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Abstract An inverse methodology is proposed for determin-
ing the work hardening law of metal sheets, from the results of
pressure vs. pole height, obtained from the bulge test. This
involves the identification of the parameters of the Swift
law. The influence of these parameters as well as the sheet
anisotropy and the sheet thickness on the results of pressure
with pole height is studied following a forward analysis, based
on finite element simulation. This allows understanding that
the overlapping of the pressure vs. pole height curves of dif-
ferent metal sheets is possible, provided that the hardening
coefficient has the same value, whatever the values of the
remaining parameters of the Swift law, the sheet anisotropy
and the initial sheet thickness. The overlapping of the curves is
performed by multiplying the values of the pressure and the
pole height using appropriate factors, which depend on the
ratios between the yield stresses and the thicknesses of the
sheets, and also on their anisotropy. Afterwards, an inverse
methodology is established, consisting of the search for the
best coincidence between pressure vs. pole height of experi-
mental and reference curves, the latter being obtained by nu-
merical simulation assuming isotropic behaviour with various
values of the Swift hardening coefficient in the range of the
material under study. This methodology is compared with a
classical strategy and proves to be an efficient alternative for
determining the parameters of the Swift law. It aims to be

simple from an experimental point of view and, for that pur-
pose, only uses results of the load evolution during the test.
The methodology is limited to materials with the hardening
behaviour adequately described by the Swift law.

Keywords Bulge test . Inverse analysis . Swift hardening
law . Numerical simulation

Introduction

The manufacturing of sheet metal forming components, with
complex geometries and tight requirements, obliges the accu-
rate characterization of the sheet metals behaviour. Very often,
high values of strain are imposed in the components by the
forming conditions. Therefore, the adequate characterization
of the hardening law up to large plastic deformation is re-
quired. This is generally accomplished using the bulge test
that achieves strain values not possible in the tensile test, for
example. The traditional methodology, for performing the
bulge test and analysing the results, requires the use of specific
devices, one for assessing the radius of curvature and another
for measuring the strain at the pole of the cap during the test, in
case of mechanical measuring systems [1]. Simultaneously, it
is also necessary to follow the pressure evolution during the
test. The use of optical measuring systems makes it easier the
description of the geometry and strain distributions on the
sheet surface during the bulge test [2, 3]. However, the eval-
uation of the stress vs. strain curves depends on assumptions
and simplifications, whose assessment are still under study.
For example, in a recent study Mulder et al. [4] examine the
validity and the conditions for using the membrane theory,
which includes issues such as the existence of bending stresses
and a through thickness stress due to the hydraulic pressure.
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Some equations have been proposed [5–8] in order to avoid
the use of the above mentioned devices, just exploiting the
data concerning pressure vs. pole height and thereby simpli-
fying the implementation and analysis of the bulge test results.
These equations allow determining the equivalent stress and
strain under isotropic condition, relating the radius of curva-
ture and sheet thickness with the pole height. However, this
procedure presents some disadvantages. First of all, there ex-
ists in the literature a multitude of equations to describe the
evolutions of the radius of curvature and sheet thickness at the
pole of the cap with the pole height [9–11], which makes it
difficult to select the most appropriate. The use of some of
them, in general the most accurate, requires the knowledge a
priori of the hardening coefficient of the Swift law, which is
intended to be identified. Although tensile tests can be previ-
ously performed to assess the value of the hardening coeffi-
cient, its value in tension can be different from that in biaxial
stretching. Also, other constitutive parameters such as those of
the anisotropic yield criterion, related with the in-plane de-
scription of the anisotropy, can influence the evolutions of

the radius of curvature and sheet thickness at the pole during
the test, as mentioned in recent works [4, 5]. Not always the
equations for the evolutions of the radius of curvature and
sheet thickness with the pole height properly consider the
geometry of the bulge test device, i.e. the die radius and the
die profile radius. In fact, only in rare cases the die profile
radius is considered, as in Panknin model for the curvature
radius evolution, which in turn takes no account for the hard-
ening coefficient [11]. In a recent work, a numerical iterative
method was proposed to determine the stress–strain curve of
the AA7075 metal sheet using pressure vs. pole height results
of circular bulge tests performed at elevated temperatures [5].
This iterative scheme is coupled with the Panknin model for
the curvature radius and explicit integral formulas proposed
by the authors to evaluate the thickness at the pole of the
bulge, taking into account the Lankford’s anisotropy
coefficient.

Few literature is available on inverse analysis procedures
for identifying the hardening law parameters from the bulge
test. Still, it is possible to notice that Chamekh et al. [12]
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Fig. 1 Bulge test, with the
identification of the principal
dimensions of the tool [17]
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(a) (b)Fig. 2 (a) Four main zones
adopted to define the finite
element mesh in the sheet plane
(the dimensions are in mm) and
(b) general view of the mesh with
illustration of the thickness strain
distribution predicted for an
isotropic material with the yield
stress of 100 MPa, the hardening
coefficient of the Swift law
n = 0.20 and the initial sheet
thickness of 1.0 mm, for the
pressure of 3.29 MPa (pole
height: h = 41.65 mm)
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describe an inverse approach for identifying the constitutive
parameters of a stainless steel, based on artificial neural net-
works. They use the results of pressure vs. pole height, which
are transferred to a neural network. This is trained using
curves generated by finite element simulations of the bulge
test. During the training process, the neural network generates
an approximate function for the inverse problem relating the
material parameters to the shape of the pressure vs. pole height
curve of the bulge test. A circular die geometry is used for
identifying the Ludwick hardening law [13], assuming the
knowledge of the Lankford’s parameters values evaluated
from tensile tests. Afterwards, an elliptical die for an off axis
angle of 0° is used to recalculate the Lankford’s coefficients,
which are validated using an elliptical die with an off axis
angle of 45°. They claim that artificial neural networks can
predict a combination of the material parameters with accept-
able accuracy for most design considerations, although with a
strong exception that is the value of the parameter n of the
hardening law (the experimental and identified values of n are
0.67 and 0.4, respectively). Also, Bambach [14] tried to

implement an identification procedure for the parameters of
the Voce law [15] resorting to objective functions making use,
separately or simultaneously, of results of pressure vs. pole
height, pole strain vs. pole height and pole thickness vs. pole
height. In the studied cases, using virtual computer generated
data, the author concluded that the combination of the first two
types of results significantly improves the identification.

Furthermore, the influence of the values of the constitutive
parameters, i.e. of the hardening law and the anisotropic yield
criterion, on the evolution of pressure with the pole height has
never been explored under inverse identification strategies, to
our knowledge. The current results show that it is possible to
overlap the curves concerning the evolution of the pressure
with pole height and exploit this insight in order to build an
inverse strategy for identifying the parameters of the harden-
ing law. The main aim of this work is to develop and evaluate
the performance of an inverse analysis methodology for the
identification of the parameters of the Swift law [16], just

Table 1 Materials designation and their parameters of Swift hardening
law

Designation Y0 [MPa] K [MPa] n

100_0.05_Z.Z 100 130.3 0.05

100_0.20_Z.Z 288.5 0.20

100_0.35_Z.Z 638.8 0.35

200_0.05_Z.Z 200 260.7 0.05

200_0.20_Z.Z 577.1 0.20

200_0.35_Z.Z 1277.6 0.35

300_0.05_Z.Z 300 391.0 0.05

300_0.20_Z.Z 865.6 0.20

300_0.35_Z.Z 1916.4 0.35
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Fig. 3 Evolution of pressure, p, with pole height, h, for sheets of fully
isotropic materials with t0 = 1.0 mm
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Fig. 4 Evolution of normalized pressure, p/pmax, with pole height, h, for
sheets of fully isotropic materials with t0 = 1.0 mm (from the results of
Fig. 3)
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using the results of the evolution of the pressure with the pole
height. This methodology is limited to materials with harden-
ing behaviour adequately described by the Swift law and aims
to be simple and accurate. Numerical and experimental results
are used for validation.

Numerical modelling

In order to perform the study concerning the methodology for
the evaluation of the Swift hardening law using the circular
bulge test, numerical models of the test were built. The geom-
etry of the tools considered in the test is schematically shown
in Fig. 1, where RM = 75 mm is the die radius, R1 = 13 mm is
the die profile radius, RD = 95 mm is the radius of the central
part of the drawbead and RS = 100 mm the radius of the cir-
cular sheet. This geometry was built based on the experimen-
tal bulge test used by Santos et al. [17].

The tools were described using Bézier surfaces, consider-
ing only one quarter of the geometry due to material and
geometrical symmetry conditions. However, in order to sim-
plify the analysis, the drawbead geometry was neglected and
its effect was replaced by a boundary condition imposing

radial displacement restrictions on nodes placed at a distance
equal to RD from the centre of the circular sheet, which has an
initial blank radius of RS [18]. The contact with friction was
described by the Coulomb law with a constant friction coeffi-
cient of 0.02 [19]. All numerical simulations were carried out
with DD3IMP in-house code [20, 21] assuming an incremen-
tal increase of the pressure applied to the sheet inner surface.

The blank sheet discretization was previously optimized
[22] such that the sheet geometry was divided into four main
zones, as shown in Fig. 2(a). This enables to describe the
central region of the specimen with a regular and uniform grid
discretization in the sheet plane, using quadrangular elements,
as shown in Fig. 2(b). A total of 5292 3D solid 8 node elements
with two layers of elements through thickness were used.
Figure 2(b) also shows the thickness strain distribution predict-
ed for an isotropic material, at an instant preceding the maxi-
mum pressure, highlighting its axisymmetric distribution.

The constitutive model adopted for the finite element anal-
ysis assumes [23, 24]: (1) the isotropic elastic behaviour

Table 2 Designation of the materials with transverse anisotropy and
their parameters of Hill’48 criterion; a fully isotropic material is also
considered

Designation Parameters of the Hill’48 Criterion (G +H = 1)

F G H L M N

0.7_0.7_0.7_n 0.588 0.588 0.412 1.500 1.500 1.412

1_1_1_n 0.500 0.500 0.500 1.500 1.500 1.500

2_2_2_n 0.333 0.333 0.667 1.500 1.500 1.667

3_3_3_n 0.250 0.250 0.750 1.500 1.500 1.750
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Fig. 6 Evolution of pressure, p, with pole height, h, for materials with
planar isotropy and n = 0.05, 0.20 and 0.35 (Y0 = 200 MPa and
t0 = 1.0 mm)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

p/
p m

a
x

h [mm]

3_3_3_0.35

2_2_2_0.35

1_1_1_0.35

0.7_0.7_0.7_0.35

3_3_3_0.20

2_2_2_0.20

1_1_1_0.20

0.7_0.7_0.7_0.20

3_3_3_0.05

2_2_2_0.05

1_1_1_0.05

0.7_0.7_0.7_0.05
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appropriated factor, allowing the overlapping of curves for each value of n
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defined by the generalized Hooke’s law; (2) the plastic behav-
iour described by the orthotropic Hill’48 yield criterion and
the hardening model by the Swift isotropic law.

The Hill’48 yield surface is described by the equation [25]:

F σyy−σzz

� �2 þ G σzz−σxxð Þ2 þ H σxx−σyy

� �2 þ 2Lτ2yz

þ 2Mτ2xz þ 2Nτ2xy

¼ Y 2 ð1Þ

where σxx, σyy, σzz, τxy, τxz and τyz are the components of the
Cauchy stress tensor, in the principal axes of orthotropy, and
F, G, H, L, M and N are the anisotropy parameters of the
material. Y represents the yield stress and its evolution during
deformation Y ¼ f εð Þ; which is described by the Swift iso-
tropic hardening law [16]:

Y ¼ K ε0 þ ε
� �n

ð2Þ

where ε is the equivalent plastic strain and K, ε0 and n are
material parameters to be identified. The initial yield stress, Y0,
can be written as a function of K, ε0 and n, as follows:
Y0 =Kε0

n. The value of the parameter ε0 is assumed equal to
0.005 unless other is indicated. The elastic behaviour is

considered isotropic and is described by the generalised
Hooke’s law, with a Young’s modulus, E = 210 GPa, and a
Poisson’s ratio, ν = 0.30.

Results

Numerical bulge tests were performed for two types of metal
sheets: isotropic (section: Isotropic metal sheets) and transverse
anisotropic (section: Transverse anisotropic metal sheets). The
influence of the hardening parameters of the Swift law, the
anisotropy of the material and the sheet thickness on the results
of pressure vs. pole height is analysed. The aim is the search for
features that describe the sheet metal behaviour during bulge
test in a unified way, as much as possible.

Isotropic metal sheets

Bulge tests of metal sheets with various values of initial sheet
thickness, yield stress and hardening parameter were analysed,
in order to study the influence of these parameters on the evo-
lutions of the pressure with the pole height. The plastic behav-
iour of the materials studied in this section is fully isotropic.

(a) (b)

0

2

4

6

8

10

12

0 10 20 30 40 50 60

p
]

a
P

M[

h [mm]

100_0.20

200_0.20

300_0.20

0

2

4

6

8

10

12

0 10 20 30 40 50 60

p
]

a
P

M[

h [mm]

100_0.20

200_0.20

300_0.20

Fig. 9 Evolution of pressure, p,
with pole height, h, for three
isotropic sheet metals with
Y0 = 100, 200 and 300 MPa
(n = 0.20 and t0 = 1.0 mm): (a)
Curves as obtained; (b)
Overlapping curves after
multiplying by 3 and 1.5 the
pressure values of the curve with
Y0 = 100 and 200 MPa,
respectively

(a) (b)

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60

p
]

a
P

M[

h [mm]

200_0.20_0.5

200_0.20_1.0

200_0.20_2.0

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60

p
]

a
P

M[

h [mm]

200_0.20_0.5

200_0.20_1.0

200_0.20_2.0

Fig. 10 Evolution of pressure, p,
with pole height, h, for three
isotropic sheet metals with
t0 = 0.5, 1.0 and 2.0 mm (n = 0.20
and Y0 = 200 MPa): (a) Curves as
obtained; (b) Overlapping curves
after multiplying by 4 and 2 the
pressure values of the curve with
t0 = 0.5 and 1.0 mm, respectively

Int J Mater Form (2017) 10:493–513 497



Table 1 shows the parameters of the Swift law for the ma-
terials under study. Three values of initial yield stress, Y0, were
chosen (Y0 = 100, 200 and 300 MPa) and also three values of
hardening coefficient, n, were selected (n = 0.05, 0.20 and
0.35). In order to simplify the analysis of the results in this
section, the following designation is adopted for the material
in each test: BXXX_0.YY_Z.Z^, where BXXX^ is the initial
yield stress value, Y0, B0.YY^ is the hardening coefficient, n,
and BZ.Z^ is the initial sheet thickness, t0. For each material,
three values of initial sheet thickness were studied: 0.5, 1.0
and 2.0 mm.

In the following, examples of numerical results are present-
ed concerning the materials in Table 1. Figure 3 shows the
evolution of the pressure, p, with the pole height, h, for
1.0 mm thick sheets. The parameters of the Swift law, Y0
and n, influence the evolution of pressure during the bulge
test. At the beginning of the test, the pressure increases faster

for materials with higher yield stresses. Subsequently, the lev-
el of the curves depends mainly of the hardening coefficient.
The results also show that the materials with higher values of
the hardening coefficient have greater pole heights when the
pressure approaches the maximum value.

The analysis of pressure evolution during the test shows
that, for a given n value of the material, the curves p vs. h
overlap each other when the pressure, p, is normalized by the
yield stress of the material, p/Y0. Consequently, the value of
the pressure at a given value of the pole height, and therefore
also for the maximum pressure, is proportional to the value of
the yield stress of the material, and so it is possible to normal-
ize the curves by the maximum pressure value for each yield
stress, i.e. using p/pmax instead of p, as shown in Fig. 4 for the
cases of Fig. 3.

The same kind of behaviour is observed for the other initial
sheet thicknesses (t0 = 0.5 mm, 1.0 mm and 2.0 mm).
Moreover, the analysis of pressure evolution during the test
shows that, for a given n value of the material, the curves p vs.
h overlap each other when the pressure, p, is normalized by
the initial thickness value, p/t0. Consequently, since the max-
imum pressure is proportional to the initial thickness value, it
is possible to normalize the curves by the maximum pressure
value for each initial thickness, i.e. using p/pmax instead of p,
as shown in the examples of Fig. 5.

In summary, for isotropic materials with strain hardening
described by the Swift law, the evolutions of the normalized
pressure vs. pole height are only influenced by the value of the
hardening coefficient, i.e. are independent of the yield stress
and the initial thickness of the sheet.

Transverse anisotropic metal sheets

The numerical simulation of the bulge test was also carried out
on metal sheets with transverse anisotropy (also known as
planar isotropy), i.e. with the anisotropy coefficient r(α) con-
stant in the plane of the sheet (α is the angle between the
tensile direction, TD, and the rolling direction, RD): r(α) = r
and different from 1. The hardening behaviour study includes
materials as in Table 1 (an isotropic material is also consid-
ered). The initial sheet thickness is 1.0 mm. Table 2 shows the
designation adopted for the material and their parameters of
the Hill’48 criterion. The designation A_A_A_n corresponds
to a material with the hardening coefficient equal to n and the
anisotropy coefficient, r = r(α), in the sheet plane equal to A.

Table 3 Designation of the anisotropy of the tested materials and
respective parameters for Hill’48 criterion; the fully isotropic material
(1_1_1) is also shown

Tested materials anisotropy (F +G = 1) Hill’48 criterion parameters

F G H N

0.5_0.5_0.5 0.500 0.500 0.250 1.000

0.7_0.7_0.7 0.500 0.500 0.350 1.200

1_1_1 0.500 0.500 0.500 1.500

2_2_2 0.500 0.500 1.000 2.500

3_3_3 0.500 0.500 1.500 3.500

4_4_4 0.500 0.500 2.000 4.500
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Fig. 11 Initial yield surfaces in plane (σxx; σyy) of the materials of
Table 3

Table 4 Parameters of
the Swift hardening law Y0 [MPa] K [MPa] n

200 260.7 0.05

577.1 0.20

1277.6 0.35

2828.4 0.50
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The parameters of the Hill’48 criterion obey to the conditions
F =G and N = F + 2H. These conditions together with the
condition G +H = 1, which is also assumed for the materials
in Table 2, means that the tensile curves along any direction in
the sheet plane are coincident, whatever the value of the an-
isotropy coefficient, r = r(α), for a given set of parameters of
the Swift hardening law.

Figure 6 shows examples of the evolution of the pressure
with the pole height, for the cases of planar isotropic materials
(Table 2), with yield stress, Y0 = 200 MPa and hardening co-
efficients, n = 0.05, 0.20 and 0.35 (see Table 1). The higher is
the anisotropy coefficient the higher is the pressure required to
achieve the maximum pole height, for a given value of the
hardening coefficient.

As in the previous section, the curves in Fig. 6 were nor-
malized using p/pmax, as shown in Fig. 7. It can be seen that for
a given hardening coefficient, there is no full coincidence
between curves. The influence of the anisotropy coefficient
on the normalized curves increases when the value of n
increases.

Moreover, for each value of n, the curves in Fig. 7 can be
superimposed using a multiplying factor for the value of h, the
results of which are shown in Fig. 8. The issues related with
this multiplying factor will be analysed in the next section.

In summary, it is always possible the overlap the curves
pressure vs. pole height, by multiplying the pressure and/or
the pole height by conveniently chosen factors, for materials
with equal values of the hardening coefficient of the Swift law.
Conversely, the overlapping is not possible for different values
of the hardening coefficient.

Identification strategy

The results described in the previous section suggested the
development of an inverse strategy for the identification of
the Swift law parameters, using the bulge test. The first step
consists on a forward analysis, in order to study in detail how
the pressure vs. pole height curves can be overlapped, for a
given value of the hardening coefficient. The sensitivity of the

(a) (b)

0

1

2

3

4

0 10 20 30 40

p
[M

P
a

]

h [mm]

0.5_0.5_0.5

0.7_0.7_0.7

1_1_1

2_2_2

3_3_3

4_4_4

0

1

2

3

4

0 10 20 30 40

p
[M

P
a

]

h [mm]

0.5_0.5_0.5

0.7_0.7_0.7

1_1_1

2_2_2

3_3_3

4_4_4

Fig. 12 Evolution of pressure, p,
with pole height, h, for sheet
metals with different transverse
anisotropy and hardening
coefficient n = 0.05
(Y0 = 200 MPa and t0 = 1.0 mm):
(a) Curves as obtained; (b)
Overlapping curves after
multiplying the pressure and the
pole height values by
appropriated factors

(a) (b)

0

2

4

6

8

10

12

14

16

0 20 40 60

p
[M

P
a

]

h [mm]

0.5_0.5_0.5

0.7_0.7_0.7

1_1_1

2_2_2

3_3_3

4_4_4

0

2

4

6

8

10

12

14

16

0 20 40 60

p
[M

P
a

]

h [mm]

0.5_0.5_0.5

0.7_0.7_0.7

1_1_1

2_2_2

3_3_3

4_4_4

Fig. 13 Evolution of pressure, p,
with pole height, h, for sheet
metals with different transverse
anisotropy and hardening
coefficient n = 0.35
(Y0 = 200 MPa and t0 = 1.0 mm):
(a) Curves as obtained; (b)
Overlapping curves after
multiplying the pressure and the
pole height values by
appropriated factors

Int J Mater Form (2017) 10:493–513 499



results of the pressure evolution during the test to variations of
the hardening law parameters is studied. Also, the sensitivity
of these results to the variations of the yield stress, anisotropy
and sheet thickness, for a given value of the hardening coef-
ficient is analysed. This forward study allowed the develop-
ment of an inverse analysis methodology, applied to the iden-
tification of the Swift hardening law parameters, namely Y0, K
and n of Eq. (2).

Forward analysis

In this forward study, the analysis is focused on the coinci-
dence between pressure vs. pole height curves of:

(i) Isotropic metal sheets with different yield stresses and
thicknesses;

(ii) Isotropic and transverse anisotropic metal sheets.

Isotropic metal sheets

The results in Figs. 4 and 5 show that, in case of full isotropic
materials, (i.e. the behaviour can be described by von Mises
yield criterion) with equal values of the hardening coefficient,
the pressure vs. pole height curves can be superposed what-
ever the yield stress and the sheet thickness. In order to super-
pose the curves, a multiplicative factor should be applied to
the pressure, which depends on and is proportional to the
ratios between yield stresses and sheet thicknesses of the ma-
terials. Figures 9 and 10 give examples of such behaviour, for
the yield stress and the thickness, respectively. In these fig-
ures, the cases of metal sheets with Y0 = 300 MPa (Fig. 9(a))
and t0 = 2.0 mm (Fig. 10(a)), are taken as reference, respec-
tively. It should be noted the perfect overlapping of the curves
when the multiplicative factor is applied (Figs. 9(b) and
10(b)). This factor is equal to the yield stresses ratio and thick-
nesses ratio, in Figs. 9 and 10, respectively.

Transverse anisotropic metal sheets

The results in Fig. 7 show that, in case of anisotropic metal
sheets, the use of a pressure factor is not enough to superpose
the pressure vs. pole height curves. Nevertheless, Fig. 8 shows
that the simultaneous use of a multiplying factor for the pole
height allows the overlapping. In this section a detailed study
concerning this aspect is performed.
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Fig. 14 Fp vs. Fh, for n = 0.05, 0.20, 0.35 and 0.50. The overlapping was
performed such that the isotropic curve is superimposed on the
anisotropic curves, which remain unchanged. For each n value, the
following r values were used: r = 0.5, 0.7, 1, 2, 3 and 4
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Fig. 15 Schematic representation for generating the pressure vs. pole
height curve of any anisotropic metal sheet (General Case - GC) from
the knowledge of the curve concerning an Isotropic Metal sheet with
different yield stress and thickness, in case of equal hardening coefficients

Table 5 Designation of isotropic materials used for identification and
respective parameters of the Swift hardening law

Isotropic materials Swift hardening law parameters

Y0 [MPa] K [MPa] n

100_0.12_1_1_1 100 188.85 0.12

100_0.13_1_1_1 100 199.13 0.13

100_0.14_1_1_1 100 209.96 0.14

100_0.15_1_1_1 100 221.39 0.15

100_0.16_1_1_1 100 233.43 0.16

100_0.17_1_1_1 100 246.14 0.17

100_0.18_1_1_1 100 259.53 0.18

100_0.19_1_1_1 100 273.65 0.19

100_0.20_1_1_1 100 288.54 0.20

100_0.21_1_1_1 100 304.24 0.21

100_0.22_1_1_1 100 320.79 0.22

100_0.23_1_1_1 100 338.25 0.23
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The study is focused on the comparison between numerical
curves of pressure vs. pole height, obtained for the full isotro-
py and planar isotropy conditions. Table 3 summarizes the
parameters of the Hill’48 criterion of illustrative cases. The
Hill’48 criterion parameters obey to the condition (F +G = 1),
as is noticeable from Table 3, which means that the yield
surfaces for all materials go through the same point, which
corresponds to equibiaxial stretching (σxx = σyy), as shown

in Fig. 11. Consequently, the biaxial stress vs. strain curve is
the same for all materials and coincident with the Swift hard-
ening law used as input [26]. For each case of Table 3, the
hardening coefficients are n = 0.05, 0.20, 0.35 and 0.50, and
the parameters Y0 and ε0 of the Swift law are Y0 = 200 MPa
and ε0 = 0.005. The full set of parameters of the Swift law are
shown in Table 4. The initial sheet thickness is 1.0 mm.

Figures 12 and 13 show examples of the pressure vs. pole
height curves, for metal sheets with transverse anisotropy (see
Table 3), in cases of hardening coefficient n = 0.05 and 0.35
(see Table 4), respectively. Figures 12(a) and 13(a) show the
curves just as were obtained. In case of n = 0.05, these curves
are almost indistinguishable. In case of n = 0.35, although still
close to each other, the curves are distinguishable. However, the
curves entirely overlap to each other when the values of pres-
sure and pole height are multiplied by appropriate factors, re-
spectively Fp and Fh, as shown in Figs. 12(b) and 13(b), where
the curve for the full isotropic material (1_1_1, i.e. with r = 1)
was kept unchanged. Both factors are close to 1, particularly in
case of n = 0.05. Their importance within the framework of the
forward and reverse analyses will be discussed below.

A typical procedure for finding the Fh and Fp factors that
applied to the isotropic numerical pressure vs. pole height
curve minimises the difference between this curve and those
of transverse anisotropic materials, which remain unchanged,
consists on using the following least squares cost function:

F Að Þ ¼ 1=qð Þ
Xq

i¼1

panisi −pisoi Að Þ� �2" #1
2

ð3Þ

where pi
anis and pi

iso(A) are the values of pressure for aniso-
tropic and isotropic sheet metals, respectively; A is the set of
factors Fh and Fp to be optimised, i is the measuring point of

Table 6 Designation of tested
materials used as numerical case
studies and respective parameters
of Hill’48 criterion and Swift
hardening law

Tested materials Hill’48 criterion parameters Swift hardening law parameters

F G H N Y0 [MPa] K [MPa] n

200_0.20_3_3_3 0.5000 0.5000 1.5000 3.5000 200 577.08 0.20
200_0.20_1.5_3_3 0.3446 0.6892 1.0338 3.6185

The sheet thickness is equal to 2.0 mm

Fig. 16 Initial yield surfaces in the plane (σxx; σyy) of the materials of
Table 6 and equivalent vonMises material. The stress and strain paths are
also shown as well as the axis (dotted line) of the yield surface of the
material 1.5_3_3. The two open circles denote the coincidence between
the isotropic and the two anisotropic materials

Table 7 Fh and Fp* values that
minimize F(A) and
corresponding estimated Swift
law parameters for the material
200_0.20_3_3_3 (see Table 6)

Numerical simulation Fh Fp* F(A) Swift law - estimated

Y0 [MPa] K [MPa] n

100_0.19_1_1_1 1.073 4.382 2.62 × 10−4 210.52 576.08 0.19

100_0.20_1_1_1 1.047 4.144 1.42 × 10−4 202.00 582.85 0.20

100_0.21_1_1_1 1.021 3.917 4.19 × 10−5 193.56 588.88 0.21

100_0.22_1_1_1 0.994 3.694 1.73 × 10−4 185.50 595.07 0.22

100_0.23_1_1_1 0.966 3.476 3.45 × 10−4 177.39 600.00 0.23
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pressure (which corresponds to a certain value of the pole
height, h) and q is the total number of pressure measuring
points. The evaluation of the pressure for equal values of pole
height can be carried out expeditiously using a polynomial
approximation for each curve. In this study all evolutions of
pressure with pole height were fitted using a sixth degree
polynomial to achieve a proper fit of the results (with a min-
imum correlation factor R2 = 0.9999) within a range of pole
height values that excludes the initial part of the curve, more
prone to higher experimental errors, and the final part, which
may be sensitive to numerical parameters such as the mesh
refinement.

Figure 14 plots the results of Fp as a function of Fh, for the
values of the hardening coefficients (n = 0.05, 0.20, 0.35 and
0.50) and anisotropy coefficients (r = 0.5, 0.7, 1.0, 2.0, 3.0 and
4.0) under study. The results in this figure are grouped by the
hardening coefficient and show that this parameter slightly
influences their evolution. In case of n = 0.05, the values of
Fp and Fh are slightly higher than 1 and increasing with de-
creasing of the r value, for r < 1, and are slightly lower than 1
and decreasing with increasing of the r value, when r > 1. On
the contrary, in cases of n = 0.20, 0.35 and 0.50, the values of
Fp and Fh are slightly lower than 1 and decreasing with de-
creasing of the r value, when r < 1, and are slightly higher than
1 and increasing with the increasing of r value, when r > 1. In

other words, the results in Fig. 14 shows that the values of Fh
and Fp are related with the shape of the yield surface near the
equibiaxial region (see Fig. 11): for sharp yield surfaces, as for
example the material 4_4_4, relatively high values of Fh and
Fp are observed, and for flattened yield surfaces, as for exam-
ple the material 0.5_0.5_0.5, relatively low values of Fh and
Fp occur (close to 1), in cases of the values of the hardening
coefficient are n = 0.20, 0.35 and 0.50; the opposite is ob-
served for n = 0.05, with the values of Fh and Fp close to 1
whatever the yield surface shape near the equibiaxial region.

The results in Fig. 14 are enoughwell described by a linear fit:

Fp ¼ 0:566 Fhþ 0:434 ð4Þ

In fact, this equation allows determining with acceptable
accuracy the value of the parameter Fp knowing the value of
Fh. In Fig. 14, the relative distance between the Fp values at
each point (i.e. at a given Fh value) and the corresponding
value on the trend line is always less than 1 %, whatever the
value of the hardening coefficient and the anisotropy.

Final remarks

In summary, it can be concluded that the evolution of the
pressure with the pole height during the bulge test, depends

Table 8 Fh and Fp* values that
minimize F(A) and
corresponding estimated Swift
law parameters for the material
200_0.20_1.5_3_3 (see Table 6)

Numerical simulation Fh Fp* F(A) Swift law - estimated

Y0 [MPa] K [MPa] n

100_0.19_1_1_1 1.064 4.321 2.17 × 10−4 208.68 571.06 0.19

100_0.20_1_1_1 1.037 4.084 1.25 × 10−4 200.20 577.65 0.20

100_0.21_1_1_1 1.011 3.860 4.29 × 10−5 191.96 584.02 0.21

100_0.22_1_1_1 0.984 3.639 1.84 × 10−4 183.77 589.51 0.22

100_0.23_1_1_1 0.955 3.422 3.54 × 10−4 175.63 594.08 0.23
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Fig. 17 Hardening curves obtained by the inverse analysis and the
membrane theory and the input numerical curve for the material 200_
0.20_3_3_3
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membrane theory and the input numerical curve for the material 200_
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on the parameters of the Swift law, the anisotropy of the ma-
terial, and the sheet thickness. It is always possible to overlap
the curve of the pressure vs. pole height for materials with the
same value of the hardening coefficient of the Swift law, by
multiplying the values of the pressure and the pole height by
factors, Fp and Fh, respectively, appropriately chosen; the
overlapping does not occur for materials with different values
of the hardening coefficient.

In case of isotropic materials (vonMises) with equal values
of the hardening coefficient, the coincidence between pressure
vs. pole height curves can be obtained by using a multiplying
factor for the pressure, Fp, which is equal to the yield stresses
ratio of the material (at equal thicknesses) and to the sheet
thicknesses ratio (at equal yield stresses); in both cases, the
multiplying factor for the pole height, Fh, is equal to 1.

The curves of pressure vs. pole height of anisotropic mate-
rials can also be overlapped to those of isotropic materials,
providing that the hardening coefficient is equal. In this case,
the Fp and Fh are in general different from 1. For equal values
of the biaxial yield stress and the sheet thickness, the relation-
ship between Fp and Fh is almost independent of the harden-
ing coefficient and suitably described by a linear equation (see
Fig. 14).

The key finding of the forward analysis is summarized
schematically in Fig. 15. This figure describes how to generate
the pressure vs. pole height curve of any sheet metal with a
given yield stress, anisotropy and thickness (General Case -

GC), from the results of an isotropic sheet metal (Isotropic
Metal Sheet) with different thickness and yield stress, for a
given hardening coefficient. The curve of the general case is
obtained bymultiplying the pressure values of the curve of the
isotropic sheet metal by the following factors: (tGC/tIso) and
(Y0GC/Y0Iso) ratios and Fp (where tGC and Y0GC are the thick-
ness and the yield stress of the general case and tIso and Y0Iso
are the thickness and the yield stress of the isotropic sheet
metal, respectively); and the pole height values of the same
curve must be multiplied by Fh. Under these conditions, the
overall factor, Fp*, to be applied to the pressure is:

Fp* ¼ tGC=tIsoð Þ � Y 0GC=Y 0Isoð Þ � Fp ð5Þ

Inverse analysis

Following the previous forward analysis, an approach for
solving the problem of identification of the parameters of the
Swift law consists in using numerical pressure vs. pole height
curves obtained for isotropic materials with various values of
hardening coefficient, in the range of the material under study.
Then, using multiplying factors for the pressure and the pole
height, the best overlapping between the experimental curve
and those numerically obtained, allows assessing the harden-
ing and the yield stress parameters of the material.
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Fig. 19 Evolution of the error in
stress obtained by the inverse
analysis and the membrane theory
for the cases: (a) 200_0.20_3_3_3;
(b) 200_0.20_1.5_3_3

Table 9 Fh and Fp* values that
minimize F(A) and
corresponding estimated Swift
law parameters for the material
344.6_0.20_1_1_1

Numerical simulation Fh Fp* F(A) Swift law - estimated

Y0 [MPa] K [MPa] n ε0

100_0.16_1_1_1 1.096 1.872 1.75 × 10−3 355.43 829.70 0.16 0.005

100_0.17_1_1_1 1.062 1.762 9.24 × 10−4 340.74 838.68 0.17 0.005

100_0.18_1_1_1 1.031 1.661 3.43 × 10−4 326.67 847.79 0.18 0.005

100_0.19_1_1_1 1.002 1.567 9.74 × 10−4 313.16 856.96 0.19 0.005

100_0.20_1_1_1 0.973 1.474 2.01 × 10−3 299.61 864.48 0.20 0.005
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The proposed inverse methodology can be detached in four
steps:

(i) Plot the experimental pressure vs. pole height curve for
the material under test.

(ii) Plot the same type of numerical curves of isotropic ma-
terials with selected values of the yield stress and the
sheet thickness, for various values of hardening coeffi-
cient in the range expected for the material under test; the
ε0 value of the Swift law must be kept constant (ε0 equal
to 0.005 is recommended); the elastic properties of the
material tested, Young’s modulus and Poisson ratio, are
assumed to be known (the typical values for each class of
materials - e.g. steel, aluminium alloys - can be used); a
unique set of numerical curves can be used for a given
class of materials, within a relatively wide range of hard-
ening coefficients, i.e. covering the values usually found
within each class, without having to remake the simula-
tions every time an identification is performed; the
values of the hardening coefficient should be away from
each other 0.01, but if the cost function (see Eq. (6) of the
next step) presents two similar minima values, it is rec-
ommended to test an intermediate value of the hardening
coefficient; the range of pole height of the numerical
curves of isotropic materials used for the inverse analysis
should go up to a strain value higher than twice the value
of the hardening coefficient of the Swift law.

(iii) Estimation of the hardening coefficient of the experi-
mental material under study. This consists on finding
the factors Fh and Fp* that applied to the numerical
curves, with the various hardening coefficient, minimise
the difference between these curves and the experimen-
tal curve of pressure vs. pole height; the following least
squares cost function, similar to Eq. (3), was used:

F Að Þ ¼ 1=qð Þ
Xq

i¼1

pexpi −pnumi Að Þ� �2" #1
2

ð6Þ

where pi
exp and pi

num(A) are the experimental and nu-
merical values of pressure, respectively; A is the set of
factors Fh and Fp* to be optimised, i is the measuring
point of pressure (which corresponds to a certain value
of the pole height, h) and q is the total number of pres-
sure measuring points.
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Fig. 20 Hardening curves obtained by the inverse analysis and the
membrane theory and the input numerical curve for the material 344.6_
0.20_1_1_1
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Fig. 21 Evolution of the error in stress obtained by the inverse analysis
and the membrane theory for the case 344.6_0.20_1_1_1

Table 10 Designation of tested
materials used as numerical case
studies and respective parameters
of Drucker + L criterion and Swift
hardening law

Tested materials Drucker + L criterion parameters Swift hardening law parameters

C1 C2 C3 C6 c Y0 [MPa] K [MPa] n

Isot_c = −2 0.9577 0.9577 0.9577 0.9577 −2 200 577.08 0.20
Isot_c = 2 1.0603 1.0603 1.0603 1.0603 2

Anisot_c = −2 0.8294 1.1139 1.3985 1.4896 −2
Anisot_c = 2 0.9145 1.2283 1.5421 1.6425 2

The sheet thickness is equal to 2.0 mm

The values of the Lankford’ coefficients of the in-plane anisotropic materials are: (i) Anisot_c = 2→ r0 = 1.33,
r45 = 2.17 and r90 = 2.07; (ii) Anisot_c = 2→ r0 = 1.88, r45 = 5.92 and r90 = 6.99.
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The lowest value of the cost functionF(A), among all
numerical curves used, defines the numerical curve that
can be used as reference, i.e. allows to generate the
experimental curve, following the procedure shown in
Fig. 15. The hardening coefficient of this reference
curve is the identified parameter of the experimental
material.

(iv) Estimation of the yield stress of the experimental mate-
rial under study. The Fh value allows determining the
value of Fp (Eq. (4) and Fig. 14), which correspond to
the anisotropy effect on the pressure vs. pole height
curves. Under these assumptions, the yield stress of the
experimental material can be identified as follows:

Y exp
0 ¼ Y num

0 � tnum=texpð Þ � Fp*=Fp
� � ð7Þ

where Y0
exp and Y0

num are the yield stresses and texp

and tnum are the thicknesses, of the experimental and
the numerical reference sheet, respectively. The Fp*
value used in Eq. (7) must be obtained such that the
numerical curve is superimposed on the experimen-
tal curve, which remains unchanged. Finally, as the
value of the Swift law parameter, ε0, is considered
fixed (equal to 0.005 in the current work), the esti-
mated value of Kexp in this law (Eq. (2)) can also be
obtained by multiplying Knum by the same value as
for Y0

num (Eq. (7)):
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Fig. 22 Initial yield surfaces in
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Table 10: (a) isotropic materials
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Table 11 Fh and Fp* values that
minimize F(A) and
corresponding estimated Swift
law parameters for the material
Isot_c = −2 (see Table 10)

Numerical simulation Fh Fp* F(A) Swift law - estimated

Y0 [MPa] K [MPa] n

100_0.19_1_1_1 1.018 4.199 1.88 × 10−4 207.97 569.12 0.19

100_0.20_1_1_1 0.990 3.960 8.53 × 10−5 199.31 575.09 0.20

100_0.205_1_1_1 0.974 3.839 5.14 × 10−5 194.92 577.53 0.205

100_0.21_1_1_1 0.962 3.734 9.89 × 10−5 190.90 580.78 0.21

100_0.22_1_1_1 0.934 3.512 2.41 × 10−4 182.55 585.62 0.22

Note: the parameters of the Swift hardening law used as input in numerical simulation 100_0.205_1_1_1 (not
included in Table 5) are: Y0 = 100 MPa, K = 296.29 MPa, and n = 0.205.

Table 12 Fh and Fp* values that
minimize F(A) and
corresponding estimated Swift
law parameters for the material
Isot_c = 2 (see Table 10)

Numerical simulation Fh Fp* F(A) Swift law - estimated

Y0 [MPa] K [MPa] n

100_0.19_1_1_1 1.065 4.362 2.62 × 10−4 210.46 575.93 0.19

100_0.20_1_1_1 1.035 4.112 1.28 × 10−4 201.73 582.08 0.20

100_0.21_1_1_1 1.007 3.877 5.08 × 10−5 193.27 588.00 0.21

100_0.22_1_1_1 0.978 3.651 2.05 × 10−4 184.97 593.37 0.22

100_0.23_1_1_1 0.947 3.421 3.90 × 10−4 176.50 597.02 0.23
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Kexp ¼ Knum � tnum=texpð Þ � Fp*=Fp
� � ð8Þ

In order to exemplify this inverse methodology, computer-
generated results are firstly used. The use of computer-
generated results is a simple and efficient way to test inverse
analysis methodologies, since the behaviour of the tested ma-
terial is properly defined, without the errors commonly asso-
ciated with experimental measurements. Subsequently, the
same methodology is applied to experimental cases.

Numerical cases

Table 5 shows the selected Swift law parameters for generat-
ing numerical pressure vs. pole height curves (under isotropy
condition - see step (ii) of the proposed inverse methodology)
used to identify the parameters of the computer-generated re-
sults. The selected yield stress value of all materials in this
table is equal to 100 MPa and the hardening coefficient is
within n = 0.12 and n = 0.23. The numerical simulations were
performed with an initial sheet thickness equal to 1.0 mm.

Hill’48 criterion Table 6 shows the parameters of the Hill’s
criterion and the Swift law for the two tested materials, one
with transverse anisotropy (200_0.20_3_3_3) and the other
with planar anisotropy (200_0.20_1.5_3_3). The parameters
of the Hill criterion of these materials follow a condition en-
suring that the equivalent stress–strain curve for the stress path
obtained in the bulge test is equal to that for an equivalent von
Mises material, i.e. with the same values of the Swift law

parameters. Figure 16 shows the initial yield surface of both
materials in the (σxx; σyy) plane as well as the equivalent von
Mises material. In case of the material 200_0.20_3_3_3, the
stress and strain paths observed during the bulge test are σyy/
σxx = dεyy/dεxx = 1; in case of material 200_0.20_1.5_3_3,
these paths are respectively: σyy/σxx = 1.129 and
dεyy/dεxx = 0.941. Table 5 shows the parameters of the Swift
law of the selected isotropic materials (with n = 0.19, 0.20,
0.21, 0.22 and 0.23) used for numerical simulation and iden-
tification of the Hill’48 materials in Table 6.

Tables 7 and 8 show the values of the factors Fh and Fp*
that were applied to the numerical pressure vs. pole height
curves of the materials in Table 5, in order to minimise the
difference between these curves and that of each material in
Table 6. The corresponding values of the objective function
F(A) and the estimated parameters of the Swift hardening law
are also shown in the Tables 7 and 8. The parameters of the
Swift law that minimise F(A) correspond to the material with
n = 0.21, for both case studies. Also, the minimum values of
F(A) are similar for both identifications.

In order to visualise the results of the identifications,
Figs. 17 and 18 show the hardening curves as obtained by
the inverse analysis and by the membrane theory [27]. The
analysis by the membrane theory follows the procedure rec-
ommended by ISO 16808:2014 [1]. Therefore, the equivalent
stress is calculated assuming an equibiaxial stress state at the
pole of the cap and using the average value of the curvature
radii in the Oxz and Oyz planes as input in the membrane
theory equation. The equivalent strain is considered equal to
the absolute value of the plastic thickness strain, which is

Table 13 Fh and Fp* values that
minimize F(A) and
corresponding estimated Swift
law parameters for the material
Anisot_c = −2 (see Table 10)

Numerical simulation Fh Fp* F(A) Swift law - estimated

Y0 [MPa] K [MPa] n

100_0.19_1_1_1 1.035 4.232 4.85 × 10−4 207.50 567.82 0.19

100_0.20_1_1_1 1.012 4.011 1.83 × 10−4 199.21 574.81 0.20

100_0.205_1_1_1 1.001 3.904 6.67 × 10−5 195.17 578.25 0.205

100_0.21_1_1_1 0.990 3.802 1.56 × 10−4 191.21 581.73 0.21

100_0.22_1_1_1 0.969 3.606 4.58 × 10−4 183.51 588.67 0.22

Note: the parameters of the Swift hardening law used as input in numerical simulation 100_0.205_1_1_1 (not
included in Table 5) are: Y0 = 100 MPa, K = 296.29 MPa, and n = 0.205

Table 14 Fh and Fp* values that
minimize F(A) and
corresponding estimated Swift
law parameters for the material
Anisot_c = 2 (see Table 10)

Numerical simulation Fh Fp* F(A) Swift law - estimated

Y0 [MPa] K [MPa] n

100_0.19_1_1_1 1.100 4.445 7.21 × 10−4 210.31 575.50 0.19

100_0.20_1_1_1 1.073 4.203 4.52 × 10−4 201.79 582.25 0.20

100_0.21_1_1_1 1.048 3.976 2.81 × 10−4 193.58 588.94 0.21

100_0.22_1_1_1 1.024 3.763 3.86 × 10−4 185.67 595.63 0.22

100_0.23_1_1_1 1.001 3.563 6.32 × 10−4 178.05 602.25 0.23
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determined from the numerical measured values of surface
strains at the pole of the cap, ε1 and ε2, and corrected for the
elastic components, assuming an isotropic linear elastic mate-
rial behaviour. In summary, this corresponds to the use of the
von Mises definitions of equivalent stress and strain under the
assumption of equibiaxial stress state. The corresponding in-
put curves, used in the numerical simulations, of the studied
materials (see Table 6) are also shown in these figures.
Figure 19 compares the errors in stress obtained by the inverse
analysis and using the membrane theory, referred to the input
curves. The errors are similar for both materials when using
the inverse analysis, which is consistent with the fact that the
objective function is equal for the best fitting (see Tables 7 and
8, for n = 0.21). The n value obtained by the inverse analysis
(n = 0.21 for both materials) are not entirely in accordance, but
are very close to the input value (n = 0.20). Moreover, this
does not lead to significant error in the estimate of the hard-
ening curve. For both materials, 200_0.20_3_3_3 (Fig. 19(a))
and 200_0.20_1.5_3_3 (Fig. 19(b)), the inverse analysis gives

comparable accuracy than the methodology using the mem-
brane theory.

So far, the value of the parameter ε0 has been considered
fixed and equal to 0.005. In fact, this value is close to the
values found for most cases of identification of sheet metals
able to achieve large deformations, such as those used in deep
drawing. Moreover, the experimental values of the parameter
ε0 are lower than 0.01, with extremely rare exceptions [28]. In
order to understand the extent to which the value of this pa-
rameter can affect the inverse analysis results, identification
cases with the value of the parameter ε0 lower than 0.01 (and
different from 0.005) were performed. The following illustra-
tive example consists of an isotropic material with 0.5 mm
thick sheet and the following Swift law parameters:
Y0 = 344.61 MPa, K = 865.62 MPa, n = 0.20 and ε0 = 0.01
(hereafter referred to as: 344.6_0.20_1_1_1). As this is an
isotropic material, the anisotropy will not affect the identifica-
tion (anisotropic cases were addressed in the previous exam-
ples). Table 5 shows the parameters of the Swift law of the
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selected isotropic materials (with n = 0.16, 0.17, 0.18, 0.19
and 0.20) used for numerical simulation and identification of
this material.

Table 9 shows the values of the objective functionF(A) and
the estimated parameters of the Swift hardening law. The pa-
rameters of the Swift law that minimise F(A) correspond to
the material with n = 0.18. The smallest value of F(A) occurs
for the case 100_0.18_1_1_1, and is equal to 3.43 × 10−4. This
value is higher than the obtained for the previous cases of
identification (slightly higher than 4 × 10−5 – see Tables 7
and 8), in which the material to be identified has the ε0 value
equal to that of the materials used in identification
(ε0 = 0.005). However, the input hardening curve is well de-
scribed by the inverse analysis results, as can be concluded
from Figs. 20 and 21. Figure 20 shows the input hardening
curve and those obtained by the inverse analysis and the mem-
brane theory and Fig. 21 compares the errors in stress obtained
by the inverse analysis and the membrane theory, referred to
the input curve. Table 9 also shows the values of the factors Fh
and Fp* that were applied to the numerical curves pressure vs.
pole height of the materials in Table 5, in order tominimise the
difference between these curves and that of the material under

study. This leads to an identification value for the Fh factor
equal to 1.031, which is not so close to 1, as expected for the
von Mises identified material. This is due in part (besides
the error inherent to identification strategy) to the difference
in the values of the parameter ε0 of the material to be iden-
tified and the materials whose numerical curves are used for
identification. It turns out that, in general case of identifica-
tion, the ε0 value of the material to be identified is unknown.
Despite this, the input hardening curve is well described for
values of ε0 lower than that of the experimental material,
0.01, i.e. using ε0 = 0.005 to generate the numerical curves
for identification, as in this illustrative case. Finally, it
should be mentioned that the identification can be improved
by using, in a second stage of the identification, values of ε0
greater and lower than 0.005 (separated from 0.0025, for
example) for the materials used in the identification. That
is, the above procedure can be repeated for different values
of ε0, and the values of F(A) must be used as guidance for
the final choice of parameters.

Other yield criterion The proposed inverse methodology
makes use of reference numerical tests of isotropic
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materials and the influence of the anisotropy of the material
on the procedure is taken into account by means of the Fh
and Fp factors. In this context, the inverse parameters iden-
tification of materials with behaviour described by other
criterion than Hill’48 was also numerically performed.
The non-quadratic yield criterion Drucker + L [29] was
chosen to test the inverse analysis procedure and concom-
itantly to reinforce the conclusion that the value of the Fh
and Fp factors are related with the shape of the yield surface
near the equibiaxial region (see section: Transverse aniso-
tropic metal sheets) and so their relationship does not de-
pend on the yield criteria. In fact, the Drucker + L yield
criterion allows flexibility of the yield surface, particularly
in biaxial region, when compared with the Hill’48 criterion,
as shown in the following.

In this subsection, illustrative cases of identification of the
Swift law parameters of materials with isotropic and aniso-
tropic behaviour described by Drucker + L criterion [29] are
shown. The Drucker + L is an extension of the Drucker iso-
tropic criterion [30] to anisotropy:

1

2
tr s2
� �� �3

−c
1

3
tr s3
� �� �2

¼ 27
Y
3

� 	6

ð9Þ

where tr(s) is the trace of the stress tensor s, resulting from the
linear transformation of the Cauchy stress tensor, σ, and c is a
weighting isotropy parameter, ranging between −27/8 and 9/4,
to ensure the convexity of the yield surface. When c equals
zero, this criterion coincides with the Hill’48 yield criterion.
The s stress tensor is given by:

s ¼ L:σ ð10Þ
where L is the linear transformation operator proposed by
Barlat et al. [31]:

L ¼

C2 þ C3ð Þ=3 −C3=3 −C2=3 0 0 0
−C3=3 C3 þ C1ð Þ=3 −C1=3 0 0 0
−C2=3 −C1=3 C1 þ C2ð Þ=3 0 0 0

0 0 0 C4 0 0
0 0 0 0 C5 0
0 0 0 0 0 C6

2
6666664

3
7777775
ð11Þ

in which Ci, with i = 1, …, 6, are the anisotropy parameters;
C1 = C2 = C3 = C4 = C5 = C6 for the full isotropy condition.
This yield criterion includes one more parameter, the param-
eter c, than Hill’48 yield criterion, thus being more flexible. In
fact, the Hill’48 criterion cannot fully describe the behaviour
of a material that follows the Drucker + L criterion with the
parameter c different from zero.

Table 10 shows the parameters of the Drucker + L criterion
and the Swift law of the tested materials: (i) two with full
isotropy, one of which with c = −2 (Isot_c = −2) and the other
with c = 2 (Isot_c = 2) and also (ii) two anisotropic materials,
one of which with c = −2 (Anisot_c = −2) and the other with
c = 2 (Anisot_c = 2). Figure 22 shows the initial yield surface
of these materials in the (σxx; σyy) plane. For the isotropic
materials represented in Fig. 22(a), the stress and strain paths
observed during the bulge test are σyy/σxx = dεyy/dεxx = 1; for
the anisotropic materials, the stress and strain paths are repre-
sented in Fig. 22(b). Table 5 shows the parameters of the Swift
law of the selected isotropic materials (with n = 0.19, 0.20,
0.21, 0.22 and 0.23) used for numerical simulation and iden-
tification of the Drucker + L materials.

Tables 11, 12, 13 and 14 show the values of the factors Fh
and Fp* that were applied to the numerical pressure vs. pole
height curves of the materials in Table 10, in order to minimise
the difference between these curves and that of each material
in Table 5. The corresponding values of the objective function
F(A) and the estimated parameters of the Swift hardening law
are also shown in Tables 11, 12, 13 and 14. The parameters of

Table 15 Materials studied and anisotropy characterization (r = (r0 + 2r45 + r90)/4 where r are the anisotropy coefficients; the numbers in subscript
indicate the angle between the tensile axis and the rolling direction)

Material t0 [mm] r0 r45 r90 r

DP600 steel 0.80 0.62 1.03 0.80 0.87

AA6061 aluminium alloy 1.04 0.66 0.69 0.56 0.65

Table 16 Swift law parameters
obtained by fitting the stress–
strain curves in tension, at 0, 45
and 90° with the rolling direction
(RD), of the materials under study

Material Swift law parameters

0° with RD 45° with RD 90° with RD

Y0
[MPa]

K
[MPa]

n Y0
[MPa]

K
[MPa]

n Y0
[MPa]

K
[MPa]

n

DP600 steel 392.22 1045.77 0.19 406.49 1040.11 0.19 433.02 1066.24 0.18

AA6061
aluminium alloy

275.10 489.43 0.13 270.58 484.95 0.13 272.22 483.19 0.12
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the Swift law that minimise F(A) correspond to the materials
with n = 0.205 (for Isot_c = −2 and Anisot_c = −2) and with
n = 0.21 (for Isot_c = 2 and Anisot_c = 2).

It should be noted that, for example, in the case of the
isotropic Drucker + L material with c = −2, with flattened yield
surface, the best fit occurs for a value of the factor Fh less than
1 (Fh = 0.974) and in case of the anisotropic Drucker + L ma-
terial with c = 2, with sharp yield surface, the best fit corre-
sponds to a factor Fh higher than 1 (Fh = 1.048). This is in line
with the above mentioned at the end of section: Transverse

anisotropic metal sheets, about the influence of the shape the
yield surface near the equibiaxial region on the value of Fh.

Figures 23, 24, 25 and 26 show the hardening curves as
obtained by inverse analysis and by membrane theory, for
isotropic (Figs. 23 and 24) and anisotropic (Figs. 25 and 26)
Drucker + Lmaterials. The corresponding input curve, used in
the numerical simulations, of the studied materials (see
Table 10) is also shown in these figures. Figures 27 and 28
compare, respectively for the isotropic and anisotropic mate-
rials, the errors in stress obtained by the inverse analysis and
using the membrane theory, referred to the input curves. The
errors when using the inverse analysis are in general similar to
the obtained using the membrane theory.

In conclusion, the results of the inverse identification
performed on materials with isotropic and anisotropic
behaviours, described by the Drucker + L criterion, more
flexible than the Hill’48 criterion, lead to the conclusion
that it can be applied to other yield criteria without loss
of accuracy.

Experimental cases

This methodology is now tested for experimental cases. Two
metals sheets were tested, a DP600 steel and an AA6061
aluminium alloy, with the initial thicknesses t0 of 0.80 mm
and 1.04 mm, respectively. The anisotropy and the work hard-
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Table 17 Fh and Fp* values that
minimize F(A) and
corresponding estimated Swift
law parameters for the material
DP600 (see Table 16)

Numerical simulation Fh Fp* F(A) Swift law - estimated

Y0 [MPa] K [MPa] n

100_0.18_1_1_1 1.003 3.130 1.62 × 10−3 390.51 1013.48 0.18

100_0.19_1_1_1 0.973 2.944 7.22 × 10−4 373.76 1022.80 0.19

100_0.195_1_1_1 0.958 2.855 4.41 × 10−4 365.54 1027.17 0.195

100_0.20_1_1_1 0.944 2.768 6.21 × 10−4 357.47 1031.43 0.20

100_0.21_1_1_1 0.905 2.570 1.16 × 10−3 339.40 1032.59 0.21

Note: the parameters of the Swift hardening law used as input in numerical simulation 100_0.195_1_1_1 (not
included in Table 5) are: Y0 = 100 MPa, K = 281.00 MPa and n = 0.195.

Table 18 Fh and Fp* values that
minimize F(A) and
corresponding estimated Swift
law parameters for the material
AA6061 (see Table 16)

Numerical simulation Fh Fp* F(A) Swift law - estimated

Y0 [MPa] K [MPa] n

100_0.12_1_1_1 1.001 2.432 9.61 × 10−4 235.24 444.26 0.12

100_0.13_1_1_1 0.965 2.282 5.50 × 10−4 225.34 448.71 0.13

100_0.135_1_1_1 0.944 2.220 4.85 × 10−4 220.40 450.66 0.135

100_0.14_1_1_1 0.926 2.131 5.63 × 10−4 215.25 451.94 0.14

100_0.15_1_1_1 0.893 1.997 8.88 × 10−4 205.79 455.60 0.15

Note: the parameters of the Swift hardening law used as input in numerical simulation 100_0.135_1_1_1 (not
included in Table 5) are: Y0 = 100 MPa, K = 204.47 MPa and n = 0.135
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ening behaviours of the materials were characterised in ten-
sion, and the respective parameters are shown in Tables 15 and

16, respectively. Figure 29 shows the evolution of the pressure
with pole height, for both materials.

The parameters of the Swift law of the isotropic materials
used in the numerical simulations for identification are indi-
cated in Table 5, as for numerical cases in the previous section.
The numerical simulations were performed with an initial
sheet thickness equal to 1.0 mm. The elastic parameters values
are: Young’s modulus E = 200 GPa and Poisson ratio ν = 0.3,
in case of DP600 steel; and E = 70 GPa and Poisson ratio
ν = 0.3, in case of AA6061 aluminium alloy.

Tables 17 and 18 show the values of the factors Fh and Fp*
that were applied to the numerical pressure vs. pole height
curves of the materials in Table 5, in order to minimise the
difference between these curves and those for each material
(Fig. 29). The corresponding values of the objective function
F(A) and the estimated parameters of the Swift hardening law
are also shown in the Tables 17 and 18. The parameters of the
Swift law that minimise F(A) correspond to the materials with
n = 0.195, for the DP600 steel, and 0.135, for the AA6061
aluminium.

Figures 30 and 31 compare the identified stress–strain
curves by inverse analysis (solid black lines) with those deter-
mined using the membrane theory (symbols), for the DP600
steel and the AA6061 aluminium alloy, respectively. In these
cases, a measurement tactile system was used to estimate the
curvature radius and the strain at the pole [17], which is con-
sidered valid by ISO 16808:2014 [1] for bulge test investiga-
tion. A three point spherometer evaluates the height difference
between the pole and three positions at a fixed radius, in order
estimate the radius of curvature during the test. An extensom-
eter allows following the strain value in the rolling direction,
in a region near the pole of the cap, during the test. The equiv-
alent strain is considered twice the value of the strain along the
rolling direction. In summary, this corresponds to the use of
the vonMises definitions of equivalent stress and strain, under
the assumption of equibiaxial stress and strain states.
Figures 30 and 31 also show the stress–strain curves obtained
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by fitting the Swift law to the membrane theory results (solid
grey lines), leading to the following parameters:
Y0 = 397.79 MPa, K = 1051.48 MPa and n = 0.19
(ε0 = 0.006), for the steel DP600; and Y0 = 229.76 MPa,
K = 457.51 MPa and n = 0.13 (ε0 = 0.005), for the aluminium
AA6061. Figure 32 compares the difference in stress between
the hardening laws assessed by the inverse analysis and by
fitting the Swift law to the membrane theory results, taking the
experimental membrane theory results as reference, for the
DP600 steel (Fig. 32(a)) and the AA6061 aluminium alloy
(Fig. 32(b)). It must be mentioned that although the experi-
mental stress vs. strain results obtained by the membrane the-
ory only fairly obey to the Swift equation (see fitted Swift law
in Figs. 30 and 31), it can be concluded that the proposed
inverse analysis is sufficiently accurate for determining the
stress–strain curve from the bulge test. Finally, as mentioned
with regard to the last example of the numerical cases in sec-
tion : Hill’48 criterion, the identified parameters can certainly
be improved, by repeating the identification procedure using
values of ε0, different but close to 0.005, for the numerical
materials used in identification.

Conclusions

This work allows achieving a unified description of the evo-
lution of the pressure with pole height, during the bulge test,
for a given value of the hardening coefficient of the Swift law.
This allowed the development of an inverse analysis strategy
for determining the parameters of the Swift law, just using the
results of pressure vs. pole height. Moreover, it is easily im-
plemented, requiring a few numerical simulations of isotropic
reference materials with various values of the hardening coef-
ficient, in the expected range of the material under test. The
inverse procedure was tested for the cases of computer-
generated and experimental materials. In both cases, the strat-
egy is compared with the classical strategy of analysis of the
bulge test results using the membrane theory, based on deter-
mining the radius of curvature, and the direct measurement of
the strains at the pole. The proposed inverse strategy is easy to
implement and more efficient than classical, since it is not
exposed to experimental errors related to the experimental
evaluation of radius of curvature and strain at the pole of the
bulge and the assumptions and simplifications associated to
the use of membrane theory approach under bulge test condi-
tions, which is usually the major source of errors.

Finally, it should be mentioned that this inverse analysis
methodology to evaluate the parameters of the Swift law, al-
though accurate and easy to apply, does not fully answer to the
issue of determining the hardening law from the bulge test, if
the behaviour is better described by other laws than Swift. In
fact, the behaviour of a number of materials, as for example
certain aluminium alloys, is best described by the Voce’s law

and also other laws with increasing complexity are currently
being used.
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