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Abstract The main goal of this work is to design virtually a
heterogeneous test, with appropriate specimen shape and
boundary conditions, which leads to an inhomogeneous strain
field promoting the mechanical behavior characterization of
thin metallic sheets under several strain paths and strain am-
plitudes. Finite element simulations were carried out with a
virtual material, described by an anisotropic yield criterion
(Yld2004-18p) associated to a mixed hardening law. The ma-
terial parameters were derived from a large experimental da-
tabase of quasi-homogeneous classical tests. A shape and
boundary conditions optimization process was developed
based on a quantitative indicator rating the strain field infor-
mation and used as a cost function for guiding the test design.
A heterogeneous test showing a butterfly shape was obtained,
with strain states ranging from simple shear to plane strain
tension. In addition, the designed heterogeneous test was used
to determine the material parameters of the aforementioned
constitutive model. The reliability of this identified material
parameters set was then assessed and compared with the one
coming from the experimental database composed by the
quasi-homogeneous classical tests.
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Introduction

Nowadays, the numerical simulation of sheet metal forming
processes has become a mandatory step in the mechanical
design of a product. Moreover, in order to improve the quality
of the representation of the mechanical behavior of the mate-
rials under various strain states, constitutive models have been
developed taking into account the initial anisotropy as well as
hardening evolution. Such a trend, in particular within a phe-
nomenological approach, leads to an increase of the number of
material parameters to be identified. Usually, the material pa-
rameters are identified from a set of classical mechanical tests
developing quasi-homogeneous strain fields [1–4] and the
post-treatment based on analytical expressions for the stress
and strain components from raw data [5], though there are
limitations to such an analytical approach [6–8].

Concerning simple constitutive models [9–11], which in-
volve a small number of coefficients, these classical tests seem
the most suitable option to identify the material parameters.
Nonetheless, when constitutive models with a large num-
ber of parameters are chosen [12–16], a high number of
classical tests must be used in the experimental database,
leading to an expensive and time consuming experimental
characterization and identification process. The design of
non-homogeneous tests allowing multi-stress and strain
states combined with full-field measurement (FFM) methods
[17, 18] for post-processing appears then as a very promising
solution. The development of FFM methods (c.f. an overview
in Grédiac [17]), which directly provide displacement or strain
field data over the whole surface of the specimen, allowed an
evolution relatively to the experimental data considered in the
parameters identification strategies. It becomes possible to ana-
lyze complex mechanical tests developing heterogeneous strain
fields [19–24]. The large amount of information that can be
output from a heterogeneous test (load and strain components)
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leads to a smaller number of experiments (or even a single one)
in the experimental database, as well as a rich mechanical infor-
mation in terms of strain states [24, 25], and therefore the quality
of the identified parameters is improved [20, 22]. As a conse-
quence, an increasing number of innovative tests promoting
heterogeneous strain fields as well as parameters identification
strategies were proposed in the last years [24, 26].

These recent identification strategies were mainly carried out
using a Finite Element Model Updating (FEMU) technique
[27]. Such a technique corresponds to an automatic methodolo-
gy based on the coupling of a finite element (FE) code with an
optimization method, where the goal is to seek iteratively for a
set of material parameters that leads to the smallest difference
between the experimental observations and the numerical pre-
dictions. Several geometries for the specimen and mechanical
tests were used, like a non-standard notched tensile test [21], a
flat specimen with a varying cross-section [28], or a biaxial test
with a perforated cruciform specimen [20] or not [24]. The strain
field was usually captured by Digital image correlation (DIC)
and a comparison of the experimental and numerical strain com-
ponents was performed via a cost objective function, eventually
considering also a global signal like the load. The numerical
strain field was also compared with the one obtained from a
parameters set identified by standard quasi-homogeneous tests
and it was observed that a more reliable prediction was achieved
by the set of parameters identified with the heterogeneous test
[20, 21]. Such a conclusion was also obtained even using a yield
criterion involving a large number of parameters like Bron and
Besson [24]. The aforementioned works highlighted that by
using heterogeneous tests, several parameters can be identified
at the same time when the experimental information was rich
enough. However, it should be emphasized that the specimen
geometry and the boundary conditions were used from previous
knowledge of the mechanical tests, without the deliberate voli-
tion to enhance neither the strain range nor the strain path infor-
mation. It should be interesting to investigate the reverse prob-
lem, i.e. finding the specimen shape and boundary conditions
leading to an optimized strain field well suited for material pa-
rameters identification.

Therefore, the purpose of this work was the design of a
heterogeneous test, which developed a strain field leading to
an enhanced mechanical characterization of sheet metals,
allowing the identification of a large number of parameters of
complex constitutivemodels. An optimization approach leading
to the design of the specimen shape as well as boundary condi-
tions was developed in order to find a rich heterogeneous strain
field. As an input to the finite element simulations, a virtual
material represented by the anisotropicYld2004-18p yield func-
tion [12] coupled with mixed hardening was used. The 24 ma-
terial parameters were identified from a large experimental da-
tabase of quasi-homogeneous classical tests obtained for a mild
steel thin sheet. In addition, a quantitative indicator evaluating
the strain field information [29] was considered as a cost

function in the optimization approach for guiding the design
of the heterogeneous test. A specific combination of specimen
shape and boundary conditions was hence determined.
Furthermore, a parameters identification strategywas developed
by using the heterogeneous test and the material parameters of
the complex constitutive model were identified by considering
the virtual mild steel as reference data. Finally, the experimental
database of the quasi-homogeneous classical tests was predicted
using this identified parameters set with the purpose of evaluat-
ing the quality of the material parameters determined with the
designed test and the non-homogeneous strategy.

Constitutive model

The numerical simulations for designing the heterogeneous
test were performed using a virtual DC04mild steel, described
by the non-quadratic Yld2004-18p yield criterion combined
with a mixed isotropic-kinematic hardening law. The yield
surface is defined by the generic form

F σ;α; εpÞ ¼ η σ−αð Þ−σY εpÞ ¼ 0;ðð ð1Þ
where η is the equivalent stress which is a function of the tensor
η, defined by η=σ−α and α is a backstress tensor that de-
scribes the kinematic hardening, σy is the yield stress related to
the isotropic hardening and εp is the equivalent plastic strain.
The isotropic hardening, controlling the size of the yield sur-
face is defined by an exponential law written as [30]

σY εpÞ ¼ σ0 þ σ∞−σ0ð Þ: 1−exp −δ:εpÞð � þ β:εp;½ð ð2Þ
where σ0, σ∞, δ and β are material parameters. The kinematic
hardening law is based on the additive contribution of several
backstress components such as proposed in [31]. This formu-
lation defines the evolution of the backstress tensor as

α
⋅ ¼

X3
i¼1

α
⋅
i ¼

X3
i¼1
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η
η� γi:αiÞε

⋅ p
;

�
ð3Þ

whereCi and γi, with i = 1,…, 3, are material parameters related
to the kinematic hardening behavior, αi are the backstress com-
ponents and εp is the equivalent plastic strain rate. The initial
anisotropy is represented by the advanced non-quadratic
Yld2004-18p anisotropic yield criterion [12]. This yield function
is defined by

η ηð Þa ¼
X3

i¼1; j¼1
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where a is the yield criterion exponent. In this equation, ~S
kð Þ
i ,

k = 1, 2 and i,j = 1 ,…, 3, are the eigenvalues of the tensors

~S
kð Þ ¼ ~L

kð Þ
: S; k ¼ 1; 2, where ~L

kð Þ
are given by.
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by a linear transformation of S, the deviatoric part of the
tensor η and using the Voigt notation.

~L
kð Þ
¼

0 ‐c kð Þ
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21 0 ‐c 1ð Þ
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; k ¼ 1; 2 ð5Þ

In this work, the exponent a is fixed to 6 and coefficientsc kð Þ
44

andc kð Þ
55 , with k = 1, 2, were constants and set equal to 1, leading

to a total of 24 material parameters. The material parameters
were determined with a conventional approach, using an exper-
imental database composed by: (i) uniaxial tensile and simple
shear tests at 0°, 22°, 45°, 77° and 90° from the RD; (ii) hydrau-
lic bulge test and (iii) three shear-Bauschinger tests in RD. For
this purpose, the stress-logarithmic strain curves (σ-ε) in uniax-
ial and biaxial tension, shear stress-strain curves (τ-γ) in shear
and transverse strain-longitudinal strain (ε11-ε22) curves for the
several uniaxial tensile tests and bulge test were used.

Additionally, in order to ascertain that the strains calculated
in the numerical model could be reached before rupture, the
macroscopic Cockroft and Latham (CL) fracture criterion was
considered. The definition of CL criterion is taken as the one
given in [32],

WCL ¼
Z εpf

0

σI

η
dε

p
≤W f

CL; ð6Þ

where σI is the maximum principal stress. Rupture is expected
to occur when the fracture parameter WCLreaches the critical

value W f
CL, leading to the determination of the equivalent

plastic strain at rupture εpf . A uniaxial tensile test up to rupture
was used through an experimental-numerical approach to cal-

ibrate W f
CL. Within this approach, a numerical modeling was

defined considering a mesh density of 3 elements/mm over the
specimen surface of the uniaxial tensile test. Deep drawing
experiments were conducted with two blank-holder forces,
leading either to a full drawn cup or to a premature rupture.
Though the simplicity of the rupture criterion, it was shown
that these two cases were correctly predicted [33].

The detailed description of the parameters identification pro-
cess adopted and input material parameters reproducing this
DC04 mild steel as well as of the experimental-numerical ap-
proach calibrating DC04 rupture behavior can be found in [33].

Heterogeneous test design

The main aim of this work was to design a mechanical test by
defining the sample geometry and boundary conditions that

gave an optimal strain field for material parameters identifica-
tion. The different steps of this optimization are described in
this section.

Shape and boundary conditions parameterization

The design of the heterogeneous test must be based on a shape
optimization model allowing a free geometry and a loading
path evolution. For that, a procedure where the initial speci-
men shape and loading path can be both subjected to optimi-
zation was developed. As a first simplifying assumption, a
symmetric model with the specimen geometry defined by
curve interpolation and the loading path, imposed by
using a rigid tool, was defined, as illustrated in Fig. 1.
The free curved boundary was modeled with cubic
splines. The specimen shape was governed by 7 control
points; their position was defined radially at every 15°
(Fig. 1) and could change during the optimization pro-
cess, so that the specimen shape could be updated. The
arrows in Fig. 1 illustrate the variation allowed for the
position of the control points; the radial length between
the control points and the specimen center xi, i = 1,…,
7 corresponded to the design variables for the specimen
shape.

For the optimization of the loading path, a rigid tool was
used. The shape of this rigid tool was coincident with the
specimen shape in each evaluation of the optimization
process. This was mandatory, since the specimen geometry
was continuously updated during the optimization process
and concordance between both shapes was required for a
proper contact definition in the model. In this work, it was
chosen to fix the tool at Ptool = 90° and, as a result, the
orientation of the tool displacement θ must correspond to

Fig. 1 Illustration of the sample shape and rigid tool. Control points for
the cubic spline definition are highlighted in red. In this work, θ and Ptool

were set equal to fixed values, i.e. θ = 90° and Ptool = 90°

Int J Mater Form (2017) 10:353–367 355



vertical (90°) displacement due to symmetry conflicts.
Only the size of the tool Ltool was considered as a design
variable to be optimized. The loading path was applied up
to rupture, i.e. until reaching numerically the fracture cri-

terion W f
CL. In practice, the tool displacement value was

just defined large enough to always lead to rupture.
Therefore, 8 design variables r were considered in this
shape optimization process, namely, 7 radial displacements
of the control points and Ltool. The parameter vector r can
be written as

r ¼ x1 x2 x3 x4 x5 x6 x7 Ltool½ �: ð7Þ

Cost function

A quantitative indicator able to distinguish, rate and rank me-
chanical tests was used in the definition of the cost function.
This indicator, designated as IT, quantified the strain state
range and deformation heterogeneity as well as the strain level
achieved in the test, based on a continuous evaluation of the
strain field up to rupture. IT was formulated as

IT ¼ wr1
Mean Std ε2=ε1ð Þ½ �

wa1
þ wr2

ε2=ε1ð ÞR
wa2

þ wr3
Mean Std εP

� �� �
wa3

þ wr4
εPMax

wa4
þ wr5

AvεP
wa5

; ð8Þ

where the different terms are described in Table 1 and wri and
wai, with i = 1, …, 5, are relative and absolute weighting
factors. The detailed description as well as applicability of
the indicator IT can be found in [29].

The developed shape optimization approach aimed at
maximizing the strain field information provided by the
heterogeneous test. Therefore, IT value had to increase
during the optimization process. However, as the optimization

methods were conceived to proceed to a minimization, the
cost function was defined in order that its minimization meant
the maximization of IT. It can be achieved by defining the cost
function as

Scost rð Þ ¼ 2−IT þ Res; ð9Þ

where the difference between 2 and IT ensured the required
condition. Due to its formulation, theoretically, the maximum
IT value that could be reached was unity [29]. Consequently,
the value 2 was just set as an upper limit in the cost function
definition. A penalty function Res was also introduced in
Eq. 9. The aim was to penalize the cost function when
abrupt variations for the design variables of consecutive
control points occurred during the optimization process.
Indeed, these abrupt variations tended to promote either
the generation of unrealistic specimen shapes or specimen
configurations leading to premature strain localization and
rupture.

The optimization constraints were defined based on the
admissible range values for each one of the 7 design control
points. Thus, it was assumed that the design control point 1
could vary between the lower and upper limits (LBound and
UBound), while the following control points were constrained
in function of the previous control point value, as follows:

LBound≤x1≤UBound ð10Þ

and

1−avð Þxk−1≤xk ≤ 1þ avð Þxk−1 ; k ¼ 2;…; 7 ð11Þ

where av. was the parameter value defining the admissible
variation; it was set equal to 0.25 in this work. The
lower and upper bounds were fixed, respectively, to 10 and
60 mm. The inequalities imposed by Eq. 11 were analyzed in

Table 1 Different terms defining the quantitative indicator IT

Strain state range/heterogeneity

Std ε2
ε1

� 	
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i ε2=ε1ð Þi−με2=ε1

h i2
n−1

s - Diversity of the mechanical information obtained by the strain state range

ε2
ε1

� 	
R
¼ ε2

ε1

� 	
max

− ε2
ε1

� 	
min

- Strain state range covered by the mechanical test

Std εP
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i εPi −μεP
� �2

n−1

r - Deformation heterogeneity of the specimen

Strain level
εPMax ¼

εPtestþεPtensþεPshearþεPbiaxialþεPcompþεPplane
6

- Maximum strain achieved for (i) the test and (ii) the most relevant strain
states

AvεP ¼ ∑n
i ε

P
i vi

vT

- Average deformation over the specimen
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each evaluation of the optimization process and were quanti-
fied as

gU;i rð Þ ¼ xiþ1− 1þ avð Þxi ð12Þ

and

gL;i rð Þ ¼ 1−avð Þxi−xiþ1; ð13Þ

where i = 1,..., 6. Taking into account the several values ob-
tained in Eqs. 12 and 13, the penalty function Reswas defined
in order to penalize the cost function when these inequalities
were not respected during the optimization. The penalty func-
tion Res was calculated by

Res ¼
X6
i¼1

α max gL;i rð Þ; 0� �� �2 þ max gU;i rð Þ; 0� �� �2� 	
; ð14Þ

where α = 1/(UBound -LBound)
2 is a penalty coefficient that

defined the importance of the constraints during the

optimization process. Note that Eq. (14) led to a quadratic
penalization.

In addition, the weighting factors of IT, initially provided in
[29], were adjusted in order to improve the optimization re-
sults. An increase of the importance attributed to the terms of
the strain level group promoted the global deformation of the
specimen and reduced premature strain localization effects.
Thus, the set of weighting factors (Eq. 8) was modified and
is given in Table 2.

Finite element model

The computational analysis was carried out with ABAQUS
finite element code, within the implicit framework, and the
most straightforward way to parameterize the numerical
model was through a script developed in Python. The
script should change the geometry of the model, should
define an unstructured mesh and also should vary the size
of the rigid tools, in each evaluation. The mesh size had
to be defined with 3 elements/mm because it corresponded

to the mesh size used to calibrateW f
CL fracture parameter [33].

Since the loading path was applied up to rupture, W f
CL was

used as an end condition to stop the numerical simulation of
the heterogeneous test design and, therefore, a mesh refinement

Fig. 2 Flow diagram of the shape
optimization process developed

Table 2 Weighing
factors used in the IT
formulation

wa1 wa2 wa3 wa4 wa5

1 4 0.25 0.8 0.4

wr1 wr2 wr3 wr4 wr5

0.13 0.02 0.25 0.35 0.25
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of the model similar to the one used for the calibration of this
fracture parameter was required.

A tridimensional model was created with the script and
only one eighth of the sample was defined by considering
material and process symmetries. The symmetries in x- and
y-directions (Fig. 1) and also along the thickness, allowed for
the reduction of the number of design variables and for the
saving of calculation time in every evaluation of the optimi-
zation process. The specimen was meshed with 3D 8-node
linear isoparametric elements with reduced integration
(C3D8R) and hourglass control, while the tool was defined
as analytical rigid using 3D 4-node rigid elements (R3D4). A
tie contact was assumed between tool and specimen boundary
in order to apply the loading path. The specimen was defined
with an approximated mesh density of 3 elements/mm in the
sheet plane and with 2 elements along the thickness by extru-
sion of the 2D mesh.

Moreover, the entire surface was taken into account for the
calculation of the indicator IT, as recommended in [29], and a
rupture zone consisting of a region of 1 × 1.5 mm2 was used

for determining W f
CL, as considered for its calibration [33].

Optimization framework

The shape optimization process was performed with an inter-
face program developed within the Matlab environment,
which linked the finite element code and the Python script
used to update the numerical model and to post-process data
from the numerical simulation. The Matlab script also defined
the specimen boundary and tool shapes by cubic splines inter-
polation, calculated the cost function and updated the design
variables by using the Nelder-Mead direct search algorithm
[34]. Figure 2 illustrates the flow diagram of this optimization
process.

The optimization process started with reading the initial
values of the design variables in the Matlab script. Then, the
script determined the cubic splines defining the specimen out-
er shape from the 7 control points and the Cartesian coordi-
nates of the boundary were calculated by interpolation. After
that, taking into account the position and the size of the tool,
the angular range occupied by the tool was calculated, as well
as its Cartesian coordinates. These coordinates were written
by the Matlab script in text files and were read by the Python
script. In the following, the finite element model was generat-
ed and the numerical simulation was carried out up to rupture.
At the end of the numerical simulation, another Python script
was used for post-processing the results, in order to determine
the ratio between the minor and major principal strains in the
sheet plane (ε2/ε1) over the specimen surface and also to read
and record the numerical results required for the evaluation of
the indicator. The Matlab script then calculated the indicator
and the cost function. When the stopping criterion was

reached, the optimization process ended and the optimum
strain field was found. Alternatively, if the stopping criterion
was not reached, the design variables were updated and the
process was repeated until achieving the stopping criterion or
reaching the maximum number of evaluations. In this work,
the stopping criterion was defined with a stagnation value of
10−4, in terms of the cost function value between two consec-
utive evaluations. Alternatively, the maximum number of
evaluations allowed for this optimization process was 200.

Results and discussion

As the results obtained by the optimization algorithm may
depend on the starting guess, three different sets of initial
design variables were considered; however, only the best de-
sign solution is presented. Table 3 shows (i) the initial and
optimal design variables, (ii) the initial and final values of
Scost, Res and IT and (iii) the number of evaluations performed
by the shape optimization process. The initial design variables

Fig. 3 Initial (left) and designed (right) mechanical test. In red, the tool,
in blue and green, the areas submitted to horizontal and vertical symmetry
conditions respectively

Table 3 Results obtained in the shape optimization process

Variables Initial Optimal Units

x1 35.0 32.90 mm

x2 35.0 31.89 mm

x3 35.0 42.56 mm

x4 35.0 29.27 mm

x5 35.0 37.15 mm

x6 35.0 35.78 mm

x7 35.0 34.03 mm

LTool 35.0 37.0 Deg

Scost 1.873 1.672 -

IT 0.127 0.334 (+153 %) -

Res 0.0 0.006 -

Evaluations 200 -
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set of the best design solution corresponded to a circular spec-
imen shape. The analysis of IT values revealed that an increase
of 153 % was reached in the optimization process, meaning
that a substantial improvement of the strain field information
provided by the designed heterogeneous test was obtained
comparatively to the starting guess. Both initial and optimal
mechanical test, designed by the optimization process, are
shown in Fig. 3.

Figure 4 shows the evolution of Scost. It can be seen that one
evaluation led to a Scost value equal to 2. This is due to the fact
that the optimization algorithm tried a design variable set
leading to an unfeasible specimen shape and, consequently,
to the impossibility of generating the numerical model. As
a consequence, calculations were not carried out in this
evaluation and IT = 0. In addition, the evolution of Scost,
with several peaks, pointed out the non-smoothness of the
problem and justified the choice of the Nelder-Mead direct
search algorithm.

Figure 5a shows the distribution of εp at rupture. It can be
seen that the designed test achieved a maximum equivalent
plastic strain level of about 0.94. However, εp values of about
0.5 were reached in the specimen center. From the ε2/ε1
distribution at rupture displayed in Fig. 5b, it can be ob-
served that strain states between near shear (ε2/ε1 = −1) to

plane strain tension (ε2/ε1 = 0) were developed. Note that
these results did not consider the area covering compres-
sion states (−1.97 ≤ ε2/ε1 < −1), since it corresponded to
a very small deformation level (Fig. 5a). Strain states
above plane strain tension, such as equibiaxial tension
(ε2/ε1 = 1), were not developed by the designed test,
certainly because it was subjected to a uniaxial loading
path, with only one tool. In order to cover biaxial strain
states, the use of additional rigid tools in the design opti-
mization approach, leading to a multiaxial loading path
should be considered [35]. Moreover, a rather large area
in the horizontal arms exhibited a very small equivalent
plastic strain (Fig. 5a) whereas the central zone corresponded
to a quasi-homogeneous strain state, as illustrated in Figs. 5a
and b. These observations pointed out some weakness of the
indicator, which should be further enhanced in order to avoid
large homogeneous areas.

Parameters identification using the heterogeneous
test

The designed test was used for material parameters identifica-
tion purposes in order to evaluate its performance. No exper-
iments with this specimen were performed and a virtual refer-
ence solution was generated with the virtual material, using
the reference parameters set given in Table 4.

A non-homogeneous approach was considered in order to
identify the material parameters of the model. A FEMU tech-
nique was adopted, using a combination of the finite element
code ABAQUS and the optimization software SdL [36]. The
communication between these two programs was ensured by a
Fortran interface, which compared the reference and numerical
results via an objective function, and wrote the updated param-
eters in the finite element code input file after each evaluation.
Moreover, a Python script was also used to read the field data at

Fig. 5 Distributions of (a) εp and
(b) ε2/ε1 for the designed test.
Grey zones on ε2/ε1 contour
means that εp < 10−3 and,
therefore, were not taken in
account. SDV1 and LE-
RAPMINMAJ stands for εp and
ε2/ε1, respectively
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Fig. 4 Evolution of the cost function for the optimization process

Int J Mater Form (2017) 10:353–367 359



the end of the numerical simulation. Figure 6 depicts the flow
diagram of the identification process developed.

The objective function Sobj-T(x) was minimized using
the Levenberg-Marquardt (L-M) gradient-based algorithm
[37, 38]. This algorithm updated the solution by using
the information of the derivative of the objective function
and its main advantage was the excellent relationship be-
tween efficiency and required computational time. The param-
eters identification process considered a stagnation value of
10−12, in terms of the Sobj-T(x) value between two consecutive

evaluations, as the stopping criterion. The derivatives of the
objective function were calculated numerically through a
forward finite difference scheme with a perturbation value
of 5 × 10−3 and the maximum number of evaluations was
set to 250.

Objective function and reference data

The adopted objective function Sobj(x), given by Eq. 15,
consisted of a weighted least-square difference between

Table 4 Material parameters identified from the designed test and the experimental database (reference) and relative gap between these identified and
reference parameter sets

Parameters Initial Reference Identified Limits Units

c 1ð Þ
12

1.0 1.264 1.317 (+4.2 %) −2.2/2.2 -

c 1ð Þ
13

1.0 0.974 1.021 (+4.8 %) −2.2 /2.2 -

c 1ð Þ
21

1.0 1.242 0.973 (−21.7 %) −2.2/2.2 -

c 1ð Þ
23

1.0 1.049 1.049 −2.2 /2.2 -

c 1ð Þ
31

1.0 0.579 0.769 (+32.8 %) −2.2/2.2 -

c 1ð Þ
32

1.0 0.708 0.721 (+1.8 %) −2.2 /2.2 -

c 1ð Þ
66

1.0 1.365 1.064 (−22.1 %) −2.2/2.2 -

c 2ð Þ
12

1.0 0.792 0.936 (+18.2 %) −2.2 /2.2 -

c 2ð Þ
13

1.0 0.672 0.828 (+23.2 %) −2.2/2.2 -

c 2ð Þ
21

1.0 0.838 0.894 (+6.7 %) −2.2 /2.2 -

c 2ð Þ
23

1.0 0.929 1.101 (+18.5 %) −2.2/2.2 -

c 2ð Þ
31

1.0 0.996 0.889 (−10.7 %) −2.2 /2.2 -

c 2ð Þ
32

1.0 0.768 0.662 (−13.8 %) −2.2 /2.2 -

c 2ð Þ
66

1.0 0.678 1.067 (+57.4 %) −2.2 /2.2 -

σ0 141.2 100.0 106.4 (+6.4 %) 100.0/170.0 MPa

σ∞ 261.0 210.3 185.9 (−11.6 %) 160.0/800.0 MPa

δ 10.5 5.92 7.069 (+19.4 %) 1.0/100.0 -

β 160.0 102.8 180.1 (+75.2 %) 100.0/900.0 MPa

Xsat1 44.57 - MPa

γ1 22.85 - -

Xsat2 106.2 - MPa

γ2 258.38 - -

Xsat3 5629.7 - MPa

γ3 0.0258 - -

Sobj-T (x) 0.141 - 5.207 × 10−4 (−99.6 %) -

Evaluations - 233 -
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reference and numerical strain field as well as the resulting
tool load. The load was also taken into account, since it led to a

better suited solution when strain concentration and localized
damage were involved [39].

Sobj xð Þ ¼
X
i¼1

nim F ref
i −Fnum

i xð Þ
F ref
max

� �2

þ 1

np

X
j¼1

np εref1; j;i−εnum1; j;i xð Þ
εref1;max;i

 !2

þ εref2; j;i−εnum2; j;i xð Þ
εref2;max;i

 !2
2
4

3
5

2
4

3
5; ð15Þ

where the tensor x is the material parameters set to be identi-
fied, np is the number of points at which the strain components
are output (spatial discretization), nim is the number of strain
fields evaluated (time discretization), F ref

i and Fnum
i xð Þ are the

reference and numerical load values at the strain field i, F ref
max

is the maximum reference load value for all the strain fields,
εref1; j;i and ε

num
1; j;i xð Þ as well as εref2; j;i and εnum2; j;i xð Þ are the reference

and numerical major and minor principal strain values for the
point j at the strain field i, respectively, and, εref1;max;i and ε

ref
2;max;i

the corresponding maximum values. Note that the quadratic
difference between the reference and numerical data was
weighted by using the maximum reference value of the field
data. It allowed defining just one weighting factor for the all
field data and it also led to the normalization of different units
or scales of the data. The specimen surface was analyzed
up to a tool displacement of 10 mm, which corresponded
to a maximum equivalent plastic strain of 0.65, by com-
paring 5 strain fields (nim = 5). The minor ε2 and major
ε1 strain fields were evaluated for tool displacements of
0.2, 1, 2, 6 and 10 mm. In the case of the load data, the
tool force-displacement curve was considered.

From a preliminary identification process, it was observed
some discrepancy in the prediction of the material anisotropy

Fig. 7 Structured mesh of the optimized test. The red zone defines the
ROI of the sample

Fig. 6 Scheme of the parameters
identification process developed.
Sobj stands for the objective
function
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(in tension, in particular at 0° and 22° to RD) when using only
one test. Therefore, another test with a similar geometry but a
rotation of 90° of the material orientation was also considered
for identifying the material parameters. Thus, the objective
function Sobj-T(x) was defined as the sum of two terms
(ntest = 2), each given by Eq. 15, but corresponding to the
designed test without and with a rotation of the material ori-
entation. Sobj-T(x) is given by

Sobj‐T xð Þ ¼
X
i¼1

ntest

Sobj;i xð Þ: ð16Þ

Numerical model

The numerical model of the designed test was previously
generated for the design optimization process with an un-
structured mesh. To acquire the strain field data by a
similar approach as the one using DIC technique to output
the experimental results, a re-meshing of the specimen surface
was carried out to create a structured mesh (Fig. 7). It must be

emphasized that both meshes present approximately a mesh
density of 3 elements/mm and the structured mesh leads to a
similar IT value for the test. Thereby, no influence of the re-
meshing was evidenced on the evaluation of the mechanical
information from the test. In addition, such as for DIC tech-
nique, a region of interest (ROI) for the specimen surface was
defined, as can be seen in Fig. 7 (red zone). Only the strain
field information coming from the ROI was used for identify-
ing the material parameters. The outer ROI was not considered
due to the possible local effects related to the tool contact
and also, because, from an experimental point of view,
DIC technique may present some difficulty to accurately
measure data in this region.

Results

Table 4 shows the initial, reference and optimal identified
parameters, the initial and final values of the objective func-
tion and the number of evaluations carried out by the identifi-
cation process. The initial values as well as the bounds for the
material parameters were set equal to the ones used in the
identification of the virtual material [33]. Hence, both identi-
fication processes started in similar conditions. The kinematic
hardening parameters were considered constant values and
equal to the reference ones since the designed test does not
involve reverse loading. Then, 18 material parameters, related
to the material anisotropy and isotropic hardening behavior,
were identified.

Comparing the identified and the reference parameters, it
can be seen that these parameters sets are rather different. It
results from the fact that multiple solutions can be obtained on
the search of parameters of non-linear elastoplastic constitu-
tive models. The relative gap between the identified and ref-
erence parameters is also given in Table 4. Concerning the
anisotropy coefficients, it can be seen that the identified
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Fig. 9 Load-displacement curves
obtained using the reference and
the identified parameters sets for
the designed test without (left)
and with (right) rotation of the
material orientation
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Fig. 8 Evolution of Sobj_T during the material parameters identification
process
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coefficients of the second linear transformation (c 2ð Þ
ij ) tend to

present larger relative variations than the coefficients corre-
sponding to the first linear transformation (c 1ð Þ

ij ). Among these
parameters, the coefficients c kð Þ

66 , with k = 1, 2, are the ones that
present a larger deviation in relation to the corresponding ref-
erence, namely, a relative gap of −22.1 % for c 1ð Þ

66 and +57.4 %
for c 2ð Þ

66 . In the case of the isotropic hardening behavior, it can
be seen that the initial yield stress (σ0) value identified is
almost identical to the reference one. However, relative gaps
of approximately 10 % and 20 % for σ∞ and δ parameters
were calculated while β assumed a deviation of about 75 %
to the reference value. Such gaps put in evidence that the
optimization algorithm can lead to rather distinct parameters
set. Nevertheless, comparing the initial and final objective
function values, in the bottom of Table 4, it can be observed
that a reduction of 99.6 % was obtained.

Figure 8 depicts the evolution of the objective function value
during the identification process. For the first 19 evaluations,
individual perturbations of each material parameter were
performed in order to calculate numerically the Jacobian
of the objective function (sensitivity matrix) and, before
50 evaluations, Sobj_T value was significantly decreased. In
the following evaluations, a stabilization of Sobj_T value
was observed till the verification of the stopping criterion
after 233 evaluations.

Figure 9 depicts the load-displacement curves obtained for
the designed test without and with rotation of the material
orientation, using both reference and identified parameter sets.
It can be seen that a very good reproduction of the load level
was obtained for the test with a rotation of material orienta-
tions, whereas a slight over-prediction is noted for the test
without rotation.

Figure 10 shows the major and minor strain distribution for
a tool displacement of 10 mm, using both reference and iden-
tified parameters set. It can be seen that a good agreement was
obtained between the reference and the predicted results. Such
a similarity between the identified and the reference strain
fields does not reflect the difference in the values of the ma-
terial parameters (Table 4). Such a result illustrates the non-
uniqueness of the material parameters set, that could not be
reached even for a rather large number of strain states.

Fig. 10 Major ε1 and minor ε2 strain distribution for a displacement
d = 10 mm of the designed test (a) without and (b) with rotation of the
material orientation

Tensile test                   Simple shear test                     Biaxial strain a b c

Fig. 11 Boundary conditions
applied on the numerical model
for each classical test. U stands for
the displacement
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Validation

With the aim of validating the material parameters set identi-
fied, the numerical reproduction of the experimental database
composed by the several classical tests used to determine the
virtual material behavior was carried out. The numerical

simulations of the tests were carried out considering tridimen-
sional models with one single 8-node element with linear in-
terpolation and reduced integration (C3D8R). Boundary con-
ditions were applied in order to obtain homogeneous stress
and strain states over the element, in uniaxial tension, simple
shear and equibiaxial tension (Fig. 11). Concerning the bulge
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test, such a simplification was checked, since the one element
model reproduced the same conditions as in the experiments
in the center of the specimen.

Figures 12 and 13 show the experimental and numerical
stress-strain curves for simple shear/uniaxial tension and lon-
gitudinal and transverse strains ε11-ε22 curves for uniaxial
tension in the five different orientations to RD obtained with
the reference and identified parameters sets. Figure 12 also
includes the experimental and numerical results for bulge test.

From Fig. 12, it can be observed that a reliable reproduc-
tion of the experimental uniaxial tension and simple shear
curves was obtained using the identified parameters set. In
fact, both identified and reference parameters sets led to sim-
ilar numerical predictions. In the case of the bulge test, an
under-estimation of the hardening evolution was observed
using the identified parameters set. Nonetheless, it must be
emphasized that the designed test does not cover the
equibiaxial stress state. Moreover, identical numerical and ex-
perimental ε11-ε22 curves were obtained for both uniaxial and
biaxial tension.

Concerning the numerical reproductions of the stress level
in uniaxial tension and simple shear as well as ε11-ε22 curves
at 22° and 45° to RD, depicted in Figs. 13 (a) and (b), it can be
seen that the identified parameters led to almost identical
stress-strain curves to the ones obtained with the reference
parameters set. However, the numerical ε11-ε22 curves at 22°
and 45° using the identified parameters set were not accurately
predicted. These curves tended to deviate from the experimen-
tal behavior with the increase of deformation. In the case of
the uniaxial tension and simple shear curves as well as ε11-ε22
curves at 77° and 90° to RD, shown in Figs. 13 (c) and (d),
very reliable predictions were obtained. The experimental and
numerical curves using the identified and reference parame-
ters sets were similar.

In order to give also a quantified comparison of the results
presented in Figs. 12 and 13, initial yield stresses and plastic
anisotropic coefficients were calculated with both parameters
sets and are given in Table 5. It can be seen that a close
prediction was obtained for the initial yield stress values, with
a maximum relative gap of 5 %. A similar trend was noticed
for the plastic anisotropic coefficients, except at 22° and 45°,
for which the relative gap culminated at 12 % and 29 %
respectively.

In addition, the normalized projection of the yield surface
in the plane (σXX/σY(0), σYY/σY(0)) is illustrated in Fig. 14
for the identified and reference material parameters set. It can

be seen that the one obtained with the identified parameters set
was not able to reach the equibiaxial stress point, however, it
was close to this experimental value. Nonetheless, it can be
seen that a general agreement was verified between the
yield projections obtained using the reference and identi-
fied parameters set.

From the numerical predictions using the identified param-
eters set, it appears that quite interesting results can be obtain-
ed for material parameters identification considering the de-
signed test. These predictions revealed that this heterogeneous
test is able to characterize the mechanical behavior of sheet
metals under several strain states and strain amplitudes.
Concerning the constitutive model used in this work, the de-
signed test, without and with a rotation of 90° of the material
orientation, led to similar numerical predictions to the ones
obtained from 5 uniaxial tension and 5 simple shear tests at
different orientations to RD as well as 1 bulge test. However, the
biaxial stress state was not accurately predicted. Nevertheless, it
was pointed out that a heterogeneous test performed in uniaxial
loading path can be very effective to identify the material
parameters of a complex phenomenological model involving
a large number of parameters.

Conclusions

In this work, shape and boundary optimization was applied to
design a heterogeneous test aiming at better material parameters

Table 5 Anisotropic and flow
stress values obtained by the
reference and identified
parameters set

r0 r22 r45 r77 r90 σ0 σ22 σ45 σ77 σ90

Reference 1.66 1.62 1.71 2.13 2.16 145.7 144.9 145.5 145.1 143.9

Identified 1.60 1.83 2.21 2.25 2.23 151.3 152.2 150.1 147.5 146.8

Units - MPa
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Fig. 14 Projection of the Yld2004-18p yield surface in the plane
(σXX/σY(0), σYY/σY(0)) for the reference and identified material
parameters sets
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identifications involving constitutive models with a large num-
ber of parameters.

The main advantage of the developed design optimization
process is the resemblance with the experimental reality, be-
cause a rigid tool leading to uniaxial loading path is used for
applying the displacement in a similar way as universal stan-
dard testing machines. The heterogeneous test designed char-
acterizes a strain state range between simple shear to plane
strain tension. Such a result suggests that when a uniaxial
loading path is applied, the design optimization process tends
to search for a specimen shape covering this strain state range.

A non-homogeneous parameters identification approach
using the designed test (i) without and (ii) with a rotation of
90° of the material orientation was carried out considering a
virtual material identified from conventional quasi-
homogeneous tests as a reference material. This virtual mate-
rial behavior was reproduced using a complex phenomeno-
logical model combining Yld2004-18p yield function with
mixed hardening. The identified material parameters from this
heterogeneous test were used to predict the experimental data
of the conventional tests and reliable numerical reproductions
were obtained. The quantitative indicator representative of the
strain field and used in the cost function exhibited some weak-
ness in taking into account the test heterogeneity and the an-
isotropy and should be further improved. However, it was
shown that the designed test, in two different material orien-
tations, is able to (i) characterize the mechanical behavior of
sheet metals under several stress and strain paths, (ii) give
identical numerical predictions to the ones obtained from 5
uniaxial tension and 5 simple shear tests at different orienta-
tions to RD as well as 1 bulge test and (iii) promote an effec-
tive material parameters identification for complex phenome-
nological models involving a large number of parameters.
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