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Abstract Thermoplastic composites are widely considered
in structural parts. In this paper attention is paid to squeeze
flow of continuous fiber laminates. In the case of unidi-
rectional prepregs, the ply constitutive equation is modeled
as a transversally isotropic fluid, that must satisfy both the
fiber inextensibility as well as the fluid incompressibility.
When laminate is squeezed the flow kinematics exhibits a
complex dependency along the laminate thickness requir-
ing a detailed velocity description through the thickness. In
a former work the solution making use of an in-plane-out-
of-plane separated representation within the PGD – Poper
Generalized Decomposition – framework was successfully
accomplished when both kinematic constraints (inexten-
sibility and incompressibility) were introduced using a
penalty formulation for circumventing the LBB constraints.
However, such a formulation makes difficult the calculation
on fiber tractions and compression forces, the last required
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in rheological characterizations. In this paper the former
penalty formulation is substituted by a mixed formula-
tion that makes use of two Lagrange multipliers, while
addressing the LBB stability conditions within the sepa-
rated representation framework, questions never until now
addressed.

Keywords Squeeze flow · Composite laminates · Sheet
forming · Proper generalized decomposition · Ericksen
fluid · Mixed formulation · LBB condition

Introduction

Thermoplastic composites are preferred structural mate-
rials due to their excellent damage tolerance properties,
shorter manufacturing cycles and ease of weldability. One
of the precursor material to fabricate thermoplastic compos-
ite parts is an unidirectional (UD) prepreg which consists
of aligned continuous fibers pre-impregnated with thermo-
plastic resin. In their melt state, UD prepreg can be viewed
as inextensible fibers surrounded by an incompressible vis-
cous matrix, and hence can be modeled as a transversally
isotropic fluid [17]. These UD laminates are usually stacked
in desired orientations to create a composite laminate.

Applied pressures during processing induce laminate
deformation consisting of either squeeze flow of the matrix
and fiber together or flow of the melt polymer through the
fiber network. The squeeze flow behaviour of both unidirec-
tional and multiaxial laminates has been studied in [4, 5, 12–
16]. Due to the high viscosity of thermoplastic matrix and
high fiber content of UD prepregs, the dominant material
deformation occurs due to the squeeze flow. The squeeze
flow behaviour of both unidirectional and multiaxial lam-
inates has been studied in our former work [11], where

http://crossmark.crossref.org/dialog/?doi=10.1007/s12289-016-1309-4&domain=pdf
mailto:Francisco.Chinesta@ec-nantes.fr
mailto:Ruben.Ibanez@ec-nantes.fr
mailto:Emmanuelle.Abisset-Chavanne@ec-nantes.fr
mailto:antonio.huerta@upc.edu


654 Int J Mater Form (2017) 10:653–669

a penalty formulation of the Ericksen fluid flow using an
appropriate in-plane-out-of-plane separated representation.

Such separated representation was introduced and suc-
cessfully applied for addressing problems defined in degen-
erated domains in which at least one of its characteristic
dimensions is much smaller than the others. This is the case
of laminates in which rich behaviors can occur in the thick-
ness direction, needing for a fully 3D discretization. In that
circumstances standard mesh-based discretization fail to
address a rich enough out-of-plane representation. The use
of an in-plane-out-of-plane separated representation makes
possible to separate during the problem resolution the in-
plane and out-of-plane problems allowing a extremely rich
representation of 3D behaviors while keeping the compu-
tational complexity 2D (the one associated to the in-plane
problem being the out-of-plane problem one-dimensional).
This separated representation was considered in our former
works [3, 6–8, 10].

In what follows we first address the penalty and mixed
formulations of the Stokes flow in a narrow gap, that can
be easily generalized to stratified flows. Then the flow of
multi-axial laminates making use of the Ericksen fluid flow
model at the ply level is considered. In this last case the
penalty formulation related to both the fiber inextensibil-
ity and the flow incompressibility is substituted in favor of
a mixed formulation making use of two Lagrange multi-
pliers, the first related to the inextensibility constraint and
the second one to the flow incompressibility. Such a richer
description is needed to evaluate the fiber tension, crucial
to predict defects related to its compression. On the other
hand the rheological characterization of multiaxial lami-
nates is performed by calculating the compression force to
be applied for obtaining a given squeeze rate. For that pur-
pose, it is important calculating the stress tensor in the fluid,
and when using a penalty formulation the calculation of the
pressure field remains a tricky issue. These facts justify the
use of a mixed formulation instead of the penalized one pre-
viously considered in our former works, formulation that
was retained in [11] for circumventing the issues related to
the LBB stability condition.

3D modeling of stokes flow in narrow gaps

In-plane-out-of-plane separated representation

The in-plane-out-of-plane separated representation allows
the solution of full 3D models defined in plate geome-
tries with a computational complexity characteristic of 2D
simulations. This separated representation allows indepen-
dent representations of the in-plane and the thickness fields
dependencies. The main idea lies in the separated represen-
tation of the velocity field by using functions depending

on the in-plane coordinates x = (x, y), Pj
i (x), and others

depending on the thickness direction z, Tj
i (z), according to:

(
v(x, z)
p(x, z)

)
=
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where “◦” denotes the entry-wise or Hadamard’s product.
When introduced into the flow problem weak form it allows
the calculation of functions P

j
i (x) by solving the corre-

sponding 2D equations and functions T
j
i (z) by solving the

associated 1D equations, as described later.
The extraction of the velocity field from Eq. 1 writes
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, (2)

which leads to a separated representation of the strain rate.

Remark 1 If a and b are vectors of the same dimension,
vector c, defined from c = a ◦ b, has as components ci =
ai · bi . If a and b are second order tensors with the same
size, tensor c, defined from c = a◦b, has components cij =
aij ·bij (no sum with respect to the repeated indexes). With a
and b second order tensors of the same size it results a : b =
c, with the scalar c given by c = aij · bij considering sum
with respect to the repeated indexes (Einstein’s summation
convention).

Using this notation in Eq. 1, the velocity gradient
∇v(x, z) can be written as:
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The solution of full 3D Stokes problem within the in-
plane-out-of-plane separated representation is revisited in
the next sections.

Flow model

The Stokes flow model is defined in � = � × I, � ⊂ R
2

and I ⊂ R, and for an incompressible fluid, in absence of
inertia and mass terms reduces to:⎧⎨
⎩

∇ · σ = 0
σ = −pI + 2ηD
∇ · v = 0

, (4)

where σ is the Cauchy’s stress tensor, I the unit tensor, η the
fluid viscosity, p the pressure (Lagrange multiplier associ-
ated with the incompressibility constraint) and the rate of
strain tensor D defined as

D = ∇v + (∇v)T

2
. (5)

The pressure in-plane-out-of-plane separated representa-
tion writes

p =
N∑

i=1

P
p
i (x) · T

p
i (z). (6)

In what follows for the sake of notational simplicity the
dependency of in-plane functions on x an the one of out-of-
plane functions on z will be omitted.

The weak form of the coupled velocity-pressure Stokes
problem, for both a test velocity v∗ and a test pressure P∗,
the first vanishing on the boundary in which the velocity is
prescribed, and assuming null tractions in the remaining part
of the domain boundary, can be written as∫
�×I

(−pTr(D∗) + 2ηD∗ : D)
dx dz = 0, (7)

∫
�×I

−p∗Tr(D) dx dz = 0, (8)

where Eqs. 7 and 8 make reference to the linear momentum
and mass balances respectively.

Following the developments reported in the Appendix,
previous balances can be rewritten as

2ηD∗ : D≈ η

2
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and
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Separated representation constructor

The construction of the solution separated representation is
performed incrementally, a term of the sum at each iteration.
Thus, supposing that at iteration n − 1, n ≥ 1 and n ≤ N ,
the first n − 1 terms of both velocity and pressure separated
representations were already computed
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the terms involved in the weak form Eqs. 7 and 8 are:
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respectively. The indexes affecting test functions will be
detailed below.

When looking for the improved velocity field vn(x, z) at
iteration n

vn(x, z) =
n∑

i=1

Pv
i (x)◦Tv

i (z) = vn−1(x, z)+Pv
n(x)◦Tv

n(z),

(17)

we consider the test function v∗(x, z)

v∗ = Pv∗ ◦ Tv
n + Pv

n ◦ Tv∗, (18)

that implies

∇v∗ = P
∗ ◦ Tn + Pn ◦ T

∗. (19)
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When looking for the improved pressure field pn(x, z) at
iteration n

pn(x, z) =
n∑
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we consider the test function
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Thus the problem weak form Eqs. 7 and 8 writes at
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�×I

− P
p
n · T

p
n

(
∂P 1

∂x
T 1 + ∂P 2

∂y
T 2 + P 3 ∂T 3

∂z

)∗
dx dz

+
∫

�×I

η

2

(
4∑

k=1

A
∗
nk(x) : Bnk(z)

+ Ank(x) : B∗
nk(z)

)
dx dz

=
∫

�×I

n−1∑
j=1

P 4
i · T 4

i

(
∂P 1

∂x
T 1 + ∂P 2

∂y
T 2

+P 3 ∂T 3

∂z

)∗
dx dz

−
∫

�×I

η

2

⎛
⎝n−1∑

j=1

4∑
k=1

(
A

∗
jk(x) : Bjk(z)

+Ajk(x) : B∗
jk(z)

)⎞
⎠ dx dz, (27)

and∫
�×I

− (P p · T p)∗
(

∂P 1
n

∂x
T 1

n + ∂P 2
n

∂y
T 2

n + P 3
n

∂T 3
n

∂z

)
dx dz

=
∫

�×I

n−1∑
i=1

(P p · T p)∗
(

∂P 1
i

∂x
T 1

i + ∂P 2
i

∂y
T 2

i

+P 3
i

∂T 3
i

∂z

)
dx dz. (28)

The extended weak forms Eqs. 27 and 28 become non-
linear because it involves the product of unknown functions
Pn and Tn. Thus a linearization strategy becomes necessary,
the simplest one being an alternating fixed point algorithm
that proceeds as follows:

1. Assuming functions Pn(x) are known (arbitrarily
chosen at the first iteration of the nonlinear iter-
ation) matrices A

∗
jk and F

∗
j , as well as functions(

∂P 1∗
∂x

T 1
n + ∂P 2∗

∂y
T 2

n + P 3∗ ∂T 3
n

∂z

)
and P p∗ vanish. Being

all functions depending on x known, integrals in � in
Eqs. 27 and 28 can be calculated. Thus, it finally results
in a one dimensional linear problem that involves the
four scalar functions involved in Tn(z), T 1

n (z), T 2
n (z),

T 3
n (z) and T

p
n (z).

2. Then, with the just computed function Tn(z), and with

B
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p∗ and
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van-

ishing, one can proceed to integrate Eqs. 27 and 28 in
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I. It finally results in a two-dimensional linear problem
for the unknown function Pn(x) that involves the four
scalar functions P 1

n (x), P 2
n (x), P 3

n (x) and P
p
n (x).

3. The convergence is checked by comparing functions Pn

and Tn between two consecutive iterations of the non-
linear solver. If both functions are small enough they
are used to update both velocity and pressure fields

(
v(x, z)
p(x, z)

)
=

n∑
i=1

Pi (x) ◦ Ti (z). (29)

If the convergence is not reached, one returns to step 1
with the calculated functions Pn to re-compute Tn

Because of the one-dimensional large scale variation
present in the laminate thickness direction one can employ
extremely detailed descriptions along the thickness direc-
tion without sacrificing the computational efficiency of the
3D solution procedure.

Flow in a laminate

Consider a laminate composed of P layers in which each
layer involves a linear and isotropic viscous fluid of viscos-
ity ηi , thus the extended Stokes flow problem in its weak
form involves the dependence of the viscosity along the
thickness direction.

If H is the total laminate thickness, and assuming for the
sake of simplicity and without loss of generality that all the
plies have the same thickness h, it results h = H

P . Now, from
the characteristic function of each ply χi(z), i = 1, · · · ,P:

χi(z) =
{
1 if (i − 1)h ≤ z < ih

0 elsewehere
, (30)

the viscosity reads

η(x, z) =
P∑

i=1

ηi · χi(z), (31)

where it is assumed, again without loss of generality, that
the viscosity does not evolve in the plane, i.e. ηi(x) = ηi .

This decomposition is fully compatible with the velocity-
pressure separated representation (1) and with the in-plane-
out-of-plane decomposition considered for solving Eqs. 27
and 28.

Ericksen fluid flow model in a laminate

The case of a prepreg ply reinforced by continuous fibres
oriented along direction PT = (px, py, 0), ‖P‖ = 1, is
analyzed here. It is assumed that the thermoplastic resin
exhibits Newtonian behaviour. Thus the velocity v(x, z) of

the equivalent anisotropic fluid must satisfy the incompress-
ibility and inextensibility constraints

∇ · v = 0, (32)

and

PT · ∇v · P = 0, (33)

respectively. Expression (33) can be rewritten using tensor
notation as ∇v : a = 0, where the second order orientation
tensor a is defined from a = P · PT = P ⊗ P.

The orientation tensor a has only planar components (the
out-of-plane fiber orientation can be neglected in the case of
laminates), it is symmetric and of unit trace, i.e.

a =
⎛
⎝ axx axy 0

ayx ayy 0
0 0 0

⎞
⎠ =

(
A 0
0T 0

)
, (34)

where A represents the plane component of the orientation
tensor a, axy = ayx (i.e. A = AT ) and ayy = 1 − axx .

The simplest expression of the Ericksen’s constitutive
equation [9] can be written in the compact form as follows

σ = −pI + τa + 2ηT D + 2(ηL − ηT )(D · a + a · D), (35)

that is then introduced into the linear momentum balance

∇ · σ = 0. (36)

In Eq. 35 p and τ represents respectively the Lagrange
multipliers related to the incompressibility and inexten-
sibility constraints, and ηL and ηT the longitudinal and
transverse shear viscosities respectively.

By separating both the pressure and the fiber tension fields
using an in-plane-out-of-plane-separated representation

p(x, z) =
N∑

i=1

P
p
i (x) · T

p
i (z), (37)

and

τ(x, z) =
N∑

i=1

P τ
i (x) · T τ

i (z), (38)

it allows accurate calculations of both the fiber tension and
the pressure field. This information can be used to pre-
dict either fibers buckling or forces acting on the squeezed
boundary.

The weak form for a test velocity v∗(x, z) vanishing at
the boundary in which velocity is prescribed, a test pressure
p∗(x, z) and a test fiber tension τ ∗(x, z), assuming null trac-
tions in the remaining part of the domain boundary can be
expressed as∫
�×I

D∗ : σ dx dz = 0, (39)
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∫
�×I

p∗D : I dx dz = 0, (40)

and∫
�×I

τ ∗D : a dx dz = 0. (41)

By introducing the Ericksen constitutive equation (35),
Eq. 39 can be written as
∫

�×I

D∗ : σ dx dz =
∫

�×I

D∗ : (−pI + τa + ηT D

+η̃ (D · a + a · D)) dx dz = 0, (42)

with η̃ = ηL − ηT .
At this stage the in-plane-out-of-plane separated repre-

sentation constructor of v(x, z), p(x, z) and τ(x, z) pro-
ceeds as described in the previous section.

Remark 2 If a = 0 this formulation reduced to one related
to the Stokes flow problem.

Remark 3 Laminates can be addressed by associating with
each ply the planar fiber orientation Pi (x), with its out-
of-plane component vanishing, from which the associated
orientation tensor ai (x) results in ai (x) = Pi (x) ⊗ Pi (x).
Using again the characteristic function of the i-ply, χi(z),
i = 1, · · · ,P , the orientation tensor in the laminate, a(x, z),
can be expressed as

a(x, z) =
P∑

i=1

ai (x)χi(z). (43)

Remark 4 If the fiber orientation is constant in each plane,
then the laminate orientation tensor can be expressed as

a(z) =
P∑

i=1

aiχi(z). (44)

Revisiting fully penalized formulations.

Both Stokes and Ericksen flows have been successfully
implemented by means of penalized formulations involving
both, the pressure, p, and the fiber tension, τ . Such a penal-
ized formulation leads to a problem that only involves the
velocity field. Therefore, the aim is to clarify how the con-
stitutive equation is modified when introducing two penalty
parameters. For that purpose we consider:

∇ · v + λp = D : I + λp = 0, (45)

and

D : a − ετ = 0. (46)

Where the coefficients λ and ε are chosen close to
zero to ensure numerically incompressibility and fiber inex-
tensibility. Both constraints are ensured as long as both
penalty coefficients are small enough. Isolating p and τ

from Eqs. 45 and 46, it results

p = −1

λ
D : I, (47)

and

τ = 1

ε
D : a. (48)

If both pressure and fiber tension are penalized the
constitutive equation reduces to,

σ = 1

λ
(I ⊗ I) : D + 1

ε
(a ⊗ a) : D + 2ηD, (49)

where a very high effective viscosity acts along the fiber
direction. This formulation was intensively considered in [1,
2, 10, 11] where a variety of results were presented and dis-
cussed, proving the potentiality of the approach. However
neither fiber tension nor the pressure field were calculated
because the penalty formulation does not allow an accurate
post-calculation from the calculated velocity field and the
penalty definitions Eqs. 47 and 48.

Numerical results

The numerical results discussed hereafter consider several
cases starting from Stokes problem, then a single ply occu-
pying the whole gap, then considering laminates composed
of two plies with different relative orientations.

The main aim of this section is to show that there
exists an in-plane-out-of-plane separated representation
when both the pressure and the fiber tension have been
introduced as Lagrange multipliers. Therefore, 3D finite
element solvers for Stokes and Ericksen problems have
been developed in order to check the accuracy of the sep-
arated representation solutions. The 3D-FEM solution will
be taken as reference for validating the one involving a
separated representation 3D-SR (SR refers to the in-plane-
out-of-plane separated representation) calculated within the
PGD framework.

The domain occupied by the laminate has lengthL, width
W and thickness H , i.e. � = � × I, with � = [0, L] ×
[0, W ] and I = [0, H ], with x ∈ � and z ∈ I.

It is assumed that during compression, the upper wall
moves down with a prescribed velocity V during the con-
solidation. Thus, mass conservation leads to significant
velocity variations within �, e.g. the central point has a
null in-plane velocity because of the symmetry condition
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H

L

W

Imposed velocity

Fig. 1 Laminate geometry during compression molding of the lami-
nate under prescribed velocity

whereas the in-plane velocity is maximal at the laminate
lateral boundaries ∂� × I. Moreover, when taking into
account the through-thickness complex kinematics in mul-
tiaxial laminates, a sufficiently detailed solution is also
required along the thickness direction to capture all its rich-
ness. Figure 1 depicts the laminate geometry as well as the
squeezing conditions.

Prescribed velocities are enforced at the top and bot-
tom boundaries whereas null tractions apply on the lateral
boundaries, i.e.:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v(x, y, z = 0) = 0
v(x, y, z = H) = (0, 0, −V )T

σ (x = 0, y, z) · nx = 0
σ (x = L, y, z) · nx = 0
σ (x, y = 0, z) · ny = 0
σ (x, y = W, z) · ny = 0

, (50)

where nx = (1, 0, 0)T and ny = (0, 1, 0)T .
Numerical results will be presented sometimes on the

middle plane z = H/2, sometimes along the thickness at
the intersection line between planes x = a and y = b, with
a ∈ [0, L] and b ∈ [0, W ].

Stokes flow

First the Stokes problem solution is addressed. Numerical
issues as the ones related to the enforcement of the so-called
LBB stability condition in the 3D-SR (in-plane-out-of-plane
separated representation) will be deeply discussed. Viscos-
ity is set to 1000 Pa · s and the compression velocity to
V = 1 m · s−1. Two domains were addressed, the first per-
fectly cubic of length 1 m. The second flow problem was
defined in the narrow gap of dimensions L × W × H =
0.5×0.5×0.001 (all the lengths in meters) with a prescribed
compression velocity of V = 0.1 mm · s−1. In this case the
3D flow problem solution could be approximated using the
lubrication theory.

3D finite element solution

A standard stable 3D finite element discretization has been
used for solving the Stokes problem in the cubic domain of
unit size (L = W = H = 1). The 3D-FEM solution will
be taken as reference for evaluating the 3D solution making
use of an in-plane-out-of-plane separated representation. A
stable Q2/Q1 is considered for discretizing the 3D mixed
formulation within the FEM framework.

Figure 2 depicts the three velocity components and the
pressure field on the middle plane z = H/2. Because
the problem symmetry the velocity components u(x, z) and
v(x, z) vanish at x = L/2 and y = W/2 respectively. More-
over the componentw remains, as expected, almost constant
on the middle plane z = H/2. The pressure field exhibits a
global maximum in the center of the middle plane of about
1669 Pa.

Figure 3 shows the different components of the velocity
field as well as the pressure along the line defined as the
intersection between planes x = 0.625 and y = 0.625. It
can be noticed that boundary conditions are satisfied, with

Fig. 2 u(x, z = H/2) (top-left),
v(x, z = H/2) (top-right),
w(x, z = H/2) (bottom-left),
and p(x, z = H/2)
(bottom-right), associated with
the solution of the Stokes
problem using a stable 3D-FEM
discretization
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Fig. 3
u(x = (0.625, 0.625)T , z) (top-
left), v(x = (0.625, 0.625)T , z)

(top-right),
w(x = (0.625, 0.625)T , z)

(bottom-left), and
p(x = (0.625, 0.625)T , z)

(bottom-right), associated with
the solution of the Stokes
problem using a stable 3D-FEM
discretization

velocities u and v vanishing at z = 0 and z = H , whereas
velocity w vanishes at z = 0 and corresponds to the com-
pression velocity at z = H . Velocities u and v exhibit a
parabolic profile along the thickness whose maximum is
located at the middle plane z = H/2. Velocity w exhibit
an almost cubic evolution along the thickness. The pres-
sure field presents a minimum in the middle plane being
maximum when approaching the upper and bottom walls.

3D separated representation based solution

Now, the same problem is solved using a separated represen-
tation of both the velocity and pressure functions within the
PGD framework. The in-plane functions were discretized
using 2D Q2/Q1 approximations for the velocity and pres-
sure fields respectively, whereas a 1D quadratic/linear
was considered for approximating the velocity and pres-
sure functions depending on the thickness coordinate
respectively.

Figure 4 depicts the reconstructed velocity and pressure
fields on the middle plane z = H/2. In the approximation of
functions depending on the in-plane coordinates and those
depending on the one related to the domain thickness, we
considered meshes equivalent to the one considered in the
3D-FEM solution. Results are in perfect agreement to those
obtained using the 3D-FEM. Despite the very coarse mesh
considered the maximum gap in the pressure field was lower
than 0.5 %.

Figure 5 depicts the velocity and pressure profiles along
the domain thickness at position x = y = 0.625. Again
the solution obtained within the PGD framework perfectly
agrees with the reference solution obtained from the stable
3D finite element discretization previously presented.

Moreover, in order to check the stability conditions
(LBB) different choices were considered. First we consid-
ered Q2/Q2 approximations in the plane (that in 2D does
not fulfill LBB stability conditions) whereas the one consid-
ered for the problem defined in the thickness was assured

Fig. 4 u(x, z = H/2) (top-left),
v(x, z = H/2) (top-right),
w(x, z = H/2) (bottom-left),
and p(x, z = H/2) (bottom-
right), associated with the
solution of the Stokes problem
using the in-plane-out-of plane
separated representation
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Fig. 5
u(x = (0.625, 0.625)T , z) (top-
left), v(x = (0.625, 0.625)T , z)

(top-right),
w(x = (0.625, 0.625)T , z)

(bottom-left), and
p(x = (0.625, 0.625)T , z)

(bottom-right), associated with
the solution of the Stokes
problem using the
in-plane-out-of plane separated
representation

stable (quadratic/linear). It can be noticed in Fig. 6 that the
resulting in-plane-out-of-plane approximation is not stable,
and that the characteristic oscillations appear in the in-plane
solution (in which stability fails).

We also check another approximation expected violating
the LBB stability conditions, the one using a Q2/Q1 approx-
imation in the plane for velocities and pressure respectively
and quadratic/quadratic for functions depending on the

Fig. 6 Velocity a pressure fields
on the middle plane z = 0.5
(top) and (bottom) solution
along the thickness
(x = (0.625, 0.625)T , z) when
using the in-plane-out-of-plane
separated representation with
in-plane and thickness
approximations Q2/Q2 and
quadratic/linear respectively, for
the functions involved in the
velocity and pressure
representation
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Fig. 7 Velocity a pressure fields
on the middle plane z = 0.5
(top) and (bottom) solution
along the thickness
(x = (0.625, 0.625)T , z) when
using the in-plane-out-of-plane
separated representation with
in-plane and thickness
approximations Q2/Q1 and
quadratic/quadratic respectively,
for the functions involved in the
velocity and pressure
representation

thickness. The last is expected violating the LBB stabil-
ity conditions. Figure 7 exhibits oscillations precisely in
the pressure field along the thickness direction, that can be

attributed to the wrong approximation choice for the func-
tions depending of the thickness coordinate and involved in
the velocity and pressure representation.

Fig. 8 u(x = (0.33, 0.333)T , z)

(top-left),
v(x = (0.33, 0.33)T , z) (top-
right), w(x = (0.33, 0.33)T , z)

(bottom-left), and
p(x = (0.33, 0.33)T , z)

(bottom-right), associated with
the solution of the Stokes
problem in a narrow-gap using
the in-plane-out-of plane
separated representation
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Fig. 9 u(x, z = H/2) (top-left),
v(x, z = H/2) (top-right),
w(x, z = H/2) (bottom-left),
and p(x, z = H/2)
(bottom-right), associated with
the solution of the Stokes
problem in a narrow-gap using
the in-plane-out-of plane
separated representation

A first conclusion stressed from these numerical exper-
iments is that when using in the separated representation
approximations whose tensor product corresponds to 3D
stable approximations (i.e. fulfilling the LBB condition)
those separated approximations remain stable.

3D separated representation based solution in a narrow gap

The flow problem is now defined in a very narrow gap
because is in these circumstances that the use of separated
representations could be extremely advantageous because
the use of a 3D finite element discretization could imply an
extremely large number of elements in the case of degen-
erated 3D domains (e.g. plate-like) as discussed in [6]. As
previously indicated now the domain L × W × H = 0.5 ×
0.5 × 0.001 (all the units in meters) being again the viscos-
ity η = 1000 Pa · s and the compression velocity applied at
the upper wall V = 0.1 mm · s−1.

Figures 8 and 9 depict velocities and pressure fields
obtained using the in-plane-pot-of-plane separated repre-
sentation in conjunction with stable approximations (Q2/Q1
in the plane and also quadratic/linear in the thickness). It
is important to note that as expected from the lubrication
theory pressure becomes constant all along the thickness.

Laminate composed of a single Ericksen ply.

The first test case consists of a laminate composed of a sin-
gle ply described by the Ericksen constitutive equation, with
the unidirectional continuous fiber reinforcement oriented
along the x-coordinate axis. Thus, the reinforcement orien-
tation is defined by PT = (1, 0, 0), implying the orientation
tensor

a =
⎛
⎝ 1 0 0
0 0 0
0 0 0

⎞
⎠ . (51)

Fig. 10 u(x, z = H/2) (top-
left), v(x, z = H/2) (top-right),
w(x, z = H/2) (middle-left),
p(x, z = H/2) (middle-right)
and τ(x, z = H/2) (bottom)
associated with the solution of
the Ericksen fluid flow problem
in a narrow-gap using a 3D
stable finite element
discretization
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Fig. 11
u(x = (0.312, 0.312)T , z) (top-
left), v(x = (0.312, 0.12)T , z)

(top-right),
w(x = (0.312, 0.312)T , z)

(middle-left),
p(x = (0.312, 0.312)T , z)

(middle-right) and
τ(x = (0.312, 0.312)T , z)

(bottom), associated with the
solution of the Ericksen fluid
flow problem in a narrow-gap
using a 3D stable finite element
discretization

The squeeze flow takes place within the narrow gap
L = W = 0.5 and H = 10−3 (units in meters) being the
fluid viscosities ηL = 100 Pa · s and ηT = 100 Pa · s. The
squeezing rate was again V = 0.1 mm · s−1.

3D finite element solution

First it is solved the flow problem by using a stable 3D finite
element discretization (Q2/Q1/Q1 for the velocity, pressure
and tension respectively). The finite element solution will
be considered as the reference one for checking the solu-
tions obtained within the separated representation (PGD)
framework.

Figure 10 depicts all the unknown fields, the three veloc-
ity components (u, v, w), the pressure p and the tension
τ . As expected and because the symmetry, the velocity in
the fibers direction vanishes (a constant value is not possi-
ble because the flow problem symmetry and on the other
hand non constant velocities will imply extensibility that
is not allowed in the Ericksen fluid model). Component

w(x, z = H/2) is as expected constant and v(x, z = H/2)
has a linear variation vanishing at y = W/2 because the
flow problem symmetry. Both the pressure and the ten-
sion exhibit a parabolic profile, the first expected from the
lubrication theory and the second quite intuitive because at
y = W/2 the fibers resists a flow that in their absence
will take place in the x-direction, and decrease until vanish-
ing at y = 0 and y = W . Figure 11 shows the velocity,
pressure and tension profiles along the gap thickness at
position x = (0.312, 0.312)T , that exhibit the expected
behavior.

We proved from our numerical experiments that richer
tension approximation do not satisfy the LBB stability con-
ditions. Thus, approximating the tension in the same space
than the pressure seems a safe choice.

3D separated representation based solution

Again an in-plane-out-of-plane separated representation of
velocities, pressure and fiber tension was considered within

Fig. 12 u(x, z = H/2) (top-
left), v(x, z = H/2) (top-right),
w(x, z = H/2) (middle-left),
p(x, z = H/2) (middle-right)
and τ(x, z = H/2) (bottom)
associated with the solution of
the Ericksen fluid flow problem
in a narrow-gap using a 3D
in-plane-out-of-plane separated
representation
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Fig. 13
u(x = (0.312, 0.312)T , z) (top-
left), v(x = (0.312, 0.12)T , z)

(top-right),
w(x = (0.312, 0.312)T , z)

(middle-left),
p(x = (0.312, 0.312)T , z)

(middle-right) and
τ(x = (0.312, 0.312)T , z)

(bottom), associated with the
solution of the Ericksen fluid
flow problem in a narrow-gap
using a 3D in-plane-out-of-plane
separated representation

the PGD framework. However, in the case of a single fluid
layer, the Lagrange multiplier associated with the fiber ten-
sion is not coupled along the thickness direction, i.e. the
tension at different z-coordinates are fully decoupled. Thus,
no equation is found in order to compute the functions T τ

i (z)

and for this reason we considered the simplest choice of
assuming they are the same that the ones used in the pressure
separated representation, i.e.

p(x, z) =
N∑

i=1

P
p
i (x) · T

p
i (z), (52)

and

τ(x, z) =
N∑

i=1

P τ
i (x) · T

p
i (z), (53)

Figures 12 and 13 presents similar results that the ones
depicted in Figs. 10 and 11 when the 3D mixed formulation
is solved by using a stable in-plane-out-of-plane separated

representation within the PGD framework, considering
Q2/Q1/Q1 approximations for the functions depending on
the in-plane coordinates and also 1D quadratic/linear/linear
for those depending on the z-coordinate. The obtained
results are almost identical the the ones obtained by using
the more experienced 3D finite element discretization dis-
cussed in the previous section.

Laminate composed of two Ericksen plies

The following test case consists of a laminate composed of
2 plies described by Ericksen constitutive equation. The ply
dimensions are again L × W × H = 0.5 × 0.5 × 10−3

(all units in meters) with a compression velocity applied at
the upper wall V = 0.1 mm · s−1, with the same viscosi-
ties that were employed previously. The fiber orientation in
the bottom ply was given by PB = (1, 0, 0)T whereas in
the upper ply they were oriented along the y-direction, i.e.
PU = (0, 1, 0)T .

Fig. 14 u(x = (0.33, 0.33)T , z)

(top-left),
v(x = (0.33, 0.33)T , z) (top-
right), w(x = (0.33, 0.33)T , z)

(middle-left),
p(x = (0.33, 0.333)T , z)

(middle-right) and
τ(x = (0.33, 0.33)T , z)

(bottom), associated with the
solution of the two ply Ericksen
fluid flow problem in a
narrow-gap using a stable 3D
finite element discretization
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Fig. 15 u(x = (0.33, 0.33)T , z)

(top-left),
v(x = (0.33, 0.33)T , z) (top-
right), w(x = (0.33, 0.33)T , z)

(middle-left),
p(x = (0.33, 0.333)T , z)

(middle-right) and
τ(x = (0.33, 0.33)T , z)

(bottom), associated with the
solution of the Ericksen fluid
flow problem in a narrow-gap
using an in-plane-out-of-plane
separated representation

The discretization was carried out again using a stable
3D finite element approximation (Q2/Q1/Q1). The solution
(velocity, pressure and tension) profiles though the thick-
ness at position x = (0.33, 0.33)T are depicted in Fig. 14.
As expected we obtain two parabolic profiles for the veloc-
ities u and v, the first vanishing in the bottom ply (because
the fiber inextensibility and the flow problem symmetry)
and exhibiting a parabolic profile in the upper ply; and
the symmetric behavior for the velocity v. As expected
the velocity component w evolves smoothly, the pressure
remains almost constant, however, a peak in the tension is
noticed at the plies interface.

The origin of the tension peak is easy to understand.
The parabolic profile of u(x, z) through the ply thickness
z in the upper ply implies a shear rate and consequently a
shear stress at the interface. However, at the interface the
x-component of the traction T = σ · ez (ez being the unit
vector defining the z-coordinate axis) computed at the bot-
tom ply for equilibrating the shear stress associated to the

parabolic profile in the upper-ply implies a non-null com-
ponent xz of the rate of strain tensor, i.e. Dxz �= 0 (note
that fiber tension τ is not involved in the expression of
traction T). Thus the u velocity in the bottom ply cannot
be exactly zero, there is a boundary layer located at the
interface in which it activates the fiber tension. Because
as just indicated the fibers tension do not communicate
along the thickness, the tension singularity remains located
at the interface level and does not propagate in the bottom
ply. The same reasoning applies for the parabolic profile
of v(x, z) in the bottom ply that implies a tension singu-
larity in the upper ply at the interface neighborhood. By
diminishing the viscosity the shear stress decreases and
then the tension peaks. This tendency has been verified
numerically.

Solving the same problem by using an in-plane-out-of-
plane separated representation seems a tricky issue because
the inevitable singularity that the Ericksen model induces
at the plies interface when the orientation of fibers evolves

Fig. 16 u(x = (0.33, 0.33)T , z)

(top-left),
v(x = (0.33, 0.33)T , z) (top-
right), w(x = (0.33, 0.33)T , z)

(bottom-left) and
p(x = (0.33, 0.333)T , z)

(bottom-right) associated with
the solution of the Ericksen fluid
flow problem in a narrow-gap
using an in-plane-out-of-plane
separated representation with a
penalized tension
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Fig. 17 Applied compression
force versus squeeze rate for the
two plies Ericksen laminate
discussed in the previous section

from one ply to its contiguous one. Obviously we proved
that if the different plies are oriented along the same direc-
tion no peak appears in the solution. The resulting solution
in that case is the one associated with a single ply having the
laminate thickness.

The solution for the considered case of two plies with
different orientations is depicted in Fig. 15, that reveals all
the expected tendencies, in particular the peak in the tension
that now spreads a little bit more from the interface.

Due to these tension peaks when proceeding within the
PGD framework the pressure solution is slightly polluted,
revealing an almost constant value across the gap thick-
ness a bit lower that the one obtained when using the
3D finite element discretization. For this reason we finally
decided to consider a velocity-pressure mixed formulation
whereas the tension is treated from a penalty formula-
tion. In fact accurate pressure solutions are required in
order to characterize the laminate behavior, however ten-
sion is only required for evaluating the defect risks related
for example with compressive fiber tensions. Thus one
could imagine that tension could be reconstructed from the
velocity-pressure solution, and even if its accuracy is com-
promised it suffices for the purpose of evaluating defect
risks. Figure 16 depicts the velocity and pressure solution
where higher accuracy is noticed concerning the pressure
field.

Rheological characterization

In this section we address the rheological characteriza-
tion of a laminate composed of the two Ericksen plies
considered in the previous section. We consider different
squeezing rates and for each one after calculating the veloc-
ity and pressure fields (from the stabilized and tension
penalized in-plane-out-of-plane separated representation),
tension σ · ez is calculated on the upper plate and then

the resultant of its normal component obtained. Figure 17
depicts the force/squeeze rate behavior, that as expected
evolves linearly and from which one could extract an equiv-
alent newtonian viscosity.

Conclusions

A new numerical procedure is proposed to simulate the
squeeze flow of multiaxial laminates, able to present resolu-
tion levels never envisaged until now. It is based on the use
of an original in-plane-out-of-plane separated representa-
tion of the different unknown fields, that allows calculating
extremely detailed 3D solutions while keeping the compu-
tational complexity characteristic of 2D problems. Thus,
extremely high resolutions can be attained in the thickness
direction, able to capture localized behaviors.

In this work we succeeded to solve mixed velocity-
pressure-tension formulations within an in-plane-out-of-
plane separated representation. In order to address multiax-
ial laminates involving tension localized behaviors, we pro-
posed a mixed velocity-pressure with a penalized tension,
that allowed very accurate velocity and pressure solutions,
and a reasonable reconstructed tension, accurate enough for
predicting risk of defects.

Compliance with Ethical Standards The authors declare that they
have no conflict of interest.

Appendix A: Separated representation
of the Stokes weak form

The efficient computer implementation of the sepa-
rated representation constructor discussed in “Separated
representation constructor” section needs a separated form
of the flow problem expressed in a weak form (7). For that
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purpose we first consider the second term D∗ : D, that takes
into account expression (5) as follows

4D∗ : D = ∇v∗ : ∇v + ∇v∗ : (∇v)T

+(∇v∗)T : ∇v + (∇v∗)T : (∇v)T . (54)

The simplest choice of the test function v∗(x, z) is

v∗(x, z) = P∗(x) ◦ T(z) + P(x) ◦ T∗(z), (55)

from which the velocity gradient is:

∇v∗ = P
∗ ◦ T + P ◦ T

∗. (56)

The choice of P and T in Eq. 56 is discussed in
“Separated representation constructor” section.

Developing the first term in Eq. 54 (the other terms fol-
low the same rationale) taking into account Eq. 3 results

∇v∗ : ∇v ≈ (
P

∗ ◦ T + P ◦ T
∗) :

⎛
⎝ N∑

j=1

Pj ◦ Tj

⎞
⎠ . (57)

It is easy to note that if matrices M(x) and N(x) depend
on the in-plane coordinates x, and matrices U(z) and V(z)

depend on the out-of-plane coordinate z, we have

(M ◦ U) : (N ◦ V) = (M ◦ N) : (U ◦ V) . (58)

Using this equality, Eq. 57 can be written as

∇v∗ : ∇v ≈
N∑

j=1

{(
P

∗ ◦ Pj

) : (
T ◦ Tj

)

+ (
P ◦ Pj

) : (
T

∗ ◦ Tj

)}
, (59)

and the other terms involved in Eq. 54 as

∇v∗ : (∇v)T ≈
N∑

j=1

{(
P

∗ ◦ P
T
j

)
:
(
T ◦ T

T
j

)

+
(
P ◦ P

T
j

)
:
(
T

∗ ◦ T
T
j

)}
, (60)

(∇v)∗T : ∇v ≈
N∑

j=1

{(
P

∗T ◦ Pj

)
:
(
T

T ◦ Tj

)

+
(
P

T ◦ Pj

)
:
(
T

∗T ◦ Tj

)}
, (61)

and

(∇v)∗T : (∇v)T ≈
N∑

j=1

{(
P

∗T ◦ P
T
j

)
:
(
T

T ◦ T
T
j

)

+
(
P

T ◦ P
T
j

)
:
(
T

∗T ◦ T
T
j

)}
. (62)

Thus, we finally obtain

4D∗ : D ≈
N∑

j=1

{(
P

∗ ◦ Pj

) :(T ◦ Tj

)+(
P ◦ Pj

) :(T∗ ◦ Tj

)}

+
N∑

j=1

{(
P

∗ ◦ P
T
j

)
:
(
T ◦ T

T
j

)

+
(
P ◦ P

T
j

)
:
(
T

∗ ◦ T
T
j

)}

+
N∑

j=1

{(
P

∗T ◦ Pj

)
:
(
T

T ◦ Tj

)

+
(
P

T ◦ Pj

)
:
(
T

∗T ◦ Tj

)}

+
N∑

j=1

{(
P

∗T ◦ P
T
j

)
:
(
T

T ◦ T
T
j

)

+
(
P

T ◦ P
T
j

)
:
(
T

∗T ◦ T
T
j

)}

=
N∑

j=1

4∑
k=1

{
A

∗
jk(x) : Bjk(z) + Ajk(x) : B∗

jk(z)
}

,

(63)

where ∀j , j = 1, · · · , N

A
∗
jk =

⎧⎪⎪⎨
⎪⎪⎩

P
∗ ◦ Pj , if k = 1

P
∗ ◦ P

T
j , if k = 2

P
∗T ◦ Pj , if k = 3

P
∗T ◦ P

T
j , if k = 4

, (64)

Bjk =

⎧⎪⎪⎨
⎪⎪⎩

T ◦ Tj , if k = 1
T ◦ T

T
j , if k = 2

T
T ◦ Tj , if k = 3

T
T ◦ T

T
j , if k = 4

, (65)

Ajk =

⎧⎪⎪⎨
⎪⎪⎩

P ◦ Pj , if k = 1
P ◦ P

T
j , if k = 2

P
T ◦ Pj , if k = 3

P
T ◦ P

T
j , if k = 4

, (66)

and

B
∗
jk =

⎧⎪⎪⎨
⎪⎪⎩

T
∗ ◦ Tj , if k = 1

T
∗ ◦ T

T
j , if k = 2

T
∗T ◦ Tj , if k = 3

T
∗T ◦ T

T
j , if k = 4

, (67)

On the other hand, the first term in Eq. 7 can be expressed
as:

Tr(D∗) · Tr(D) = Tr(∇v∗) · Tr(∇v), (68)

with

Tr(∇v) ≈
(

N∑
i=1

Pi ◦ Ti

)
: I. (69)
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Thus, a generic term in Eq. 68 can be written as((
P

∗ ◦ T + P ◦ T
∗) : I) · ((

Pj ◦ Tj

) : I) . (70)

Now, by defining V(J) the vector form of the diagonal
matrix J, Eq. 70 results((

P
∗ ◦ T + P ◦ T

∗) : I) · ((
Pj ◦ Tj

) : I)
= (

V(P∗ ◦ I) ⊗ V(Pj ◦ I)
) : (V(T ◦ I) ⊗ V(Tj ◦ I))

+ (
V(P ◦ I) ⊗ V(Pj ◦ I)

) : (V(T∗ ◦ I) ⊗ V(Tj ◦ I)),

(71)

that allows finally casting the first term in the weak form (7)
as

Tr(D∗) · Tr(D) ≈
N∑

j=1

F
∗
j (x) : Gj (z) + Fj (x) : G∗

j (z) (72)

with

F
∗
j = V(P∗ ◦ I) ⊗ V(Pj ◦ I), (73)

Gj = V(T ◦ I) ⊗ V(Tj ◦ I), (74)

Fj = V(P ◦ I) ⊗ V(Pj ◦ I), (75)

and

G
∗
j = V(T∗ ◦ I) ⊗ V(Tj ◦ I). (76)
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