector of random numbers drawn
from a Gaussian distribution or uniform distribution at time t.
If β0 = 0, it becomes a simple random movement; if γ = 0, it
reduces to a variant of PSO. Theoretically,εti can be extended
to other distributions. According to the Eq. (17), αt controls
the randomness and it can vary the randomness with the cycle
counter t as

αt ¼ α0δ
t; δ∈ 0; 1ð Þ ð18Þ

where α0 is the initial randomness scaling factor, and δ is a
cooling factor. For most of applications, δ is suggested to be
selected within the range [0.95,0.97] to reduce the randomi-
zation [37].

For the initial α0, experiments show that the FA will be
more efficient if α0 is associated with the scaling of de-
sign variables. Let L be the average scale of a problem;
we can set α0 = 0.01 L initially. The factor 0.01 comes
from the fact that random walks require a number of steps
to reach the target while balancing the local exploitation
without jumping too far in a few steps [39]. The parame-
ter β controls the attractiveness, and parametric studies
suggested that β0 = 1 can be used for most applications
[40]. However, γ should be also related to the scaling L.
In general, γ = 1/L0.5. For most applications, the popula-
tion size M = 15 to 100 is suggested, and the suggested
range is M = 25 to 40 [38]. The parameters that need to be
set in the FA are summarized in Table 1.

Compared with other popular natural-inspired optimization
methods, such as GA [41], Particle Swarm Optimization(PSO)
[42], Differential Evolution (DE) [43] and Artificial Bee
Colony (ABC) algorithm [44], it has been shown that the FA

is more efficient in dealing with multimodal, global optimiza-
tion problems [45–47], and [48]. Two important characteristics
of the FA should be noted.

1) The population can be subdivided into subgroups adap-
tively, because the FA is based on decreases of attraction
and attractiveness with distance. Therefore, the adaptive
subdivision capability makes it suitable for highly nonlin-
ear, multimodal problems [49].

2) Another characteristic is that the FA can find all
optima simultaneously if the size of population is
much larger than the number of modes. According
to Yang’s test, for De Jong’s function with 256 var-
iables, the GA uses 25,412 (mean value), the PSO
uses 17,040 (mean value) and the FA only needs
5567 (mean value) evaluations to obtain the same
accuracy level of optimal solution. This demonstrates
that the FA outperforms the others [49].

In this study, the FA is utilized as the search engine to
generate potential sample points for prescreening. Similar to
other SAEAs, a surrogate model, GP is integrated with FA to
save the computational cost. Obviously, for SAEAs, the exact
function evaluation should be replaced by the predicted value
by the surrogate. However, compared with SAEAs, the dis-
tinctive characteristic is that the EIP is used. Therefore, the
most important issue is how to integrate EIP and FA and
should be discussed in the next Section.

Sequentially, the current M best sample points should be
extracted from all candidates and denoted as P = {xi|x1, x2,
… , xM}and the rest of the sample points are denoted
byP′ = {xj|xM + 1, xM + 2, … , xN},N is the total number of sam-
ple points in the present cycle.

In order to generate a child sample point set xc ¼
x1c ; x

2
c ;…; xMc

 �
of current samples, the FAworks as follows:

Step 1. If the number of sample points in P′ is zero,
let u = xi and xi belongs to P; otherwise the procedure

Table 1 Parameters in the FA

Parameters Descriptions

t The cycle counter

ng The maximum iteration of t (its default value is 500)

β0 The initial attractiveness (its default value is 1)

M The number of fireflies (its best range is set to [25, 40])

δ The cooling factor (its best range is set to [0.95, 0.97])

γ The absorption coefficient (its default value is1/L0.5)

α0 The initial randomness scaling factor (its default value
0.01 L)

εi
t The vector of random numbers (Gaussian distribution

or uniform distribution)
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goes to Step 2. u is a child sample point which be-
longs to xc. As is shown in Fig. 1, P′ is obtained from
the former step.
Step 2. Select a sample point xj from P′ randomly and
calculate its light intensity Ij which is related with the
exact function asIj = f(xj)
Step 3. If all light intensity Ii in P is larger than Ij, the
procedure goes to Step 4; otherwise sample points xj and
xi should be exchanged and procedure goes to Step 2.

S t ep 4 . Le t rjl ¼ x j−xl
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑d

m¼1 x jm−xlm
� �q

, β ¼
β0−βminð Þe−γr2jl þ βmin and x j ¼ x j 1−βð Þ þ βxbest þ α0

δεtj . Then procedure turns to step 2. The aim of this step

is to adjust the value of parameter β and generate more
promising samples for speeding up the convergence.
Details about the setting of parameters β0, γ, α0, δ, εti can
be found in “Parameters settings” section.

GPFA framework

For SAEAs and SAOs, the distribution of initial sample points
is important for sequential optimization procedure. In this
study, a most popular Design of Experiment (DoE), Latin

Hypercube Design (LHD) [50], is used to generate a set of
initial sample points. Compared with other popular DOEs,
such as Full Factorial (FF), D-Optimum (D-Opt), Central
Composite Design (CCD), etc., a more effective sampling
can be achieved by using fewer samples [51]. It has been
widely used for initialization in optimization problems [52].

Step 1.The LHD is implemented to generate K initial
sample points in [xUpper, xLower] for construction of an
initial surrogate and corresponding preliminary design
evaluations are performed with the initial sample points.
Let the K initial sample points and their corresponding
evaluations to form the initial database.
Step 2. If a current stopping criterion (i.e., the stopping
criterion is set to the maximum number of iterations for
benchmark functions or the average relative change
rate of objective function values for 15 consecutive
iterations is less than 0.0001 for the real engineering
problems) is satisfied, then procedure terminates, the
best solution in the database is extracted; otherwise
procedure goes to step 3.
Step 3. Select theM best sample points from the database
to form a population P. Our pilot experiment onM = 20 ,
40 , ⋯ , 180demonstrated that a large or a smallM value
can easily lead to slow convergence. The set ofM is based
on our pilot experiments and the following two

Initialize the database generated by LHS  

Stopping Criterion?
Output the best 

solution

Select the M best samples to from population set P 

Apply The FA operator on P to generate child population 

No

Select an individual xi ,initialize  P ' , xbest ,light 

intensity Ii at xi and FA parameters

Whether P ' is empty

Select xj randomly from P ' and compute Ij 

Whether Ii is larger than Ij

Yes

No

Let xi =xj and 

delete xj of  P ' No

Update xi based on  the iteration equation and delete xj of  P '

Yes

Yes

The EIP strategy is used to 

generate new sample points

The FA is used to 

generate child 

samples of P

GP surrogate modeling based on  the K best samples and their  function values  

Evaluate EI values of child population

Select the new sample according to the maximum EI value 

Add the new sample and corresponding evaluation and update database

Output  a child sample u for xi

Fig. 1 Flowchart of the GPFA
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considerations. Firstly, the M best sample points will be
used as the spatial coordinate of initial fireflies in the FA
to generate new candidates and the best range ofM from
25 to 40 is suggested for most applications in FAs [38].
Secondly, Bo et al. [23] also suggested that 30 ≤ M ≤ 60
works well. Therefore, the value of M depends on the
problem size. According to our experiment for medium-
scale cases, M = 60 is suitable for the problems in this
study.
Step 4. Apply the FA to P to generate M corre-
sponding child samples for prescreening.
Step 5. Build the GP model based on K best sample
points with the minimum function values in the
updated database and their corresponding function
values.
Step 6. Use the GP model to evaluate EI values of M
child samples generated by the FA in Step 4.
Step 7. Find the sample point with maximum EI
value among the M child sample points and evalu-
ate its real function value.
Step 8. Add the evaluated sample and its function
value to the database, then procedure goes back to
Step 2.

In order to present the suggested method clearly, the
flow chart of the GPFA is illustrated in Fig.1.
Moreover, there are some remarks on the GPFA frame-
work to be noted. The population P generated in Step 3
is formed by M sample points with the minimum func-
tion values from the database. Furthermore, the new
sample point added to the set P is also the best one
in each iteration. Therefore, most of child sample points
generated in Step 4 are in several relatively small prom-
ising subareas. Because most child sample points to be
prescreened in Step 6, 7 and 8 are in a relatively small
promising subareas, the training data generated in Step
5 could not be far from a solution to be prescreened,
which is good for the GPFA to keep the searching ro-
bust and fast.

Numerical benchmarks

To apply the suggested method to time-based sheet metal
forming, the performance of the GPFA should be tested first.
In this section, several famous mathematical test functions are
tested.

Parameters settings

Control parameters in the GPFA are summarized as follows.
Before analyzing the performance of the GPFA framework,
several control parameters (i.e. M and βmin) should be set
based on the benchmark tests. Their settings and consider-
ations are described as follows.

1) The size of initial sample point K.

According to the tradeoff of the computational efficiency
and modeling accuracy, we set K = 10d for numerical testing
problems andK = 5d for the sheet metal forming optimization,
where d denotes the number of design variables.

2) The parameter in the present stopping criterion p.

The stopping criterion is set to the maximum number
of iterations for benchmark functions, and the average
relative change rate of objective function values for p
consecutive iterations is less than 0.0001 for the real
engineering problems. If it is the former, p is set to
1000. Otherwise, p is set to 15.

3) The number of best sample points selected from the
initial sample M.

In this study,M is set to 60 for all benchmark tests. Details
have been discussed in “GPFA Framework” section.

Table 4 Statistics of the best function values obtained by GPFA
with 1000 exact function evaluations on 20 independent simulation
runs for F1-F5

Problem Best Worst Average Standard
Deviation

F1 1.8218e-4 0.0075 0.0031 0.0032

F2 5.7467 8.0491 5.9819 1.0215

F3 1.1358 2.5574 1.5989 0.4670

F4 5.7667 9.8059 7.4878 1.3780

F5 3.8538 7.5409 6.2116 1.0295

Table 3 Test functions used in the numerical test

Problem Function Bounds Property

F1 Sphere [−5.12, 5.12] Unimodal

F2 Ackley [−32.768, 32.768] Multimodal

F3 Griewank [−600, 600] Multimodal

F4 Rastrigin [−5.12, 5.12] Multimodal

F5 Rosenbrock [−2.048, 2.048] Multimodal with
narrow valley

Table 2 Settings of the FA parameters in the GPFA

Parameters ng β0 βmin δ γ α0 εi
t

Values 500 1 0.04 0.96 1/L0.5 0.01 L nr-0.5
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4) The FA parameters ng, β0, βmin, δ, γ, α0,εti .

Values of the FA parameters in this study are presented in
Table 2. Firstly, L is the average scale of the problem of

interest. nr is a random number generator uniformly distribut-
ed in [0,1]. Secondly, β0, δ, γ, α0 are set to their default
values (as listed in Table.1) and βmin is the variation of
attractiveness β obviously which is defined in Eq.(15)

Fig. 3 Geometry of tools
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Fig. 2 The best convergence
curves of the EGO, FA and GPFA
framework for F1-F5 in 20
independent runs
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and it is set to 0.04. ng, which is shown in Table 1, is
the maximum value of t.

Numerical test for GPFA

In this section, the performance of the GPFA in numerical studies
is compared against EGO, proposed in Jones et al. [29], and FA,
proposed by Yang [37]. The benchmark test functions used in
Zhou et al. [21] are employed. It includes a unimodal function
(Sphere) and 4 multimodal functions (Ackley, Griewank,
Rastrigin and Rosenbrock). All of them contain 20 variables
and a single global minimum at 0. The test functions used in
our experiments are listed in Table 3 and more details can be
found in the Appendix. The statistics of the best function values
obtained by the GPFA with 1000 function evaluations on 20
independent simulation runs for F1-F5 are shown in Table 4.

According to the results reported in Fig.2, the GPFA ob-
tains good solutions with 1000 exact function evaluations for
F1-F5. These good solutions are very close to their corre-
sponding global optimum, particularly for F1, F3 and F5.
Moreover, GPFA can outperform the other methods in the
F5 problem. As we know, it is very difficult to optimize F5
because of its multimodal and narrow valley of the global
optimum. Zhou et al. [21] and Bo et al. [23] investigated the
best function values obtained by their proposed method with
1000 function evaluations on 20 independent runs for F5.
Zhou et al. [21] found the best function value is larger than

54.598 by using the SAGA-GLS algorithm. Bo et al. [23]
concluded that the best is 15.1491 and the worst is 75.8806
by using their proposed GPEME method. While, from
Table 4, for F5 problem, the GPFA best and worst values for
the function are 3.8538 and 7.5409, respectively.

The best convergence curves for EGO, FA and GPFA are
presented in Fig. 2. It should be noted that the results present-
ed are averaged 20 independent runs conducted with 1000
function evaluations. According to the results obtained in
Fig. 2, it is obvious that the best function value and the con-
vergence rate is obtained by the GPFA for all test functions. It
is worth noting that GPFA converges significantly faster than
EGO and FA in 200 function evaluations for F1-F5. In the first
200 iterations, the test functions converge to 0.064 for F1,
58.55 for F4 and 12.26 for F5 by using the GPFA, while
234.69 for F1, 82.88 for F4 and 68.33 for F5 by using the
EGO and 5.01 for F1, 146.81 for F4 and 42.26 for F5 by using
the FA. As a result, it is very practical and efficient to optimize
time dependent sheet metal forming problemswhen the GPFA
is applied.

Time dependent assisted variable blank holder force
optimization

In deep drawing process, the quality of the formed part is
affected by the amount of metal drawn into the die cavity.

Fig. 5 Draw-beads location

Fig. 6 The result of constant BHF(600KN)
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Fig. 7 Extended BHF formability windows
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Fig. 4 FE model of tools and blank
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Excessive metal flow will cause wrinkles in the part,
while insufficient metal flow will result in tears or
splits. The blank holder plays a key role in regulating
the metal flow by exerting a predefined blank holder
force (BHF) profile. Usually, in deep drawing process,
a constant BHF is applied during the entire punch
stroke. During the drawing process, the stress state in
the de fo rmed ma te r i a l changes s ign i f i can t ly.
Consequently, the processing conditions that reduce
wrinkling and fracture change accordingly. To consider
these changes, it is reasonable that the BHF should also
be adjusted to increase the formability of the drawn
part. To further improve the formability, the VBHF
technique for controlling deep drawing processes is
analyzed.

n this section, the GPFA is applied to optimize the time-
dependent VBHF in a sheet metal forming process. During the
last 20 years, sheet metal forming process parameters optimi-
zation, especially of the VBHF, as attracted much attention
[53, 54]. If the VBHF is too low, wrinkling will probably
occur at the start of punch stroke; otherwise fracture will occur
at the end of the stroke. These types of defects can be reduced
or eliminated by manipulating a suitable VBHF at different
punch strokes. Therefore, wisely selecting sensitive areas at
which different modes of failure will occur and reasonably
changing VBHF at these sensitive locations are both very
important to achieve a part with quality. To optimize the
VBHF, the entire time period of the forming process should
be decomposed into several stages and given according to
experience. However, these given time periods might not be
the most suitable setting for improving the quality of the part.
Therefore, the boundary of each time period is also considered
in this work. Obviously, the number of design variables of the
problem increases significantly. This is the reason why we
hope to apply the GPFA to such problem.

Problem descriptions

This case is derived from benchmark 2 of NUMISHEET2014
[55]. The first stage of benchmark 2 is selected to improve the
forming quality of high strength steel. The geometry of the
tools is shown in Fig. 3. FE model of tools and blank are

shown in Fig. 4. All of tool parts are made from hardened
steel and modelled as rigid body in the software.

The material used to produce the blank is DP600 steel. The
principal geometrical and material properties of the blank are
as follows: blank 300 × 250 mm, Young’s modulus
E = 207 GPa, Poisson coefficient ν = 0.3, the initial thickness
h0 = 1.0mm, averaged Lankford coefficientr ¼ 1:02, material
density ρ = 7850 Kg/m3, friction coefficient μ = 0.10, harden-
ing coefficient K = 1088, hardening exponent n = 0.1854.The
hardening law is defined as

σ ¼ 1088 0:0045þ ε
� �0:1854

ð19Þ

σ and ε are the stress and strain respectively. Details about
tool materials and blank material can be found in
NUMISHEET2014 Benchmark2 [55]. A numerical model
was built in the FE code DYNAFORM. The blank of the FE
model is initially meshed with 17,881 quadratic elements
(18,204 nodes), corresponding to an overall element size of
1.0 mm. The mesh is generated using Belytschko-Tsay shell
elements. The stamping velocity is taken into account for the
forming processes with a constant value of 5 mm/s.

Drawbeads are one of the most important parameters to
control the material flow and thus the part quality in sheet
forming process. Insufficient forces may lead to wrinkling,
but strong restraining forces prevent the sheet from drawing-
in and may cause necking. In this case, two equivalent
drawbeads are applied to improve the forming quality of the
rectangular box. The equivalent drawbeads location lines are
shown in Fig. 5. The two drawbeads are situated about 10 mm
from the internal die contour. The drawbeads are replaced by
equivalent restraining forces in this problem. Drawbead
restraining forces of the two drawbeads are the same due to
the symmetry of the die.

Design variables and objective function

Design variables

As we mentioned before, the process parameter BHF (Blank
Holder Force) plays an important role in the stamping process,

(a) Constant BHF(400KN) (b) Constant BHF(500KN) 

Fig. 8 The result of constant
BHF
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since it is one of the most important parameters to control the
material flowing into the die. The VBHF is applied to the
sheet metal forming process to overcome the shortcomings
of constant BHF. The BHF is variable during the VBHF sheet
metal forming process. Furthermore, beside the BHF in each
time period, the time domain of each given key time point is
another kind of design variable. It is a key issue to determine
the location of sensitive time points.

A basic problem in the design of VBHF is presented by the
choice of some sensitive time points for the definition of
VBHF curve. The usefulness of HDMR (High Dimensional
Model Representation) is considered in this paper to obtain the
sensitive time in sheet metal forming process. The HDMR is
used to analyze the sensitivity of parameters and map the
input/output relationships of high-dimensional complex sys-
tems [56, 57]. This study applies the HDMR to estimate the
sensitivity of wrinkle and crack defects of the rectangular box
with respect to the sensitive time points. The purpose of the
procedure is to obtain the sensitive values of different time
increments and to obtain the sensitive time points during sheet
metal forming. In this study, the sensitive time points are gen-
erated using the following steps:

Step 1. The aim of this step is to find the range of BHF
that can avoid a wide range of severe wrinkle along the
side wall and crack in the corner of the rectangular box.
When the constant BHF is 600 KN, the forming result is
shown in Fig. 6. If the BHF is larger than 600 KN, the
element located at the corner of the part will rupture,
which is not allowed in the forming result. Therefore,
the upper boundary of BHF is 600KN.Even though
BHF is large enough for this part, some wrinkle elements
still exist in A location as shown in Fig. 6 and the wrinkle
defects can’t be eliminated. Typical extended BHF form-
ability windows, as shown in Fig. 7, can illustrate this
phenomenon. Therefore, the constant BHF should be
larger than 600KN to eliminate the wrinkle elements,
which will make rupture phenomenon appear in the

corner of the part. Obviously, it is difficult to use the
constant BHF to control the quality of the blank in the
entire forming procedure.

A small BHF should be used to ensure the safety of this
part. The forming results, as shown in Fig. 8, are calculated
when the constant BHFs are 400KN and 500KN. If the BHF is
smaller than 400KN, the severe wrinkle range extends greatly
in B location shown in Fig. 8(a) compared with the result in
Fig. 8(b). In order to reduce the effect of severe elements to the
forming quality, the lower boundary is selected as 400KN
which can make sure the safety range of BHF is belong to
[400,600] KN. Then, a reliable scale of BHFs can be obtained
which can make sure that neither a wide range of severe wrin-
kle nor a wide range of fracture occurs in the forming process.
Furthermore, the range of constant BHF can reduce the vari-
able range of VBHF and save the computational expense.
Based on simulation results, the reliable scale is set to
[400kN, 600kN]. BHF and the restraining force bounds can
be expressed as

FBHF
i ∈ 400; 600½ �KN ; i ¼ 1; 2;…; n ð20Þ

FBD∈ 0; 500½ �N ð21Þ
where i represents the i-th design variable of BHF. FBD is the
restraining force. n is the number of design variable of VBHF.

Step 2. In this case, 60 sample points of constant BHF are
used to obtain the sensitive time points in the sheet
forming process and the simulation results are calculated
by DYNAFORM software. The sample points of con-
stant BHF are generated by LHS method and listed in
Tables 5. The range of constant BHF is determined by
Step 1. In every simulation process, the entire procedure
is divided into 14 time periods on the basis of the incre-
ment times in DYNAFORMwhich are listed in Tables 6,
and 14 thickness increments corresponding to the 14 time

Table 5 The sample points of
constant BHFs. (ID: the sequence
number of 60 sample points)

ID BHF
(KN)

ID BHF
(KN)

ID BHF
(KN)

ID BHF
(KN)

ID BHF
(KN)

ID BHF
(KN)

1 507 11 554 21 537 31 516 41 457 51 492

2 525 12 456 22 543 32 565 42 474 52 573

3 401 13 409 23 500 33 453 43 511 53 569

4 519 14 428 24 579 34 533 44 589 54 477

5 551 15 469 25 587 35 521 45 415 55 527

6 531 16 462 26 582 36 530 46 542 56 566

7 509 17 411 27 506 37 464 47 578 57 412

8 563 18 440 28 576 38 472 48 570 58 424

9 585 19 495 29 490 39 447 49 432 59 489

10 466 20 549 30 523 40 429 50 584 60 435
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periods exist for every simulation process. Due to the

number of thickness increments for all the 60 sample
points is numerous, the top-ten sample points are selected
to illustrate the thickness increments in Table 7. The se-
quence number of the top-ten sample points is one to ten.
Step 3.The total number of wrinkle and crack elements is
regarded as response value and the thick increments dur-
ing sheet metal forming are design variables. They are the
important data as the input of HDMR. The flowchart of
sensitivity analysis is shown in Fig. 9. Ten sample points
among all the sample points are selected to illustrate the
thickness of the blank. The thickness increments of every
time increments for the sample points are shown in
Table 7 and the time increments used in Table 7 are the
same as Table 6. The sensitive values of every time in-
crement are shown in Fig. 10.

Based on the information contained in the sensitivity anal-
ysis, the sensitive time duration can be obtained. The seven

largest numbers of sensitive values among the 14 time dura-
tions are considered as the sensitive time duration, and the
sensitive time point will be generated in the time durations.
Thus, 9 key time points are obtained including the beginning
time point and the end time point. Draw-beads restraining
forces and BHFs corresponding to 9 key time points are con-
sidered as a design variable. The design variables for this
problem are listed in Table 8.

Objective function

To evaluate the possibility of wrinkling and fracturing, the
strains in the formed blank elements are analyzed and com-
pared against the FLD shown in Fig. 11. As a result, the
following function describing the possibility of wrinkling
and fracturing is taken as the objective function.

Generate sample points by LHS

The thickness increments of every time increments

Input variable:

 The thick increments of every time increments

  The total number of wrinkle and crack elements

Sensitive analysis: HDMR

The sensitive values of every time increments

Finite Element calculation

Input OutputDynaform

Fig. 9 Flowchart of the sensitive analysis

Table 7 The thickness increments of every time increment of 10 sample points (ID: the sequence number of top-ten sample points)

ID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

1 0.002 0.0449 0.0438 0.042 0.0366 0.0371 0.0329 0.0409 0.0294 0.0319 0.0258 0.0232 0.0187 0.0151

2 0.002 0.0451 0.0436 0.0421 0.0367 0.0372 0.0331 0.0395 0.03 0.0321 0.0268 0.0232 0.0188 0.0156

3 0.0021 0.045 0.0434 0.0422 0.0365 0.0371 0.0325 0.0406 0.0298 0.0319 0.0273 0.0226 0.019 0.0157

4 0.0021 0.0451 0.0435 0.0422 0.0366 0.0369 0.0328 0.0406 0.0296 0.0317 0.0264 0.0229 0.0191 0.0156

5 0.0021 0.045 0.0435 0.0423 0.0368 0.0369 0.033 0.0398 0.0297 0.0318 0.0261 0.023 0.019 0.0156

6 0.0021 0.0452 0.0434 0.0422 0.0368 0.0368 0.0328 0.0399 0.0298 0.0318 0.0268 0.0227 0.0192 0.016

7 0.0021 0.0451 0.0436 0.0422 0.0365 0.037 0.0331 0.0406 0.0292 0.0315 0.0267 0.0229 0.019 0.0151

8 0.002 0.045 0.0435 0.0421 0.0366 0.0369 0.0328 0.0411 0.0297 0.032 0.0258 0.0238 0.0185 0.0153

9 0.0021 0.045 0.0435 0.0421 0.0367 0.0371 0.0326 0.0398 0.0306 0.032 0.0267 0.0228 0.0191 0.0153

10 0.0021 0.0453 0.0431 0.0423 0.0365 0.0368 0.0325 0.042 0.0285 0.032 0.0273 0.0227 0.019 0.0159

Table 6 the time
increment during sheet
metal forming. (ID: the
number of time
increment)

ID Time increment range

Δt1 0–0.0074

Δt2 0.0074–0.0148

Δt3 0.0148–0.0222

Δt4 0.0222–0.0296

Δt5 0.0296–0.0370

Δt6 0.0370–0.0444

Δt7 0.0444–0.0518

Δt8 0.0518–0.0592

Δt9 0.0592–0.0666

Δt10 0.0666–0.0740

Δt11 0.0740–0.0814

Δt12 0.0814–0.0888

Δt13 0.0888–0.0963

Δt14 0.0963–0.1036
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f ε ¼ ∑
sum

e¼1
f eε

� � 1
m

with
f eε ¼ εe1−θs εe2

� ��� ��� �m
for εe1 > θs εe2

� �
 �
f eε ¼ εe1−θw εe2

� ��� ��� �m
for εe1 < θw εe2

� �
 �
f eε ¼ 0 otherwise

8<
:

ð22Þ
where sum represents the total number of the formed blank
elements; the parameterm is introduced to strengthen the non-
linearity of the objective function, m = 2 , 4 , 6is commonly
used [12], and in this studym = 4is used; εe1; ε

e
2 are respectively

called major strain and minor strain of any one element of the
formed blank; θs εe2

� �
; θw εe2
� �

represent the upper boundary
curve and lower boundary curve values of the Safety domain
in the FLD for the element (εe1; ε

e
2 ), respectively. Assuming an

element (ε2 , ε1) is selected from the formed blank,
ifθs(ε2) > ε1, then the selected element is regarded as a fractur-
ing element and it will be located in the crack domain shown
in Fig. 11; ifθw(ε2) > ε1, the element is called a wrinkling
element and locate in the wrinkling domain.

The upper boundary curveθs εe2
� �

is determined by a
Forming Limit Curve (FLCs)φs(ε2) , φw(ε2) proposed by
Hillman and Kubli [60] and the safety tolerances. The lower

boundary curveθw εe2
� �

is determined by the FLD provided by
DYNAFORM software. Their relationship can be expressed
as:

θs ε2ð Þ ¼ φs ε2ð Þ−s ð23Þ

θw ε2ð Þ ¼ −ε2 ð24Þ
whereφ s i s the FLC which controls the cracking
phenomenon,θwis the FLC which controls the tendency of
wrinkling phenomenon. Both of them are dependent depend
on the material. The tolerance s is constant during the optimi-
zation process and it is used to define the safety margin. The
default in the Dynaform software is set to the value which is
less than the fracture limit curve. Therefore, the value of s is
set as 0.1. The two curvesθs εe2

� �
andθw εe2

� �
in this case are

given as

φs ε2ð Þ ¼ FLD0−ε2 ε2 < 0
φs ε2ð Þ ¼ FLD0 þ ε2 −0:008565ε2 þ 0:784854ð Þ ε2 > 0

ð25Þ

FLD0 is the lowest point on the forming limit curve and its
value is 0.239 [55].

Optimization result

Latin Hypercube Design (LHD) is used to generate the
initial 60 sample points of VBHF. The objective func-
tion values of 60 sample points are sorted in descending
order as shown in Fig. 12. The entire optimization pro-
cedure costs 400 evaluations, performed in about 170 h.
The convergence curve of the GPFA, for the optimiza-
tion of time dependent VBHF in the rectangular box
forming process, is presented in Fig. 13. The values of
design variables of before and after optimization by the
GPFA are listed in Table 9 and corresponding curves
are illustrated in Fig. 14. The comparison of the
resulting FLDs and the blank forming quality of start
and optimal design is shown in Fig. 15. The best result

Major Strain 

Minor Strain 

1

2

( )2s

( )s 2

( )2w

( )w 2

Fig. 11 An illustration of FLD and corresponding domains

Table 8 The design
variables range NUM Design variables range

t1 0.0074–0.0148 s

t2 0.0222–0.0296 s

t3 0.0296–0.0370 s

t4 0.0370–0.0444 s

t5 0.0666–0.0740 s

t6 0.0740–0.0814 s

t7 0.0814–0.0888 s

BHFi 400-600KN

FBD 0-500 N
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Fig. 10 The sensitive values of 14 time increments
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among the 60 sample points is shown in Fig. 15(a).
Compared with the initial design, the optimal BHF
curve as shown in Fig.15(b) improves the formability.

Compared to the result in Fig. 15(a) which is the best so-
lution among the 60 sample points, there are two aspects of
improvement of the forming quality in Fig. 15(b). Firstly, it is
apparent that the side wall in Fig. 15(a) is severe wrinkle. It
may have a bad influence on the forming quality. Conversely,
as shown in Fig. 15(b), this defect has been modified through
optimized with the suggested method. The wrinkle of the side
wall is reduced obviously. Secondly, the bottom of the blank is
insufficient forming in Fig. 15(a). Insufficient forming may
lead to some forming defects due to the unbalanced stress
gradient such as the surface distortion. After optimization,
the same part in Fig. 15(b) is sufficient formed and the green
color means that this region is safe. Therefore, the forming
quality after optimization as shown in Fig.15(b) is much better
than the result in Fig. 15(a).

In NUMISHEET 2014 Benchmark 2, a flat blank is posi-
tioned in the die, which is then raised into contact with the
blank holder, with a constant force: BHF = 595KN for DP600
steel. The stamping depth is 47.5 mm at a constant velocity of

5 mm/s. The result of the sheet metal forming is shown in
Fig. 16 and it demonstrates that the forming quality is not
satisfactory for the boundary that is given in NUMISHEET
2014 Benchmark 2. The corner of the rectangle box is crack

Table 9 Values of design
variables of before and after
optimization

Key time
point(s)

Before
optimization

After
optimization

BHF(N) Before
optimization

After optimization

tbegin 0 0 F1 544,089.3674 542,240.1311

t1 0.0106 0.0143 F2 586,737.9858 429,130.2672

t2 0.0256 0.0245 F3 560,363.8861 450,522.3547

t3 0.0304 0.0368 F4 510,034.1335 551,614.5485

t4 0.0379 0.0403 F5 456,764.2592 503,109.1734

t5 0.0673 0.0700 F6 428,409.1240 503,641.1761

t6 0.0768 0.0766 F7 571,075.4293 547,866.7387

t7 0.0843 0.0876 F8 527,083.2926 579,435.1131

tend 0.1036 0.1036 F9 418,031.9272 462,325.897

- - - FDB 20.268 225.000
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Fig. 12 The objective function values of 60 sample points of VBHF
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tendency region which is shown in yellow color. Some rup-
tured elements exist in the blank. Furthermore, the severe
wrinkle regions located in the side wall of the box have bad
influence on the stamping process. Although the crack tenden-
cy elements in the corner of the part still exist in Fig. 15(b), the
crack tendency elements are less than that in Fig. 16 and the
elements located in the side wall are also eliminated as shown
in Fig. 15(b). The comparison of the objective function values
for the three modes, as shown in Fig.15 and Fig. 16, can also
illustrate the effectiveness of the optimization. The value of
the objective function of before optimization is 0.59610 which
is larger than the value of after optimization which is 0.57822.
When the constant BHF is 595KN, the objective function
value is 0.58023. Although the gap between the three modes
is slight, it still has great influence on the forming quality of
the part. Therefore, the forming quality has been improved
and the effectiveness of GPFA has been verified. In addition,
this part should be considered proper depending on the safety
factors in the actual project due to the existence of crack ten-
dency elements.

Conclusion

In our opinions, most of sheet metal forming problems are
time dependency of process parameters. However, it is diffi-
cult to consider time dependent design variables in an optimi-
zation problem due to the curse of dimensionality. To over-
come this bottleneck, a novel SAO method, called GPFA is
suggested. The main idea of GPFA is to construct a surrogate
model-aware search mechanism by using the FA. In the
GPFA, the FA is used to generate new sample points and the
GP is used to prescreen the generated sample points by using
EI criterion. Therefore, the accuracy and efficiency of the
GPFA can be balanced well.

To evaluate the performance of GPFA, several medium-
scale nonlinear problems are tested. Compared with recent
published methods, the performance of the GPFA is obviously
improved. Finally, the GPFA is applied to a BHF design with
time dependent variables. The HDMR is also applied in this
problem which can be used to analyze the sensitive values of
time increment durations corresponding to the forming

(a) Before optimization 

(b) Optimal result by the GPFA 

Fig. 15 Illustrations of the FLD
and the forming quality of a blank

Fig. 16 the forming result of a constant BHF(595KN)
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quantity. The result demonstrates that the GPFA is capable to
solve such similar time dependent problems.
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Appendix

Mathematical test functions

F1. Sphere Test Function

f xð Þ ¼ ∑
n

i¼1
x2i
� �

−5:12≤xi≤5:12; i ¼ 1;⋯; n: ð26Þ

F2. Ackley Test Function

f xð Þ ¼ 20þ e−20e−0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n
i¼1x

2
i =n

p
−e∑

n
i¼1cos2πxi=n−32:768≤xi≤32:768; i ¼ 1;⋯; n:

ð27Þ

F3. Griewank Test Function

f xð Þ ¼ 1þ ∑
n

i¼1
x2i =4000− ∏

n

i¼1
cos xi=

ffiffi
i

p� �
−600≤xi≤600; i ¼ 1;⋯; n:

ð28Þ

F4. Rastrigin Test Function

f xð Þ ¼ 10nþ ∑
n

i¼1
x2i −10cos 2πxið Þ� �

−5:12≤xi≤5:12; i ¼ 1;⋯; n:

ð29Þ

F5. Rosenbrock Test Function

f xð Þ ¼ ∑
n−1

i¼1
100� xiþ1−x2i

� �2 þ 1−xið Þ2
� �

−2:048≤xi≤2:048; i ¼ 1;⋯; n−1:

ð30Þ
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