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Abstract Ductile damage and fracture prediction in real
size structures subjected to complex loading conditions
has been of utmost interest in the scientific and engineer-
ing community in the past century. Numerical simulations
with nonlinear finite element (FE) codes allow investigating
various complicated problems for damage and fracture pre-
diction in real scale models, which is an important topic in
many industries, including metal forming industry. For all
industrial cold forming processes, the ability of numerical
modeling to predict ductile fracture is crucial. However, this
ability is still limited because of the complex loading paths
(multi-axial and non-proportional loadings) and important
shear effects in several forming processes. The development
robust damage and fracture prediction models is essen-
tial to obtain realistic results for both geometry precision
and mechanical properties. The present article reviews the
models in three approaches of ductile damage, namely:
uncoupled phenomenological model (or fracture criteria),
coupled phenomenological models, and micromechanics-
based models, which have been developed to predict ductile
fracture in metal forming processes. The objective is to sup-
ply to engineers and scientists an overview on a “top-down”
procedure to be able to construct predictive tools for metal
forming processes.
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Introduction

In the modern world, products should be produced under
low cost and severe environmental constraints, there is thus
no longer place for the classical trial and error tests. With
the increasing of computer power, numerical simulations
with non-linear finite element (FE) codes allow investigat-
ing various complicated problems for damage and fracture
prediction in recent decades. For all industrial cold forming
processes, the ability of numerical modeling to predict duc-
tile fracture is crucial. The common issue is to predict duc-
tile damage and fracture in multi-axial and non-proportional
loadings involving very large plastic strain, in which the
damage may localize away from the maximum critical strain
locations. Moreover, the shear effects in several processes
are important, damage models thus must be able to capture
the associated shear damage mechanism. There is thus real
need to develop robust damage models for industrial appli-
cations. By “robustness”, the challenges for a good model
are three-fold: (1) physical mechanisms of the onset of dam-
age and fracture must be captured; (2) the models have to be
suitable for numerical implementation and must be “simple”
enough for real-scale structure simulations; and (3) mod-
els parameters should be convenient for identification for
massive applications. Solving these problems is the driving
force of various studies since the last decades. While the
detailed reviews on porous plasticity framework and contin-
uum models were given in the literature Tvergaard [1], Ben-
zerga and Leblond [2], and Besson [3], the present review
focuses on practical considerations and the comparison
between these two approaches and the uncoupled approach

http://crossmark.crossref.org/dialog/?doi=10.1007/s12289-015-1262-7&domain=pdf
mailto:


140 Int J Mater Form (2017) 10:139–171

(which is often preferred in industrial applications). It aims
at summarizing different approaches of ductile damage and
their applications to forming processes, with special atten-
tions paid on models construction and calibration as well
as their practical applications. The objective is to supply
a full procedure to follow in order to obtain most reliable
predictive results of ductile fracture for metal forming appli-
cations. The paper is organized as follows. Section “Ductile
damage mechanisms” summarizes the mechanisms of duc-
tile damage, followed by a review of damage models in
three approaches, reported in Section “Reviews on damage
models”. Section “Experiments and models calibration” dis-
cusses experimental techniques used for model calibration.
Section “Numerical modeling of crack growth” shows the
application of damage models in predicting crack growths.
Section “Fracture prediction in forming processes” summa-
rizes applications to forming processes with several illus-
trations for bulk forming processes. Section “Discussions”
provides the discussions on several important points that
would be improved.

Ductile damage mechanisms

Introduction

Ductility is understood as an intrinsic ability of materials
to undergo a certain amount of plastic deformation with-
out fracture (or without mesocrack formation). The fracture
of ductile metals occurs after microvoids or shear bands
develop in the metal matrix, around inclusions or other
discontinuities such as grain boundaries. The damage occur-
ring under large plastic strain is called ductile damage (in
opposition to brittle damage), and is frequently observed in
metal forming failure. Microscopically, ductile damage is
associated with voids nucleation, growth and coalescence
under high and moderate stress triaxiality (i.e., the ratio
between the mean stress to the von Mises equivalent stress),
or shear band formation under low stress triaxiality. Macro-
scopically, ductile damage is represented as the progressive
degradation of a material, which exhibits a decrease in mate-
rial stiffness and strength. One of pioneers who analyzed
the evolution of an isolated cylindrical void in a ductile
elastoplastic matrix to reveal the role of microvoids in duc-
tile failure was McClintock et al. [4]. McClintock [5], from
an available solution for the deformation of elliptical holes
in a viscous material, proposed a fracture criterion by the
growth and coalescence of preexisting cylindrical holes in
plastic materials. Rice and Tracey [6] studied the evolution
of spherical voids in an elastic-perfectly plastic matrix. In
these studies, the interaction between microvoids, the coa-
lescence process and the hardening effects were neglected
and failure was assumed to occur when the cavity radius

would reach a critical value specific for each material. These
results showed that void growth is governed by stress tri-
axiality through a very strong inverse dependence. Gurson
[7], based on the work of [6], in an upper bound analysis1

of a finite sphere containing an isolated spherical void in
a rigid perfectly plastic matrix, employed the void volume
fraction f (or porosity) as an internal variable to represent
damage and its softening effect on material. The Gurson
model, consisting of a plastically compressible yield locus,
with the evolution laws for the internal state variables, rep-
resents a constitutive model for porous materials. It should
be noted that, in this model, spherical voids are assumed to
remain spherical. This assumption is only valid for purely
hydrostatic stress state, but deficient when general three-
dimensional stress states are involved, especially for shear
dominated states, where significant void shape change can
be observed. Further extensions of Gurson’s framework
were devoted to different aspects: prediction accuracy [8],
void nucleation [9, 10], void coalescence [11–18], void
shape effect (e.g., [15, 19]), void size effect (e.g., [20, 21]),
void/particle interaction (e.g., [22]), void rotation in plane
strain [17], isotropic strain hardening [23], kinematic hard-
ening (e.g., [23–25]), plastic anisotropy (e.g., [26–28]), rate
dependency (e.g., [1]), “shear” effect (e.g., [29, 30]).

Characterization of stress states

For an isotropic material, the stress state is characterized
by the symmetric stress tensor (6 components) or its eigen-
values (3 principal stresses: σ1, σ2, σ3). Material models
can also be formulated in terms of the first stress invariant
(I1) together with the second and the third deviatoric stress
invariants (J2, J3):
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3
trace(σ ) = − 1

3
(σ1 + σ2 + σ3)

= − I1

3
(1)

q = σ =
√

3

2
s : s

=
√

1

2

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

]

= √
3J2 (2)

r =
(

27

2
det(s)

)1/3

=
(

27

2
(σ1 − σm)(σ2 − σm)(σ3 − σm)

)1/3

=
(

27

2
J3

)1/3

(3)

1The upper bound method consists of two stages: (1) find a kinemat-
ically admissible velocity field (or a family of velocity fields that is
compatible with the boundary conditions); (2) within the proposed
family, find the one that minimizes the plastic dissipation.
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Fig. 1 Representation of the
Lode angle a in the stress space;
and b on the deviatoric plane
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where p is the hydrostatic pressure; σm is the mean stress;
q and r are two stress state parameters. In the ductile frac-
ture community, the dimensionless hydrostatic pressure or
the stress triaxiality ratio (η = σm

σ
) and the Lode angle θ

are often used. The latter parameter is defined through the
normalized third stress invariant:

ξ =
(

r

q

)3

= cos(3θ) (4)

The geometrical representation of Lode angle θ is shown in
Fig. 1a and b (0 < θ < π

3 - for each sextant of the octahedral

plane, the azimuth angle θ and the value of 27
2

J3
σ 3 can be

one-to-one mapped).
A stress state can therefore be expressed in the spheri-

cal coordinate system of (σ , η, θ ) (see Fig. 1a [31]). The ϕ

angle in Fig. 1a is related to the stress triaxiality by:

η =
√

2

3
tan−1(ϕ) (5)

The normalized Lode angle θ is defined as:

θ = 1 − 6θ

π
= 1 − 2

π
arccos

((
r

q

)3
)

(6)

where r and q are defined in Eqs. 2 and 3, and the parameter
θ (−1 ≤ θ ≤ 1) will be called the Lode angle parame-
ter hereinafter (or the Lode parameter). Some authors used
another formula to calculate the Lode angle θL (e.g., [32])
and the Lode parameter μ or L (e.g., [33]):

θL = tan−1
(

1√
3

2σ2 − σ1 − σ3

σ1 − σ3

)
,

L = μ = 2σ2 − σ1 − σ3

σ1 − σ3
(7)

where −π
6 < θL < π

6 . These definitions and the definitions
in Eqs. 4 and 6 are totally equivalent, which are linked by
the following relation: θL = θ − π

6 , L = μ ≈ −θ . The
influence of the stress triaxiality and the Lode parameter (L)
on the strain to localization (Ec) is illustrated in Fig. 2a and
b obtaining from cell computations on an X100 steel (see
Section “Cell computations”).

As can be observed from these two figures (see also
the results of [34–36]), the strain to localization decreases
when the stress triaxiality increases (as pointed out by many
authors in the literature, e.g., [5–7]) and the influence of

Fig. 2 Influence of a stress
triaxiality, and b Lode parameter
L on the localization strain for
an X100 steel

0

0.4

0.8

1.2

1.6

2

0.5 1 1.5 2 2.5 3

Ec
L = 1

L = 0

L = -1

0

0.4

0.8

1.2

1.6

2

-1 -0.5 0 0.5 1

=2/3 

=1 
=1.5 =2 

=3 

Ec

L

a b



142 Int J Mater Form (2017) 10:139–171

the Lode parameter on the strain to localization is non-
symmetric. In addition, both influences are more noticeable
at low stress triaxiality 2.

Mechanisms dominating at positive stress triaxiality

In the high stress triaxiality regime, damage is governed by
void nucleation, growth and coalescence (or linkage) mech-
anisms (in an elastoplastic/elastic matrix), which have been
extensively studied in the literature.

Void nucleation

Unlike void growth (see Section “Void growth”), which
would be treated independently of material hardening, the
void nucleation process is strongly material-dependent.
Generally, it depends on the particle strength, size and
shape, as well as hardening of matrix material. Voids can
be nucleated either by matrix-particle decohesion or by
particle cracking. The decohesion mode of nucleation is
favored in the case of soft matrices while the particle crack-
ing mode is often observed in hard matrices [2]. Voids
nucleate preferentially at large particles due to a higher
probability of defects and local stress fields generated when
the matrix undergoes plastic deformation. However, the
voids created during this stage are small so they still do
not have a visible influence on the material macroscopic
behavior.

One of the pioneers of void nucleation modeling was
Gurland and Plateau [37], who employed a energetic
method (which was formulated from the balance of stored
elastic strain energy and crack surface energy), to study the
void nucleation due to the cracking of spherical particle.
Goods and Brown [38] proposed another energy criterion
to describe the nucleation by matrix-particle decohesion.
Other criteria are often based on critical stress; some of them
are listed below:

• Argon and Im [39] proposed a phenomenological crit-
ical stress condition based on a continuum plasticity
approach:

σmax
I + �h = min(σ I

c , σP
c ) (8)

where σmax
I is the maximum principal stress (local); �h

is the hydrostatic stress (remote); σ I
c is the maximum

stress that the matrix-particle interface can undergo
without decohesion; σP

c is the particle strength. This
formulation was obtained by analyzing non-deformable
inclusions in a perfectly plastic or elastic matrix. In

2In Fig. 2a, at low stress triaxiality (η < 1), a change of the stress
triaxiality leads to a more significant change of Ec than at higher stress
triaxiality.

addition, there was no particle size or inclusions inter-
action effects.

• Pineau and co-workers [40] proposed an improved
stress-based criterion, which accounts for the plastic
strain incompatibility between matrix and particle as
well as the particle shape effect. This criterion is based
on the generalization to an elastoplastic matrix of the
Eshelby solution (initially for the elastic case [41]) by
Berveiller and Zaoui [42]. This study was carried out on
an A508 steel containing elongated MnS inclusions3:

�max
I + ks(�eq − σ0) = min(σ I

c , σP
c ) (9)

where �max
I is the remote maximum principal stress; σ0

is the matrix initial yield strength; ks is a factor depend-
ing on particle shape and loading direction; ks(�eq−σ0)

defines the internal stress, which arises from the strain
inhomogeneity between inclusion and matrix. Note that
in [40], these authors used this criterion to predict the
decohesions both by inclusions failure (in longitudi-
nal direction - loading direction of their tensile test
on notched round bar) and by interface debonding (in
transverse direction). The stress fields are considered as
homogeneous within the particle both in Eqs. 8 and 9.

• More accurate prediction can be obtained by the studies
of Lee and Mear [44, 45], in which the stress concen-
tration factors at interface and inside the particle were
employed to formulate the nucleation criteria:

κI = max(σηη|η=η0)

�33
; κP = max(σP

I |η≤η0)

�33
(10)

where �33 is the remote axial stress; σηη|η=η0 is the
normal stress at the matrix-particle interface (η = η0,
where η defines a spheroidal coordinate, which allows
locating the confocal ellipses); σP

I |η≤η0 is the max-
imum principal stress in the particle volume (η ≤
η0). The two factors κI and κP depend on differ-
ent factors, such as rheology parameters (e.g., Pois-
son’s ratio4, rigidity mismatch, hardening coefficient of
matrix, matrix yield strength), morphology parameters
(e.g., particle aspect ratio, particle size), loading (the
remote stress triaxiality). Stress concentration inside the
particle is always greater than that at matrix-particle
interface as soon as plastification occurs.

A review of the nucleation aspect in ductile frac-
ture based on micromechanical approach can be found in
Appendix A of [43] or in [2], in which the influence of

3MnS inclusions are soft inclusions, which are two times softer than
steel matrix. The inclusion in a matrix is said soft when its yield stress
is smaller than that of matrix. In the other case, it is said hard. The ratio
between the particle yield stress and the matrix yield stress is called
the relative plasticity [43].
4Poisson’s ratio was shown to have minor influence [44].
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different factors (relative plasticity, particle size, rigidity
mismatch, etc.) was discussed in detail.

Besides the energy and stress-based criteria, strain-based
criteria for nucleation have also been extensively developed.
Needleman and Rice [46] developed a phenomenological
model for nucleation, where the void nucleation is gov-
erned by the equivalent plastic strain of the matrix and the
hydrostatic stress (or the mean stress σm):

ḟnucleation = Aε̇p + Bσ̇m (11)

where A and B are two parameters, which are non-constant,
ḟnucleation is the rate of void volume change due to nucle-
ation. If the nucleation is only due to macroscopic stress,
A = 0 and B > 0. With this approach, a normal distribution
formulation for B was proposed [46]:

B = fN

SN

√
2π

exp

[
−1

2

(
(σ + σm) − σN

SN

)2
]

(12)

where fN is the total void volume fraction created by nucle-
ation, σN is the average stress at maximal nucleation, SN is
the standard deviation of normal distribution, σ is the von
Mises equivalent stress (also the flow stress of matrix for
J2 plasticity). If the void nucleation is only controlled by
plastic strain, B = 0 and A > 0. Chu and Needleman [9]
defined A as a normal distribution:

A = fN

SN

√
2π

exp

[
−1

2

(
εp − εN

SN

)2
]

(13)

where εN is the average plastic strain at maximal nucle-
ation; fN and SN have the same meaning as above. As stated
in [47], the main difference between the strain and stress
driven nucleation is that the hydrostatic pressure has been
accounted for in the latter formulation. The proposed val-
ues of [9] for A and B were then taken to describe the void
nucleation in the GTN model (see Section “Gurson-like
limit analysis kinematic approach” for more details).

Void growth

After nucleation, voids will grow by plastic deformation
and hydrostatic stress then finally link together. Many mod-
els have been proposed in the literature to model the void
growth process within a perfect plastic matrix, e.g., Rice’s
formulation [6] - Eq. 14 (which was then modified by Huang
[48] - Eq. 15), or Gurson constitutive model [7].

dR

R
= 0.272 exp

(
3

2
η

)
dεp (14)

dR

R
=

⎧⎨
⎩

0.427η0.25 exp
(

3
2η

)
dεp if η ≤ 1

0.427 exp
(

3
2η

)
dεp if η > 1

(15)

The growth and coalescence processes depend on load-
ing conditions and materials microstructure. Thomason [49]
showed that for low stress triaxiality cases, ductile frac-
ture is due to large shape changing growth and relatively
small volume changing growth. From the fact that voids
nucleate over a large range of plastic strain, the nucle-
ation and growth stages occur simultaneously, which leads
to the formation of voids with different sizes and shapes.
Moreover, when a very small void is located near a much
larger void, the growth rate of the small void is significantly
increased due to the strain concentration developing around
the neighbor larger void [50].

Void coalescence

Voids coalescence is the final stage of damage and ductile
failure. Three modes of coalescence have been observed:
(1) the “internal necking mode” (necking of matrix between
two voids - see Fig. 3a-e); (2) the “shear localization mode”
(reduction of the inter-particle spacing during large rota-
tion of matrix under relatively low stress triaxiality - see
Fig. 3f-j), “necklace coalescence” (a less common mode,
which is caused by localization process in the main loading

Fig. 3 Illustration of 2 modes of coalescence: a-e internal necking; f-j shear localization [52]. Reprinted from [52] with permission from Elsevier
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Table 1 Several coalescence models in the literature (see also [53])

Authors Criteria Material matrix Limitations

McClintock Hole impingement Plastic Cylindrical holes

[5] With or No interaction between holes

without hardening No localization

Brown&Emburry Void length equals inter-void spacing No hardening Regular array of voids

[54] No influence of the stress triaxiality

Overestimation of fracture strain

Tvergaard&Needleman Critical void volume fraction Hardening Average measurement

[12] Phenomenological method

Thomason Limit plastic load No hardening Damage growth is neglected

[55] No coalescence occurs for very flat voids

Pardoen&Hutchinson Thomason’s model with strain hardening Hardening No shear localization

[15] GLD model for void growth

Benzerga Heuristic extension of Thomason’s model Hardening No shear localization

[16] Valid for flat voids

Complete model for post-localization

Benzerga&Leblond Rigorous analyses similar to Thomason’s work Hardening Only predominately

[18] A closed-form yield criterion for incipient failure tensile triaxial stress

axis direction [43, 51]). For ductile metals, voids can dou-
ble or even triple in size before their coalescence, while for
less ductile materials, this process starts immediately after
nucleation.

Several models were developed in the literature to model
the coalescence as well as post-coalescence behavior (see
Table 1). These models are based principally on cell com-
putations with the presence of initial voids, which are
generally 2D (cylindrical voids) or axisymmetric. The geo-
metrical parameters involved are: (1) void aspect ratio and
(2) relative inter-voids distance. Detailed analytical formu-
lations are not recalled here, interested readers can refer
to [53] or [2] for the reviews of different coalescence
models in the literature. Zhang et al. [47] employed the
Thomasson coalescence criterion, the GTN yield surface
and the post-coalescence response proposed by Tvergaard
and Needleman [11, 12] to achieve the so-called “complete
Gurson model”5.

In the above analyses, the results were obtained by the
studies of isolated voids or a limited number of voids. In
reality, the presence of numerous voids can modify the over-
all behavior [56, 57]. Pardoen et al. [51] showed that the
voids distribution has a strong influence on the void coa-
lescence onset while this effect can be neglected during the
void growth process. The coalescence phase depends not
only on the overall voids volume fraction, but especially
the distance between voids. The latter parameter has been

5The word “complete” refers to the capacity of this model to simu-
late the whole process of ductile fracture, from void nucleation to void
coalescence.

shown to have significant influence on ductile fracture by
several recent experimental results (e.g., [58]).

Mechanisms dominating at negative or positively low
stress triaxiality

In contrast to high stress triaxiality regime, ductile dam-
age under negative stress triaxiality range has been received
less attention. However, negative stress triaxiality is often
encountered in many forming processes involving dominant
compressive loadings. The upsetting test is often used to
study the ductile crack formation in the negative stress tri-
axiality range as in the work of Bao and Wierzbicki [59] or
Zapara et al. [60] and Tutyshkin et al. [61]6. From the exam-
ination of fracture surface, Bao and Wierzbicki showed
that there is no evidence showing cracked particles and
nucleated voids, the fracture surface is relatively smooth in
comparison with dimpled surface under high stress triaxi-
ality. The damage process and crack formation is thus due
to a different mechanism from the well-known mechanisms
of void nucleation, growth and coalescence. However, from
their numerical simulations, Cao et al. [62] revealed that the
stress state at a material point on the surface of the com-
pressed cylinder could change from a state of η < 0 to
η > 0 during the compression test. Kweon and co-workers
[63, 64] used combined Digital Image Correlation (DIC)

6In the studies of Zapara et al. [60] and Tutyshkin et al. [61], the
cylindrical specimens contained artificial voids, i.e., drilled holes were
used, which allowed describing more accurately the fracture mecha-
nisms in their upsetting tests (due to the difficulty of observing real
voids inside the normal cylindrical sample under compression).
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experiment and crystal-plasticity simulations to reveal the
damage mechanisms at zero and negative stress triaxial-
ity at mesoscale (i.e., at grain level). According to these
authors, damage at this triaxiality regime is due to grain to
grain interaction, which leads to the development of hydro-
static tensile stress inside grain. They incorporated this
mechanism into a crystal-plasticity-based damage model.

More recently, Achouri et al. [65] carried out detailed
SEM observations of voids development in a shear-
dominated stress state region obtained with a shear test
on a high-strength low-alloy steel (HSLA steel), where the
stress triaxiality is low or zero. These authors observed the
void nucleation due to different mechanisms: (1) debonding
around an inclusion (Fig. 4a), (2) cracking inside a parti-
cle (Fig. 4b) or (3) mixed mode (i.e., both matrix-particle
debonding and particle cracking took place Fig. 4c).

From Fig. 4a, one can observe that in the undeformed
state (i.e., 0 %), the matrix and the inclusion were “coher-
ent”. Then, under shear loading, matrix-particles debond-
ing occurred at interface and then void grew in a non-
uniform manner in both shear directions, forming “corners”
(in comparison with elongated void in loading direction,
developed under tensile loading). These authors also men-
tioned the void rotation in these shear tests, depending
on loading level, which was not observed in their tensile
test.

For low stress triaxiality cases, the ductility or the strain
to fracture can be approximated as the strain correspond-
ing to the void coalescence onset, while this approximation
must be used with caution for high triaxiality range. The
ductile fracture process due to the development of voids can
be split into two stages: homogenous deformation (nucle-
ation and growth) and localized deformation due to the

voids coalescence [47]. Since the void growth rate is propor-
tional to the exponential of stress triaxiality [6], the strain to
fracture decreases with the increase of stress triaxiality at a
given Lode parameter (Fig. 2b).

Reviews on damage models

Different damage models proposed in the literature can be
classified into three main approaches:

1. failure criteria (uncoupled damage models),
2. continuum damage mechanics (CDM - coupled phe-

nomenological models),
3. micromechanics-based models.

Failure criteria - Uncoupled damage model

In the first approach, failure is predicted to occur when one
external variable (uncoupled from other internal variables,
e.g, plastic strain) reaches a critical value. However, the
calculated damage does not interact with materials elasto-
plastic properties. Damage variable is, therefore, just a
“warning” for the approach of failure. Thanks to its simplic-
ity, this approach was increasingly developed, especially for
industrial applications.

Initially, the uncoupled damage models were based on
physical assumptions, in which the damage parameters were
linked with void growth (e.g., [5, 6, 66]). These models do
not take into account the presence of inclusions. Moreover,
the McClintock and Rice & Tracey models are based on
the analysis of an isolated cavity in an elastoplastic matrix
and neglect the interaction between different cavities. Bao

Fig. 4 SEM observations of the
development of voids due to a
matrix-particle decohesion; b
particle cracking; (3) mixed
mode. The percentages
correspond to the percentage of
displacement to fracture and the
red arrows represent the loading
direction. Reprinted from [65]
with permission from Elsevier
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Table 2 Uncoupled phenomenological models

Model-Authors f (σ )

McClintock-[5]
√

3
2(1−n)

sinh
( √

3
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σ1+σ2
σ

)
+ 3

4
σ1−σ2

σ

Cockcroft-Latham (CL)-[72] < σ1 >

Rice&Tracey (RT)-[6] exp( 3
2 η)

Wilkin et al. -[73] 1
(1−a1σm)λ

(2 − A)a2 , A = max
(

s2
s1

,
s2
s3

)
Johnson-Cook-[74] 1/εf , with εf = C1 + C2 exp(−C3η)

Xue&Wierzbicki-[75] 1/εf , with εf = C1 exp(−C2η) − (C1 exp(−C2η) − C3 exp(−C4η))
(
1 − ξ1/n

)n

Bai&Wierzbicki-[31] 1/εf , with εf =
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2
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(+)
f + ε

(−)
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)
− ε

(0)
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]
θ

2 + 1
2
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ε
(+)
f − ε

(−)
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)
θ + ε

(0)
f

ε
(+)
f = D1e

−D2η, ε
(0)
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−D4η, ε
(−)
f = D5e

−D6η

MMC- [68] 1/εf , with εf =
(√

3K
c2

[√
1+c2

1
3 cos( θπ

6 ) + c1

(
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3 sin( θπ
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)])−1/n

− ε0

Extended CL- [76] 1/Wc

〈
φ(3η

√
3+μ2−3−μ)+6

3
√

3+μ2

〉γ

σ

Extended RT- [76] ln(fc/f0)

3κg exp(ψη)+κsf (1−(9μ−μ3)2/(μ2+3)3)

Lou et al.- [69]

(
2√

μ2+3

)C1 ( 〈1+3η〉
2

)C2

Lou et al.- [77]

(
2√

μ2+3

)C1
〈

1
1+C

(
η + 3−μ

3
√

μ2+3

)〉C2

and co-workers [67], in a comparative study, showed that
different functions are necessary to predict crack initia-
tion for different ranges of stress triaxiality, and that it is
impossible to capture all features of ductile fracture for
different stress states with a single stress triaxiality-based
criterion. The above-mentioned models were shown to be
valid for specific loadings and depend strongly on the strain
path.

Beside the physically-inspired uncoupled models, many
other models were phenomenologically constructed and the
damage indicator was not linked with any physical prop-
erty. The damage parameter is often defined as a cumulative
function along the strain path:

∫ εf

0
f (σ ) dεp = Dc (16)

where f (σ ) is a function of the stress state; Dc is a mate-
rial constant that defines the onset of fracture; εf is the
equivalent strain at fracture. We can name here some crite-
ria: hydrostatic stress (f = σm

σeq
) and Oyane (f = a + b σm

σeq
)

among others. These criteria are reliable in predicting frac-
ture only if the parameters of function f are measured
from mechanical tests which are close to the studied pro-
cesses, regardless of damage anisotropy. The pioneer works,
e.g., by [6], accounts only for the stress triaxiality in the
function f (σ ), but recently proposed fracture criteria (e.g.,
[31, 68–71]) take into account also the Lode parameter.
The common idea of these works is to construct the strain
to fracture as a function of the stress triaxiality and the
Lode parameter, at least for proportional loadings. Table 2

summarizes several uncoupled models proposed in the lit-
erature, accounting only for stress triaxiality or both stress
triaxiality and Lode parameter (θ or μ - see Eqs. 6 and 7).

In these formulations n is the hardening exponent; ξ

is the normalized third stress invariant, defined in Eq. 4;
σ1, σ2, σ3 are three principal stresses; s1, s2, s3 are three
principal stress deviators; f0 and fc are respectively the
initial and critical (i.e., at fracture) void volume fractions;
a1, a2, C1, C2, C3, C4, D1, D2, D3, D4, D5, D6, c1,
c2, Wc, φ, ψ , κg , κs , C are fitted parameters. Uncoupled
damage models were initially based on an assumption of
proportional or radial loadings to define the so-called strain
to fracture function (εf ). For a non-proportional loading,
the use of average measurements7 to construct a fracture
locus does not make sense since these measurements can-
not account for the whole loading history (e.g., a cyclic
tension-compression test on axisymmetric specimen). In
the study of Bai and Wierzbicki, the authors constructed
the fracture loci based on their “proportional” experiments.
Moreover, they transformed the stress-based M-C crite-
rion, to a mixed strain/stress-based formulation to predict
fracture. This transformation is valid only if the loading
is proportional. Recently, Benzerga and co-workers [78]
examined the influence of strain history on fracture behavior
by using cell model calculation. In their simulations, these
authors considered two cases: radial loading and non-radial
loading. For the latter case, loading was composed of two

7ηav = 1
εf

∫ εf

0 η(εp)dεp , θav = 1
εf

∫ εf

0 θ(εp)dεp are respectively

the strain-averaged values of the stress triaxiality and the Lode param-
eter.
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steps. In each step, the stress triaxiality was kept constant
(i.e., a piecewise constant function) and the strain-averaged
value of the stress triaxiality was equivalent to the case of
radial loading. By varying the stress triaxiality, these authors
showed that for each value of average stress triaxiality, the
value of “fracture strain” was not unique. The application
of these criteria for non-proportional loading needs further
consideration about the meaning of the function εf . In this
case, εf is no longer the strain to fracture function, but
rather a weighting function, which accounts for the stress
state. Uncoupled damage models (or fracture criteria) can
be based on physical assumptions (e.g., Rice and Tracey cri-
terion) or purely phenomenological assumptions, in which
damage parameter is defined as an integration of a stress-

based function along the strain path: D = ∫ εp

0 f (σ ) dεp. If
the stress-based function f (σ ) is chosen as: f (σ ) = 1/εf ,
with εf defined as in the formulations shown in Table 2
and if proportional (or nearly proportional) tests are used to
calibrate these models, this function εf coincides with the
fracture strain. To summarize, εf must not be considered as
a fracture strain function in a strict sense. It is only a phe-
nomenological weighting function, which coincides with
the fracture strain for radial loadings. The fracture predic-
tion in numerical simulation is based on the damage variable
D. Generally, the uncoupled models have the advantages
of being easy to implement in FE software and having few
parameters to identify. The application to complex loading
paths outside the identification zone and large plastic defor-
mation is their major weakness (see the detailed discussion
in Section 5.2 of [62]).

Continuum damage mechanics (CDM)

In the second approach, damage is associated with one of the
internal constitutive variables that accounts for the influence
of the irreversible process occurring in materials microstruc-
ture. This approach is a phenomenological representation
of the CDM that was first initiated by Kachanov [79] for
creep damage. They are considered as “phenomenological”
because their developments are essentially based on macro-
scopic considerations. However, these models are based on
a consistent thermodynamic framework, which ensures a
non-negative dissipation. This framework for ductile dam-
age was later developed by Chaboche [80] and Lemaitre
[81, 82]. Several models relative to the initial framework of
Lemaitre, based on the use of special expressions for the
damage dissipation potential, were developed by different
authors [83–88].

The Lemaitre model is derived from the thermodynamics
framework of continuum damage mechanics, which consists
in three steps: (1) definition of state variables (e.g., damage
variable), which define the present state of corresponding
physical mechanism (i.e., damage); (2) definition of state

potential, from which one can derive the state laws, and
definition of associated variables (i.e., the variables which
are associated with the internal state variables); (3) dissipa-
tion potential definition: to derive the evolution law of state
variables, which are associated with the dissipative mecha-
nisms. The scalar D (0 ≤ D < 1), an internal variable, is
adopted to describe the isotropic damage (D is assumed to
represent the ratio of damaged area SD to the total surface
S of any cross section: D = SD/S). The effective stress
is used to describe the impact of damage on the macro-
behavior of material. This stress is the one that should be
applied to an undamaged material, in order to get the same
strain tensor as the one obtained from the damaged mate-
rial under actual stress (strain equivalence principle). The
effective stress is defined as:

σ ′
ij = σij

1 − D
(17)

where σ ′
ij is the component of the effective stress tensor,

σij is the component of the actual stress tensor. The effec-
tive stress is used in the constitutive equations instead of the
Cauchy stress to describe the damage impact on the macro-
scopic behavior of materials. The energy density release rate
(Y ), the variable associated with D, is derived from the state
potential (see [82] for more details):

Y = σ 2

2E(1 − D)2

[
2

3
(1 + ν) + 3(1 − 2ν)η2

]
(18)

The contribution to the dissipational potential correspond-
ing to damage FD is proposed as:

FD = S

(b + 1)(1 − D)

(
Y

S

)b+1

(19)

S (MPa) and b are two material parameters (which might
depend on temperature). The damage evolution is given by:

Ḋ = λ̇
∂FD

∂Y
= λ̇

1 − D

(
Y

S

)b

= ε̇
p

(
Y

S

)b

(20)

where λ̇ is the plastic multiplier, which can be deduced from
the equivalent plastic strain rate as: λ̇ = ε̇

p
(1 − D), with

ε̇
p =

√
2
3 ε̇p : ε̇p (ε̇

p
denotes plastic strain rate tensor).

Under shear-dominated loading, the stress triaxiality is zero
or slightly positive, Lemaitre damage variable still increases
but slower since it is based principally on the stress triaxial-
ity (Eq. 20). As shown in [62, 89], the use of this model in
shear-dominated and complex forming processes may lead
to inaccurate predictions of maximum damage locations. To
overcome this shortcoming, Cao et al. [62, 88] proposed a
Lode-dependent Enhanced Lemaitre model, by accounting



148 Int J Mater Form (2017) 10:139–171

for the following modifications (see also [90] for another
approach):

1. The evolution of damage variable (see Eq. 21) was
modified to account for the Lode parameter.

2. The damage threshold (εD) was modified to account for
the influence of the stress triaxiality (Eq. 21).

3. The weakening function was modified to better account
for the influence of damage at low stress triaxialities
(Eq. 22).

The governing equations are summarized as:

Ḋ =
{

ε̇
p (

Y
S

)b 1

α1+α2θ
2 , if εp > εD = εD0 exp(−Aη) and η > − 1

3

0 , otherwise

(21)

{
σij = w(D)σ ′

ij

E = w(D)EM
with w(D) =

⎧⎪⎨
⎪⎩

1 − D , if η ≥ η1

1 − (1−h)η+hη1−η2
η1−η2

D , if η1 > η ≥ η2

1 − hD , if η < η2

(22)

This model has been successfully applied to predict
fracture for different mechanical tests at different loading
configurations both at low and high triaxialities, where the
Lemaitre model gave unsatisfied results [62, 88, 91]. For
more details on continuum models, interested readers can
refer to a recent review of Besson [3].

Micromechanics-based damage models

This section focuses on micromechanics-based models,
which can be further put into two sub-categories: (1)
Gurson-like approach (Section “Gurson-like limit analysis
kinematic approach”) and (2) nonlinear homogenization-
based approach (Section “Nonlinear homogenization based
approach”). Since they are based on microstructure con-
siderations, micromechancal computations on unit-cell are
often performed to calibrate these models and also to inves-
tigate ductile fracture mechanisms (e.g., void growth and
coalescence), which is the subject of Section “Cell compu-
tations”.

Gurson-like limit analysis kinematic approach

In this approach, the influence of ductile damage in the yield
condition is taken into account by a porosity term that pro-
gressively shrinks the yield surface, which was proposed by
Gurson [7]. Further extensions of Gurson’s framework were
devoted to different aspects, especially that of [8, 11, 12]
to improve the prediction accuracy by accounting for inter-
action, nucleation and final coalescence of voids (the GTN

model); [19, 92] for void shape effect (the GLD model) (see
2). The yield function of the GTN model [12] writes:

� =
(

σ

σ0

)2

+2q1f
∗ cosh(−3q2

2

p

σ0
)−1−q3f

∗2 = 0 (23)

σ0 is the flow stress of matrix material; q1, q2, q3 =
(q1)

2 are material constants; f ∗ is the effective void volume
fraction, which accounts for the voids’ linkage:

f ∗ =
{

f , if f < fc

fc + f ∗
u −fc

ff −fc
(f − fc) , if f ≥ fc

(24)

where fc represents the critical value of f at which void
coalescence begins, ff its value at ductile failure, and f ∗

u =
q1±

√
q2

1 −q3

q3
the corresponding value of f ∗ at failure. The

evolution of void volume fraction is described as:

ḟ = ḟnucleation + ḟgrowth (25)

where ḟgrowth is defined as ḟgrowth = (1−f )trace(ε̇p) and

ḟnucleation is often described by a Gaussian curve that was
introduced by [9] (see Section “Void nucleation”):

ḟnucleation = fN

SN

√
2π

exp

[
−1

2

(
εp − εN

SN

)2
]

ε̇p (26)

= A
(
εp

)
ε̇p

with:

• εN : value of mean plastic strain at maximal nucleation;
• SN : standard deviation of the corresponding Gaussian

distribution;
• fN : the volume fraction of void that can be nucleated.

This parameter is determined so that the total void vol-
ume nucleated is consistent with the volume fraction of
particles 8.

The influence of the stress triaxiality on the nucleation
process (as shown in [93]) can be incorporated, e.g., by
adopting a stress-dependent formulation for the strain at
maximum nucleation εN [94, 95]:

εN = εN0 exp(−Bη) (27)

where η is the stress triaxiality, which can be taken as the
initial stress triaxiality if the loading is nearly proportional;

8The volume fraction that can be nucleated is equal to
∫ ∞A(εp)dεp

0 ,

whereas fN = ∫ ∞A(εp)dεp

−∞ . If SN is small enough with respect to εN ,

fN = ∫ ∞A(εp)dεp

−∞ ≈ ∫ ∞A(εp)dεp

0 .
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B and εN0 are two parameters to be identified. This mod-
ification allows the void nucleation process to take place
earlier at high stress triaxialities.

The evolution of plastic strain is obtained through the
equivalence of the plastic work, overall and in matrix mate-
rial:

(1 − f )σ0dεp = σ : dεp → �εp = σ : �εp

(1 − f )σ0
(28)

where σ and �εp are the stress tensor and the increment of
the plastic strain tensor. The evolutions of the two internal
state variables (εp and f ) are summarized as

�εp = σ : �εp

(1 − f )σ0
(29)

�f = (1 − f )�εp + A
(
εp

)
�εp (30)

where εp is the volumetric part of the plastic strain tensor.
The constitutive parameters q1 and q2 of the GTN (or

GT) yield function are often chosen as proposed by [8]:
q1 = 1.5 and q2 = 1. However, several authors re-identified
these parameters to obtain more accurate results for their
studies, which could be based on cell computations, clas-
sical mechanical tests or microstructural observations (see
Table 3 for different values of q1 and q2 identified by several
studies in the literature where q1 �= 1.5).

Although this model was successfully applied to predict
fracture at high triaxiality, it still suffers a major limitation
in pure shear loading, for which there is no void growth. In
addition, the Gurson framework has also been shown to be
insufficient to predict fracture at low stress triaxiality and
especially shear-dominated loadings. Several modifications
were proposed by [30] and [29] to include the influence
of the third stress invariant through the Lode angle in the
Gurson or GTN models, but these modifications are purely
phenomenological. More recently, [105–107] pointed out
that the independence upon the third stress invariant in

the classical Gurson model is due to an approximation of
this author when calculating the overall plastic dissipation.
These authors proposed separately different solutions (e.g.,
use exact formulations for axisymmetric loading - [105],
or use second and third approximations for general load-
ing instead of the first approximation used by Gurson for
a term in the derivation of the overall plastic dissipation -
[107]). Cazacu et al. [105] showed that, when p < 0, a
softer behavior than the original Gurson model is obtained
when the third stress invariant is positive and the Gurson’s
solution is an upper bound of the new model. In addition, the
resulting yield surfaces [105, 106] are non-symmetric with
respect to p = 0. However, the difference between the mod-
els proposed by these authors and that of Gurson is small,
and can be treated by using the GTN model with additional
constitutive parameters q1 and q2, at least for quasi-static
loadings; while still has the deficiencies at low stress triaxi-
alities. The reason for this is that, all these models are based
on the assumption of spherical voids that remain spherical,
which is totally incorrect at low stress triaxialities.

Gologanu and co-workers [19, 92] first proposed a con-
stitutive model with aligned spheroidal voids subjected to
axisymmetric loadings, aligned with voids symmetry axis
(see [2] for a recent review on its derivation and applica-
tions). The last model of [108] considered general ellipsoid.
This class of models fails for general loading conditions,
where loadings are not aligned with voids principal axes
and important void rotation is involved. Several extensions
have been proposed, especially to account for final coa-
lescence stage [15] and void rotation [17]. Pardoen and
Hutchinson [15] constructed a void growth and coalescence
model by combining the GLD void growth (extended to
hardening materials) with the modified Thomason coales-
cence model [55]. Recently, Scheyvaerts et al. [17] used the
same approach and added an evolution law for void rota-
tion proposed in [109], only for plane strain state (i.e., only

Table 3 Values of fitted
parameters for q1 and q2 in the
GTN yield function (if these
parameters were identified
from experiments, the
materials used are also given)

Author Material q1 q2

Gurson [7] - 1.0 1.0

Koplik and Needleman [96] - 1.25 1.0

Xia and Cheng [97] A533B steel 1.25 1.0

Faleskog et al. [98] - 1.46 0.93

Steglich and Brocks [99] - 1.2 1.0

Pardoen et al. [100] Copper 1.47 1.0

Corigliano et al. [101] API X60 steel 1.08 0.99

Zhang et al. [47] - 1.25 1.0

Kim et al. [102] - 1.586 0.91

McElwain et al. [103] - 1.31 1.16

Nielsen and Tvergaard [104] Aluminum AA2024 2.0 1.0

Cao et al. [94] Pearlitic high C steel 1.494 1.0
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one void aspect ratio was considered). These authors suc-
cessfully validated their model for plane strain state but no
results were reported for general ellipsoidal voids. Another
drawback of such a model (and also the GLD and that of
[108]) is that a large number of parameters is involved, in
which some are totally induced from micromechanical anal-
ysis and cannot be identified from conventional mechanical
tests.

Nonlinear homogenization based approach

In addition to the Gurson-like limit analysis kinematic
approach, general constitutive models for porous ductile
solid subjected to general three-dimensional loading condi-
tions have also been developed by [110, 111] based on the
early works of [109, 112] for viscoplastic composites, which
can describe the change of void shape and orientation.
Ponte Castañeda and co-workers [112–114] firstly proposed
a nonlinear homogenization variational structure for com-
posites comprising different nonlinear phases, which can
be considered as “inclusions” and matrix. More precisely,
this new structure allows for the estimation of the effec-
tive energy densities of nonlinear composites in terms of the
corresponding information from linear comparison compos-
ites, which are proper linearization of the nonlinear ones.
Kailasam and Ponte Castañeda [109] proposed a general
constitutive theory for nonlinear composite materials with
microstructure evolution as a consequence of finite-strain
boundary conditions. Details on the numerical method used
to implement such a model in a FE code can be found
in [110]. Recently, Danas and Aravas [111] carried out a
comparative study between the model proposed by [109]
(namely VAR model), its modification by [111] (MVAR
model) and the second order model (SOM) proposed by
[115, 116]. The authors showed that the modified variational
model (MVAR) gave same results at high triaxiality as the
SOM model; and exact results for spherical and cylindri-
cal shells subjected to hydrostatic loading (for which the
VAR model fails). These kinds of models have the major

advantage of accounting for the void shape and void rota-
tion effects, which have been showed to be important at
low stress triaxialities. The MVAR model has been shown
to give fairly good estimates when compared with the SOM
model, which in turn has been validated for axisymmet-
ric unit-cell simulations principally for visco-plastic cases.
Nevertheless, currently, the SOM model, although accurate,
is computationally expensive, while the MVAR tends to
over-predict void growth at low to moderate stress triaxi-
alities as shown in [117]. More recently, Cao et al. [117]
proposed a micromechanics-based model (namely GVAR)
based on ad-hoc modifications of the VAR model to give
sufficiently accurate results for void growth at both low and
high stress triaxialities and keeping the functional form of
the original Gurson model. These authors validated their
model based on unit-cell computations for various load-
ings, void shapes and initial porosities, then applied to a
3D simulation of a tensile test on notched round bar and
compared to tomography observations. For an isotropic case
(i.e., spherical voids), the GVAR model writes (see [117]):

(
σeq

σ0

)2 (
1+ 2

3
αgf

)
+2q1f cosh

(
q2

3p

2σ0

)
−1−q2

1f 2 = 0

(31)

where αg is a fitted parameters, p is the hydrostatic pressure.
This model thus gives exactly the solutions as the Gurson
model when q1 = q2 = 1, αg = 0; while it gives the upper
bound proposed by [118] when q1 = q2 = 1, αg = 1. It
should be noted that, both studies of Ponte Castañeda [112]
and of Garajeu and Suquet [118] proposed respectively two
upper bounds of the overall yield surface of porous media;
while Sun and Wang [119] gave a lower bound (see [57]).
Table 4 presents the yield functions for different models
for an isotropic case: Gurson, Gurson and Tvergaard (G&T
- [8]), Sun and Wang (S&W - [119]), VAR [109, 112–
114], Garajeu and Suquet (G&S - [118]), MVAR [111] and

Table 4 Yield functions for
porous materials for the
spherical void

Model - Author Yield function

Gurson - [7] � =
(

σeq

σ0

)2 + 2f cosh
(

3p
2σ0

)
− 1 − f 2 = 0

G&T - [8] � =
(

σeq

σ0

)2 + 2q1f cosh
(
q2

3p
2σ0

)
− 1 − q2

1f 2 = 0

S&W - [119] � =
(

σeq

σ0

)2 +
(

2 − 1
2 log(f )

)
f cosh

(
3p
2σ0

)
− 1 − f (1 + log(f )) = 0

VAR - ([109, 112–114]) � =
(

σeq

σ0

)2 (
1 + 2

3 f
)

+ f
(

3p
2σ0

)2 − (1 − f )2 = 0

MVAR - ([111]) � =
(

σeq

σ0

)2 (
1 + 2

3 f
)

+ f
(

1−f√
f log(1/f )

)2 (
3p
2σ0

)2 − (1 − f )2 = 0

G&S - ([118]) � =
(

σeq

σ0

)2 (
1 + 2

3 f
)

+ 2f cosh
(

3p
2σ0

)
− 1 − f 2 = 0

GVAR - ([117]) � =
(

σeq

σ0

)2 (
1 + 2

3 αgf
)

+ 2q1f cosh
(
q2

3p
2σ0

)
− 1 − q2

1f 2 = 0
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Fig. 5 a Comparison between
different yield surfaces for
porous materials for the
spherical void (f = 0.05); b
GVAR yield surfaces for
“severe” microstructures for
f = 0.01: prolate
(w1 = w2 = 20); oblate
(w1 = w2 = 0.05) and a general
ellipsoid (w1 = 5, w2 = 0.2).
For the GVAR model, all three
constitutive parameters are fixed
q1 = q2 = αg = 1. In (b),
|T | = σeq

1
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GVAR [117] 9; while Fig. 5a shows the comparison of yield
functions between these models for f = 0.05.

As can be observed in Fig. 5a at low stress triaxiality
(e.g., when σm/σ0 < 1), the Gurson model (blue curve) vio-
lates the upper bounds predicted from both G&S and VAR
models. The GVAR model with q1 = q2 = αg = 1, coin-
cides with the upper bound of [118]. The VAR model is
too stiff, while MVAR is not accurate enough for low to
moderate stress triaxialities (see [117]). Fig. 5b shows the
comparison between yield surfaces obtained with the GVAR
model for different types of void shape: spherical, oblate,
prolate and general ellipsoidal voids for axisymmetric load-
ing and for a same initial porosity f = 0.01. As can be
observed, void shape has a strong influence on the overall
behavior of porous materials.

Cell computations

Micro-mechanical analyses of ductile fracture are often per-
formed by investigating a representative volume element
(RVE) containing a single void or particle. Some of the early
pioneering works focused on a square array of cylindrical
voids ([8, 120]), spherical voids ([96, 98, 121, 122]) or for
spherical particles ([123]) initially embedded in a ductile
matrix (rigid plastic or hardening). Cell computations have
been extensively used to study ductile fracture mechanisms
(void growth, nucleation and coalescence - e.g., [34, 124–
127]); to reveal the influence of stress states on material
ductility (e.g., [35, 36]); and also to calibrate and validate
micromechanically based damage models (see, e.g., [17,
117, 128]).

Figure 6 shows the cells containing one single void that
are often used for computations: for triaxial loadings -
spherical void (Fig. 6a); for shear and combined loadings
- spherical void (Fig. 6b) and for triaxial loading on gen-
eral ellipsoidal void (Fig. 6c). For the computations on these
cells, fully periodic boundary conditions (BCs) are applied,

9The VAR, MVAR, and GVAR models handle also general ellipsoidal
voids.

in which the displacement associated with each material
point x takes the following form

u = (F − I ).x + v, ∀x ∈ Vt (32)

where F is the gradient of the displacement; I is the second
order identity tensor; v is the periodic fluctuation vector,
which is identical for two points located on opposite outer
boundary surfaces of the total volume Vt .

Computations on unit-cell containing one single void is
often used to study the ductile damage mechanisms (see
Table 5 for a summary of different studies in the literature
based on cell computations). These computations have also
been used to calibrate micromechanics-based models. In
addition, based on cell computations, the influence of void
shape, stress states (i.e., stress triaxiality, Lode parameter)
on void growth and coalescence can be obtained.

Figure 7 shows several important results obtained from
unit cell computations ([117]). First, Fig. 7a reveals the
dependency of the localization porosity fc upon the stress
triaxiality and Lode parameter. These dependencies suggest
that fc cannot be considered as a material parameter since it
depends strongly on loading. Fig. 7b shows the evolution of
void volume fraction for three different initial void shapes
for η = 0.667 (f0 = 10−2). The GVAR model (continu-
ous lines) is used to compare with cell results (dashed lines
- only the pre-coalescence part is considered). As expected,
at a same initial value of porosity, the void growth rate
is smallest for the case of prolate void, and is highest for
the case of oblate void. At this low stress triaxiality level,
the influence of void shape is noticeable, which can be
explained through the load bearing surface perpendicular to
the loading direction. This surface is smallest for the case
of oblate void (due to the largest projection surface of void
in the main loading direction) and is largest for the prolate
void (smallest projection surface of void in the main load-
ing direction). This result suggests an important role of the
projection surface of the void in the main loading direction
on void growth rate.

In order to illustrate this idea, two cell models containing
prolate and oblate voids respectively, with a same projection
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Fig. 6 a spring-loaded cell; b sheared cell for simple shear; and c
general ellipsoidal void embedded in a unit-cell with 3 principal axes:
minor (direction t (c)), middle (direction t (b)) and major (direction

t (a)). La , Lb and Lc are cell’s lengths; whereas a, b and c are voids
semi-axes in three directions t (a), t (b) and t (c) respectively

surface onto the plane perpendicular to loading directions,
are considered (see Fig. 7c). These two voids have the
same initial projection surface as the spherical void with
f0 = 0.01 (for this void volume fraction and with the use
of the unit-cell L0 = 1, the radius of the projection area is
0.02 L0). This radius corresponds to the minor axis of the
prolate void; while it corresponds to the major axis of the
oblate void. Therefore, the initial void volume fractions are
f0 = 0.02 for the equivalent prolate void and f0 = 0.005
for the equivalent oblate void. Loading is prescribed to have
the stress triaxiality equal 2/3 (in order to have a dominant
loading axis - see Fig. 7d).

In these examples, the void growth model is in good
agreement with cell results for both cases. In addition,
although initial porosity and void shape are different in these
two cases, the rate of porosity change (i.e., the slope of
these curves) is similar, which can be observed from cell
results and can also be predicted by the GVAR void growth
model [117]. This result suggests that, at low to moderate
triaxialities, regarding the rate of porosity evolution, it is
important to consider the projection of void onto the plane
perpendicular to the main loading axis (see also [19]).

These cell computation results have also been employed
to validate and calibrate the models for porous materials
(e.g., Gurson, GTN or GLD models). It should be noted that,
recent 3D simulations of [56, 57] showed that, in order to
have a cell model that is representative, the number of cavi-
ties inside the cell should be high enough. From their results
with 5–200 spherical cavities inside the cell, Fritzen et al.
[56] proposed a modification for the constitutive parameters
of the GTN model as

q1(f ) = 1.69 − f, q2 = 0.92 (33)

This modification was recently verified by Khdir et al. [57]
for cell containing high number of voids.

Experiments and models calibration

Experiments for damage study

Bridgman, one of the first scientists who carried out sys-
tematic fracture tests under pressure, in his famous book
[129], presented all the experimental data obtained from
axisymmetric tensile tests under hydrostatic pressure for 20
different types of steels. To reveal the nature of fracture in
these tests, it is convenient to work with the stress triaxiality.
The statistics of the average stress triaxiality of all these tests
provided a global view of the limit between fracture and
non-fracture zones, which is used to deduce the so-called
cutoff value of the stress triaxiality, below which fracture
does not occur [59]. Kao et al. [93], with the same type of
tests, in the study on tensile fracture of 1045 spheroidized
steel under hydrostatic pressure, clearly demonstrated that
the influence of superimposed hydrostatic pressure of ten-
sile fracture of 1045 spheroidized steel was such that void
nucleation was suppressed, leading to larger post-uniform
strain under pressure and a transition of the fracture surface
from cup-cone mode under atmospheric pressure to a slant
mode under high pressure (see Fig. 3 of [93]). However,
according these authors, the maximum pressure applied
(1120 MPa) was not high enough to completely suppress
void nucleation around carbide particles. They revealed that
the increase of the superimposed hydrostatic pressure (or the
decrease of the stress triaxiality) may lead to the increase of
“nucleation strain”10. This study also demonstrated that the
increase of pressure led to a significant increase in ductil-
ity and a slight increase in flow stress. Peng and co-workers
[130] numerically studied the effect of superimposed hydro-
static pressure on fracture in round bar, using FE simulations

10This observation was later taken into account by [94] to modify the
nucleation strain of the GTN model.
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with the Gurson model and validated the conclusion in the
[93] study.

The tensile test under hydrostatic pressure can generate
a large range of triaxiality values, from negative to highly
positive, which is interesting for the study of its influence
on damage and fracture of material. Many numerical studies
were carried out (such as [67], [131], [130]) to validate these
experimental results. However, very high pressure required
for this test is its major shortcoming.

Bao and Wierzbicki [59] performed a series of tests
including upsetting tests, shear tests and tensile tests on
2024-T351 aluminum alloy to investigate the fracture locus
in the equivalent strain and stress triaxiality space (ε–
η space), with a wide range of stress triaxiality values.
For each test, the authors determined first the location of
fracture initiation and the displacement to fracture, then
calculated the evolution of the equivalent strain and stress
triaxiality at the fracture initiation location. The strain to
fracture was then calculated and represented in the (ε–η)
space to construct the limiting fracture curve. To generate
a low stress triaxiality state, new specimens were used in
pure shear configurations (η ≈ 0) and combined loading
test, while two types of compressive specimens were used
to obtain negative stress triaxiality states. The new type of
compression test specimen used in [59] helped removing the
undesirable effect of friction and the fracture could always
be observed on the surface. With the new specimen config-
uration with different gauge section shapes, one can create a
low stress triaxiality involving shear-dominated stress state.

The 2D fracture locus in the (ε-η) space shown in Fig. 9a
revealed that the equivalent strain to fracture varied differ-
ently under different stress triaxialities and this dependency
was not monotonic, and it drew a lot of attention in ductile
fracture community. The results showed the strong depen-
dency of ductility on the stress triaxiality. The shear fracture
dominates in the range of negative stress triaxialities while
in the range of high stress triaxialities, the fracture occurs
due to void nucleation, growth and coalescence. In the tran-
sition zone between the above two regimes, fracture might
develop as a combination of these two mechanisms. The
analytical expressions of the 3 branches of this curve can be
found in [59]. However, this result was not confirmed by a
recent rigorous study on the same material of [132], which
shows a monotonic decrease of the strain to fracture with
the stress triaxiality for plane stress loading. More recently,
Beese et al. [133] constructed a fracture locus for an alu-
minum 6061-T6 alloy using series of “uniaxial tests” as well
as combined shear-tension tests on the butterfly specimen
(see Fig. 8a). The authors observed the same tendency as
in [59] (Fig. 9b). However, with the same material, Haltom
el al. [134] obtained a different fracture locus by using the
combined tension-torsion tests (see Fig. 8b). The strain to
fracture monotonically decreased with the increase of the
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Fig. 7 Illustration of cell
computational results a the
influence of the stress triaxiality
and the Lode parameter on the
critical porosity (at coalescence);
b the influence of void shape on
porosity evolution (η = 2/3); c
different voids with the same
projection surface; d rate of
porosity change for two different
void shapes (prolate and oblate)
having the same projection area
along main loading direction 0
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stress triaxiality (Fig. 9c), which was not materialized by
the studies of [59] and [133] (Fig. 9a and b). According to
these authors, the difference observed could be explained by
the differences in the testing procedures and in the ways the
stresses and strains measurements were performed. These
authors also indicated that to obtain correct results, the
experiments have to respect several characteristics such as:
uniform stress in the test section; no stress concentration;
no geometric constraints (i.e., the test section must be wide
enough for the localization to develop); the deformation

must be accurately measured both in uniform regime (rel-
atively large zone) and localized regime (often in narrow
zone).

Due to the complexity of loading paths in forming
processes (loading paths at different positions of work-
piece could be totally different during the processes), the
parameters of damage models should be identified and
validated for various stress states. Therefore, tests should
performed with various values of η and θ - see Fig. 10a from
[135] (see also [31, 62, 133, 136, 137]). In addition, these

a b c

Fig. 8 a The butterfly specimen for combined tension-shear tests used in [133]; b the tubular specimen for combined tension-torsion test used in
[134]; and c a half of a tube specimen for combined tension-torsion tests used in [33]



Int J Mater Form (2017) 10:139–171 157

Fig. 9 Dependency of the equivalent strain to fracture on the stress tri-
axiality: a fracture locus for aluminum alloy 2024-T351 obtained from
series of conventional tests [59]; b fracture locus for aluminum alloy
6061-T6 obtained from conventional tests and combined shear-tension

test on butterfly specimen [133] and c fracture locus for aluminum
alloy 6061-T6 obtained from the combined tension-torsion tests [134].
Figures reprinted from [59], [133] and [134] with permission from
Elservier

tests should be performed at same strain-rate and tempera-
ture conditions that encountered during the forming process
applications. From Fig. 10b, for each value of the stress tri-
axiality, one can observe the evolution of fracture strain with
the Lode angle: the lower the stress triaxiality, the stronger
the sensitivity to Lode angle (which is qualitatively in agree-
ment with unit-cell computation results Fig. 2b). Since the
stress triaxiality in forming processes is usually weakly pos-
itive or negative, accounting for the influence of the Lode
angle is indeed necessary.

A series of fracture tests using classical specimens or
the butterfly specimen was often carried out to obtain the
fracture locus in the (ε–η–θ) space. The butterfly speci-
men was optimized such that fracture initiated far from the
free specimen boundaries [138]. It was used in many recent
studies [88, 136, 137, 139]. Many further studies developed
this method and the butterfly specimen to establish frac-
ture loci for different materials: cast aluminum alloy ([140]),
aluminum alloy 6060-T6 [133], advanced high strength
steels (AHSS) [141], using the Modified Mohr-Coulomb
(MMC) ductile failure criterion. The butterfly specimen

is a very good candidate to carry out fracture tests for a
wide range of stress triaxialities. This specimen has several
advantages including the same fracture initiation location
under different loading combinations. It is also able to
remove partly the effect of mesh size (due to the fact that
only one finite element model is needed for different load-
ing conditions). However, this specimen has been shown
suitable for metal sheet applications (with a special geom-
etry that is not easy to machine) but the applicability to
metal wire or bar still needs to be proven. In addition to
the butterfly specimen, the double notched tube specimens
were also used (see Fig. 8c [33]) to carry out experiments
under combined tension-torsion loading. During each test,
the load ratio κ = Nrm

M
was kept constant (where N, M are

axial tension force and torsional loading, rm is the radius to
the center of the notch). The results revealed that the influ-
ence of the Lode parameter on void growth and coalescence
can be significant. One can generate two different fracture
mechanisms with the double notched tube specimen, which
can be predicted by the micromechanical models. This spec-
imen might be employed to carry out experiments in low to

Fig. 10 a Conventional
mechanical tests in (η, θ) space,
and b 3D fracture locus for a
high carbon steel ([135])

-1 1
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1

0

0
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-0.5
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intermediate triaxiality regime and might be suitable for bar
or rod metals. More recently, Papasidero et al. [142] also
employed a tubular specimen with a stocky gauge section of
uniform thickness to characterize the effect of stress state on
the onset of ductile fracture under tension-torsion loading.

In addition to laboratory mechanical tests, tests on pro-
cesses should also be carried out since they represent the
stress states similar to final industrial applications. For sev-
eral bulk forming processes, additional ultimate wire draw-
ing or drawing followed by tension/torsion/hardness tests
could be performed to obtain more reliable parameters both
for plasticity and damage models [143, 144] for applications
in real industrial process; or half-blanking then wrenching
(on a hat-shaped specimen after blanking) tests for industrial
applications on a real automotive part (see [145]). Another
example is the plane strain compression test on flat speci-
mens, which is often used to characterize the materials for
applications in conventional flat rolling process.

A well-constructed damage model can only give correct
results for complex applications if its parameters are accu-
rately identified. For complex stress state applications (as
in forming processes), damage models should be calibrated
from mechanical tests at different loading configurations,
covering a large range of stress states. By using these tests,
hardening and damage models parameters can be identi-
fied and validated for various stress states. In addition,
for micromechanics-based models, since they are based on
micromechanical considerations, their calibration should be
based on both macroscopic tests and microscopic observa-
tions ([94, 146–148]). The characterization of each stage
of ductile damage requires the continuous monitoring of
damage during deformation, which can be done thanks to
X-ray tomography measurements [149–152]. However,
using a large number of tests leads to laborious calibra-
tion tasks, which requires a robust method for optimization
procedure.

Models calibration by automatic optimization by
inverse analyses

Models calibration could be based on post-processing from
strain to fractures of proportional mechanical tests [31, 68,
153] but it suffers a major limitation that only few tests
satisfy the proportionality assumption. Automatic optimiza-
tion by inverse analysis is preferred when a large number
of variables and tests is involved. Solving the problem of
inverse analysis consists in minimizing a cost function rep-
resenting the discrepancy between data from a numerical
model F and data obtained experimentally F e (e.g., the
load-displacement curves of tensile tests). For an elasto-
plastic model with damage, the mechanical behavior is
fully described when all the elastic, plastic and damage
parameters are known. The unknowns are the hardening

law parameters and the damage model parameters. They
define a set of parameters P that needs to be identified.
The parameters identification problem is then expressed as
an optimization problem: Find the optimum set of param-
eters that minimizes the difference between experimental
and numerical values. The normalized least square error is
chosen as the cost function (φ):

⎧⎨
⎩

Find P∗ such that φ(P∗) = min (φ(P))

With φ(P) = ‖F e−F (P)‖
‖F e‖ =

√∑N
i=1 (F e

i −Fi(P))2∑N
i=1 (F e

i )2

(34)

The cost function can be constructed by using a series of
mechanical tests combined with local measurements (with
Digital Image Correlation or tomography observations).
The process is completed with the choice of optimization
method (e.g., an evolution strategy algorithm - [94, 154]). In
addition, the inverse analysis computations should be per-
formed in parallel, which will reduce significantly the CPU
time.

Discussions on model calibration

Uncoupled phenomenological models

The calibration of fracture criteria is often based on the
strain to fracture of a series of test covering a large
range of stress states (Section “Experiments for damage
study”). Since fracture occurs after large plastic strain, this
method requires an accurate characterization of elastic-
plastic behavior in order to obtain an accurate value of strain
at fracture. It can be done by coupling between macroscopic
observation (e.g., load-displacement curves) and local mea-
surement (e.g., strain measurement using DIC or VIC, see
[137–139, 155]). Since a high number of data is involved,
this method has to be used in combination with auto-
matic optimization programs (Section “Models calibration
by automatic optimization by inverse analyses”). Fig. 11a
shows an example of the identification of the B&W model’s
parameters using the displacement to fracture of different
mechanical tests presented in Fig. 10a (see [135]).

Coupled phenomenological models

The calibration of coupled phenomenological damage mod-
els is often based on the softening effect of damage. This
softening, however, depends on the mesh size as shown in
numerous studies in the literature (e.g., [156]): a finer mesh
leads to a faster damage accumulation. Several methods
have been proposed in the literature in order to overcome
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Fig. 11 Calibration of a the uncoupled B&W model - based on
the comparison between experimental and numerical displacements
to fracture of different tests [91]; and b the coupled Lemaitre

model-based on the comparison between numerical and experimental
load-displacement curves of tensile test on RB (the curve with damage
coupling takes into account the softening due to damage) [135]

this limitation (e.g., a non-local formulation as used in
[157]). If no mesh-regularization technique is employed, the
mesh size must be considered as a “material” parameter
and damage parameters identified have to be used with the
identified mesh size (see the discussion in Section “Mesh
size sensitivity”). The identification is often done by inverse
analysis using the load-displacement (or stress-strain) curve
of a tensile test on round bar [81, 82]. Figure 11b shows an
example of the identification of Lemaitre model parameters
based on the softening effect of damage for a stainless steel,
with numerical results for only elastic-plastic behavior or
with damage. As can be observed in Fig. 11b, damage cou-
pling allows modeling accurately the softening of material
during the tensile test on RB.

Micromechanics-based models

The calibration of micromechanics-based models needs
more attention since it requires micromechanical investiga-
tions. Here, the calibration of the widely-used GTN model
is discussed. The identification of constitutive parameters
q1 and q2 could be performed thanks to cell computations
(Section “Cell computations”) or mechanical tests. How-
ever, the nucleation parameters (fN , εN , SN ) are often
fixed in numerous studies in the literature (although they
are strongly material-dependent) since they link directly to
microstructural evolution, their measurement is not straight-
forward. Many authors in the literature carried out the
identification of the GTN model parameters on different
materials based principally on “macroscopic” mechanical
tests. The calibration is often based on tensile tests on
notched round bar or compact tension (CT) specimens,
where the deformation is localized in the notch area and

the stress triaxiality is relatively high. An inverse analysis
methodology is often used to identify the parameters (e.g.,
[158]), based on stress-strain curves (or load-displacement
curves).

Recently, new and advanced experimental techniques
allow identifying more accurately the values of the GTN
model parameters. He and coworkers [159] among others,
used in situ tensile tests with scanning electron microscope
(SEM) to determine these parameters. This identification
was based on the counting of void volume fraction at three
damage states. This method gave them relatively exact
values of initial void volume fraction as well as void vol-
ume fractions at 3 instants of measurement. However, this
method could not give a continuous increase of void vol-
ume fraction with the plastic strain and could not distinguish
the two different damage mechanisms: void nucleation and
growth. The characterization of each stage of ductile dam-
age requires the continuous monitoring of damage during
deformation, which can be done thanks to X-ray tomogra-
phy measurements [149–152]. This technique has been used
to identify the parameters of the GTN model [146–148].
More recently, Cao et al. [94] combined both mechanical
tests and in situ X-ray microtomography observations to
identify the parameters of the GTN model. The identified
model was then shown to be able to predict accurately both
the location and the instant of fracture in a multi-stage wire
drawing process. It suggests that, for complex microstruc-
ture materials, the identification of damage models should
be based on both macroscopic and microscopic observa-
tions to obtain reliable parameters. In addition, the model
itself must be capable of accounting for the real microstruc-
ture parameters associated with the physical problems (e.g.,
voids for ductile damage phenomenon). It also underlines
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the important role of the identification process: a well-
constructed damage model can only give correct prediction
if its parameters are accurately identified.

Numerical modeling of crack growth

Damage to fracture transition

Damage to fracture transition has become a popular topic
in the ductile fracture scientific community. Indeed, the
transition from a damage continuous approach to a discon-
tinuous fracture is not straightforward both from mechanical
and numerical points of view. Continuous numerical mod-
eling of crack growth in initially-uncracked bodies requires
a damage model to trigger the onset of micro-cracks. The
coupled damage models are often chosen for this purpose
since they can capture the continuous degradation due to
damage. The use of advanced uncoupled fracture models
can describe certain simple crack paths, but they do not take
into account the softening effect of damage in a large range
of plastic strain before the onset of cracks. In the following,
several studies of modeling of crack growth using cou-
pled phenomenological or micromechanics-based models
are reviewed.

Tvergaard and Needleman [12] first studied numerically
the cup-cone fracture formation based on axisymmetric FE
simulation, by using the GTN model [1, 7, 12] and intro-
ducing an initial geometrical imperfection. These authors
reproduced quite accurately the cup-cone fracture pattern
but the use of an initial imperfection was the major limita-
tion of this study. Besson and co-workers [160, 161] used
GTN and Rousselier [162] models to study in details the
formation of cup-cone and slant fractures as well as the
influence of different factors (e.g., mesh design, symme-
try, element aspect ratio, constitutive damage parameters
etc.) on the numerical fracture surfaces. An indicator was

defined by these authors (based on a bifurcation analysis) to
detect the zone where strain and damage localization could
occur. Based on 2D simulations of plane strain tensile test
and axisymmetric tensile test on round bar, the authors con-
cluded that the formation of slant and cup-cone fracture
surfaces depends on the constitutive model used as well as
mesh size and mesh configuration. The authors showed that,
a judicious choice of model constitutive parameters has to
be made to obtain the cup-cone fracture (e.g., to obtain this
fracture mode, the choice for the critical value of poros-
ity fc in the GTN model was not a realistic value of the
micromechanical parameter).

Despite its simplicity, the element removal technique
coupled with remeshing is a convenient way to continuously
model the damage to fracture transition for 3D configu-
rations. Mesh dependency may deteriorate the stress field
computation at the crack tip, which would be particularly
problematic for brittle fracture when the crack path is com-
puted based on stress intensity factor. For ductile fracture,
the crack path is less sensitive to the local stress field at the
crack tip. Fracture can be driven by ductile damage values
and the use of the element erosion with a sufficiently fine
mesh may conduct to good crack path prediction. In addi-
tion, for large strain applications (e.g., uniaxial compression
test or metal forming processes) remeshing approach should
be used to avoid extreme element distortions and guarantee
well-shaped elements once crack is initiated. The fracture
is triggered by critical values of the damage variable and
the crack orientation follows the maximum direction of
damage. Recently, Cao [163] successfully employed this
technique to model cracks growth under different stress
states: diagonal crack in compression test, slant crack in
tensile test on flat–grooved specimen, cup-cone fracture in
tensile test on NRB specimen (Figs. 12, 13 and 14a).

Also with the element removal technique, El Khaoulani
and Bouchard [164] used anisotropic mesh adaptation com-
bined with error estimation based on the Lemaitre damage

Fig. 12 Comparison between
the simulation of crack
formation in compression test
and the experimental result on
the aluminum 2024-T351.
Reprinted from [163] with
permission from Elservier
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Fig. 13 Comparison between
the experimental and numerical
fractured surfaces of a flat-
grooved pearlitic high carbon
steel specimen: a experimental
slant fractured surface and
lateral necking observed; and b
the left figure shows the lateral
“necking” and the right figure
shows the view from the middle
cross section obtained with
numerical simulations [135]

Slant fracture surface

(A-A) Middle cross section

(A-A) 

View from front

a b

variable and its gradient, to obtain a cup-cone fracture in
an axisymmetric tensile test. The main advantage of this
method is, starting from a coarse mesh, automatic mesh
adaptation and remeshing allow capturing the crack path
with sufficient mesh refinement. The CPU time is thus sig-
nificantly reduced. Mediavilla and coworkers [165, 166]
used both coupled (with a regularization technique) and
uncoupled damage models combined with a continuous-
discontinuous approach as well as a remeshing technique
to propagate a crack. More recently, Feld-Payet et al. [167]
also employed this technique with a non-local formula-
tion to model crack propagation. These studies required
remeshing to insert new discrete crack growth. Cracks
were inserted along lines where damage was maximum.
Seabra and coworkers [168] proposed a similar continuous-
discontinuous approach as in [165, 167] using the XFEM
technique [169] and the non local Lemaitre damage model
to simulate cracks propagation without remeshing.

The use of micromechanical models (e.g., GTN as in
[160]) might also be possible but not with realistic values
of the micromechanical parameters. As indicated in [160],
the use of the value of their identified critical porosity fc =
0.005 (which defines the onset of coalescence) prohibited

the formation of cup-cone fracture. Later, in [161], the
authors reported similar results for fracture prediction in
plane strain bars under tension. They found that, a judicious
choice of fc = 0.01 favored the flat fracture. These results
suggest that, even for high stress triaxiality applications, the
GTN has some, but not all ingredients to model cup-cone
and plane strain fracture (see detailed discussion in [2]). In
addition to the choice of a suitable damage models, attention
has to be paid to numerical techniques, which are detailed
in the following.

The role of numerical technique

As shown in the early work of [12], mesh designs (and
mesh size in particular) play an important role in frac-
ture prediction. If no mesh regularization technique is used
(e.g., non local model), the results depend strongly on mesh
size: a smaller mesh size leads to a higher damage value.
The mesh size-dependency also leads to the problem of the
dependence of fracture energy on mesh size and this energy
can be dismissed if the mesh size tends to infinitely small.
The use of non-local models is essential in this case [170],
which involves a characteristic length scale that should be

Fig. 14 Cup-cone fracture mode in tensile tests on notched round
bar: a comparison between experimental result and the numerical
result with the Xue model [163] (pearlitic high carbon steel); b results
obtained with the Lemaitre model and adaptive remeshing (aluminum

alloy [164]). For the numerical results, view is from middle vertical
cross section. Figures reprinted from [163] and [164] with permission
from Elservier
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identified from microstructure observation (e.g., void size,
particle size, inter-void or inter-particle distances, etc). In
addition, in several fracture surfaces (e.g., from a tensile
test on notched round bar), one could observe two differ-
ent void populations: large primary voids with important
growth (high stress triaxiality region, e.g., in the center of
the bar - flat fracture mode Fig. 14a); and small secondary
voids that are nucleated later (in the shear-lip region - slant
fracture mode Fig. 14a). For this, it would be necessary
to use non local models with two different characteristic
length scales associated to two different mechanisms: nucle-
ation and growth to describe crack formation as indicated
by Besson and co-workers [3, 170, 171].

Apart from this problem, mesh design is also a crucial
factor to describe the crack path. In [12], a zig-zag growth
was obtained form tensile test on axisymmetric specimen,
which was most likely due to symmetry assumption. In
addition, the use of symmetry should be avoided due to
resulting non-physical high dissipation energy (see [161]).
Elements aspect ratios were shown to have important roles
if remeshing was not used. Choosing a suitable initial aspect
ratios helps avoiding extreme element distortion when crack
is initiated [161]. If remeshing is used to assure well-shaped
elements, there is thus no particular attention to be paid
on the choice of initial aspect ratios. In [164], the authors
used anisotropic mesh adaptation and the Lemaitre model to
model the cup-cone fracture. They also reported that with-
out automatic mesh adaptation, a flat fracture mode was
obtained instead of a cup-cone mode. Similar results are
obtained in [163], in which the author reported that without
automatic remeshing, 3D diagonal cracks in upsetting test
cannot be captured accurately.

In summarizing, in order to successfully capture cracks
formation in ductile solids subjected to complex loadings,
the following requirements should be satisfied: (1) the use
of a suitable coupled damage model that can capture dam-
age localization for both high and low stress triaxialities;
(2) models parameters should be identified from mechanical
tests at different loading configurations; and (3) numeri-
cal techniques, such as automatic remeshing coupled with
accurate remapping, should be used. The main advantage
of this approach is the continuous control of damage, from
damage accumulation to crack initiation and growth. Nei-
ther predefined crack path, nor discrete crack have to be
introduced.

Fracture prediction in forming processes

Uncoupled models

Uncoupled models have a major advantage of being easy
to implement and use. Since they do not account for

the influence of damage on materials behavior, the mesh-
dependency due to softening effect of damage is thus
avoided. Due to its simplicity, this type of model has been
widely used for processes on both flat [172–176] and bulk
[91, 144, 177–180] metals. Previous studies employed prin-
cipally models that account only for the stress triaxiality
(e.g., Oyane) or the first princial stress (e.g., Cockcroft-
Latham).

Recently-proposed advanced uncoupled models account
for both stress triaxiality and Lode dependencies have been
used and showed to give satisfied results for complex stress
state applications. Li et al. [176] used the MMC frac-
ture criterion to predict fracture limit in the sheet metal
forming of ThyssenKrupp TRIP690 steel using four-node
shell elements with reduced integration points (S4R in
ABAQUS/Explicit). These authors showed that, by using
their approach, the crack propagation through thickness due
to bending in the punching process, which are not able to
be captured by the classical Forming Limit Curve (FLC)
approach, can be described. More recently, Liu et al. [181],
by comparing different criteria: Johnson-Cook [74], the
modified Cockcroft-Latham, the Bao & Wierzbicki empiri-
cal [59] and the Bai&Wierzbicki (B&W) models [31] with
consideration of rate dependency and temperature effect,
showed that the modified B&W can accurately describe the
chip removal behavior of materials (2D finite element model
under plane strain deformation was used with quadrilateral
continuum element CPE4RT in Abaqus/Explicit). Cao et al.
[91, 135, 144, 182] employed the B&W and MMC mod-
els (with the tetrahedral finite elements P1+/P1) to predict
fracture in bulk forming processes, involving multi-stage
drawing, wire rolling and cold pilgering. The simplified Xue
and Wierzbicki fracture criterion, whose parameters were
identified from both conventional tensile tests and half-
blanking then wrenching laboratory tests (loading is close
to the real industrial process), was also successful applied
to model the fracture during operating of an automotive part
[137] (see Fig. 15).

Although the uncoupled models have been successfully
applied to predict damage and fracture in different forming
processes for both flat and bulk metals, the major shortcom-
ing of these models is that they does not account for the
softening effect due to damage accumulation. In addition,
for complex stress state and non-proportional loadings, the
damage parameter does not has a physical interpretation.
Due to their phenomenological grounds, special care should
be taken for their application outside the identification
domain.

Coupled phenomenological models

Among coupled models proposed in the literature, the
Lemaitre-like models seem the most used to predict fracture
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Fig. 15 a Experimental
wrenched fixed flange and b
simulation wrenched fixed
flange using the simplified Xue
and Wierzbicki fracture criterion
([137]). The investigated
material was a high-strength
low-alloy steel S420MC, and the
tetrahedral finite elements
P1+/P1 were used for numerical
simulations. Figures reprinted
from [137] with permission
from Elservier

in forming processes. A comprehensive review of the CDM
framework for metal forming simulations was given by Saa-
nouni and co-workers [87, 183]. This kind of model has
been shown adapted for processes that involve high stress
triaxiality ([86, 89, 143, 183]).

Figure 16 shows the comparison between cracks
observed at the outlet in wire round rolling process from
experiment (Fig. 16a) and from numerical prediction with
the Lemaitre-type model (Fig. 16b). For this process, frac-
ture occurs on the wire surface. It should be noted that, in
[135, 144], the authors showed that the Lemaitre-type mod-
els give correct prediction for both fracture location and the
instant of fracture for this process11.

Figure 17 shows another application with the Lemaitre-
type model (from [86, 184]) for the extrusion process.
In such a process, chevron cracks are often observed
in the center of metal wires, which are shown on the
left of Fig. 17. The stress state at this position can be
approximated by a uniaxial tension (in the extrusion direc-
tion) superimposed to certain hydrostatic pressure (due
to die); and the stress triaxiality is positive. Predicted
results obtained with the Lemaitre model (with the kill ele-
ment technique) show a good agreement with experimental
observations.

However, for processes involving important shear effect,
the Lemaitre-type model sometimes cannot provide a good
prediction of damage localization [89, 91, 135]. Recently,
by comparing with the modified coupled Xue model [185],
Cao et al. [89] showed that the Xue model, with Lode-
dependency, provided accurate damage localization for a
wire flat rolling process (parameters of both models were
identified from different conventional mechanical tests on
a high carbon steel). Based on this result, the modified
Lemaitre model accounting for Lode-dependency proposed
by [88] was adopted and provided similar results in terms
of damage localization prediction as the phenomenological
Xue model [91].

11These authors also showed that the B&W model also provided
correct results for the round wire rolling process.

Micromechanics-based models

Compared to other models, micromechanics based models
are not often used in the simulation of industrial form-
ing processes. The reason could be due to their com-
plexity, the cost that must be spent in terms of CPU
time and also their limitation for complex stress states.
Furthermore, their calibration needs continuous following
of microstructure or micromechanical computations (see
Section “Microme-chanics-based models”) to obtain real-
istic parameters. In addition, since the Gurson framework
has a major shortcoming in fracture prediction at low stress
triaxiality and shear-dominated loadings, its usage seems
limited for bulk forming processes with moderate values of
the stress triaxiality (e.g., [91, 135, 186, 187] for the wire
drawing; [91, 135] for the wire flat rolling process).

Cao et al. [91, 135] compared different model in three
approaches of ductile damage for fracture prediction in wire
drawing and wire flat rolling processes. Figure 18 shows the
predictive damage maps obtained with six different models
for the second pass of wire drawing.

Figure 18 shows that, except the modified GTN model
by Xue12, all other models provided correct results of max-
imum damage location: in the wire center (as observed in
experiments). These authors then investigated damage evo-
lution at the wire center (the critical position) obtained with
the five models in order to determine the instant of fracture
predicted by these models for the whole 14-pass process
(i.e., the instant that the damage parameters reach their
critical values) - see Fig. 19.

As can be observed, for all phenomenological models
used (B&W, Xue, Lemaitre, LEL), although they provided
a good prediction of maximum damage location, they failed
to predict the instant of fracture: fracture was predicted
after 4 passes with the B&W model; after 5 passes with
Xue, Lemaitre and LEL models (in experiments, fracture
occurred after 14 passes). Only the GTN model, which

12See [188] for the details on the implementation of the Gurson
model in a FE element code (Forge®) dedicated to forming processes
simulation based on a mixed velocity-pressure FE formulation.
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Fig. 16 a Experimental
observations of cracks on the
surface of rolled wire; b
numerical prediction obtained
with the Lemaitre-type model,
showing cracks at outlet [135]

was calibrated from both mechanical tests and tomography
observations [94] gave a comparable result in this case: frac-
ture was predicted after 13 passes. However, for another
application in wire flat rolling, the GTN model could not
provide a correct prediction of maximum damage location
in sheared regions [91, 135]. It was due to the fact that the
original GTN model does not account for the “shear” influ-
ence (voids remain spherical during pure shearing without
any void growth).

Discussions

The choice of damage model

A good predictive model involves a tradeoff between its
simplicity and its prediction quality. For the simplicity, the
physics must be simplified as much as possible and only
the key dominant factor remains. If the predictions are
good, it means that not only a reliable predictive tool is
obtained, but also that the underlying physical assumptions
are correct and that the physics phenomenon is well cap-
tured. Sometimes the physics is too complicated and no
physical model is available. A phenomenological model is
then fully justified, even though it will not deliver much
insight on the physics. The uncoupled model has a major
advantage of being easy to implement and use. In addition,
since no coupling is taken into account (i.e., no soften-
ing due to damage), there is negligible influence of mesh
size. However, this model suffers from several limitations,
mainly its purely phenomenological nature (i.e., no physical
parameters involved). Phenomenological coupled damage
models also suffer the same limitation because of their phe-
nomenological grounds, although these models account for
the softening due to damage. This softening effect is some-
times important, especially at very large strain encountered
in multi-stage forming processes (i.e., in the last stages
of damage, just before failure). In addition, the Lemaitre-
family models are derived within the framework of contin-
uum damage mechanics, which ensures the thermodynamic
consistency13 (although this property is not enough for a

13For the original GTN model, the thermodynamic consistency can
also be demonstrated provided that the void nucleation is absent (as
already shown in [3, 24]). A thermodynamic extension of the existing
local Gurson-based model was presented in Reusch et al. [189].

material model to be accurate and predictive). From a strict
micromechanics viewpoint, in these models, the evolution
of damage variable does not link with a microstructure
change (e.g., the evolution of voids in material). If voids
grow, the total volume of material must change (maybe very
small) since the matrix is incompressible, this cannot be
captured by the use of these phenomenological models.

Regarding micromechanical approach, although the Gur-
son and GTN model are linked with micromechanical con-
siderations, they are still based on an ideal representation
of voids: they are spherical and keep their shapes during
the deformation process. For forming processes, e.g., wire
drawing and rolling, voids are elongated in the drawing
direction in the wire drawing process and voids are flat-
tened and rotated following the shear band in the rolling
process. Furthermore, this approach still suffers some lim-
itations: the nucleation and coalescence laws are purely
phenomenological (GTN model), the yield function violates
the upper bound proposed by [118] at low stress triaxial-
ity (Gurson model). The GTN model has an advantage of
being simple enough for implementation in standard FE
codes (and has been widely used in ductile damage com-
munity). The damage parameter is linked with the void
volume fraction and volume change by void growth can be
described. However, the nucleation and coalescence laws

Fig. 17 Chevron fractures observed in experiment (left) and predicted
by the Lemaitre-type model (right) during the extrusion process [86,
184]
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Fig. 18 Damage at steady state
of second drawing pass for six
damage models: a Bai &
Wierzbicki [31], b Xue [185], c
Lemaitre [81], d LEL [88], e
GTN [7, 12] and f modified
GTN by Xue [30]. The values
are represented on the
longitudinal and transverse cross
sections (figure adapted from
[91])

should be enhanced by using more physical inspired for-
mulations, such as the nucleation law proposed by Bouaziz,
Maire and their coworkers [95, 150]; Thomason or Brown
and Emburry criteria for coalescence [54]. In addition, void
growth is also influenced both by material’s microstruc-
ture (particles, elongated grains with heterogeneous phases,
etc.) and forming processes itself (e.g., elongated voids are
observed in drawing direction). The GLD-like models with
the latest extension by Madou and Leblond [190], although
take into account the ellipsoidal void shape, still do not
account for the rotation of voids. In addition, their high
number of parameters make them too costly for applications
in industrial forming processes. The use of a micromechan-
ical model, which accounts for void shape change and void
rotation, is of great interest. The GVAR [117] and SOM
[115, 116] models consider general ellipsoidal voids embed-
ded in an elastoplastic matrix subjected to 3D deformation,
and the evolution of the void volume fraction, aspect ratios
and orientations can be described. In addition, loading is not
necessarily aligned with voids axes. These two models have
been shown to give correct results for various loadings and
void shapes. However, the SOM model is currently compu-
tationally inefficient. The application of the GVAR model to
complex applications such as multi-stage forming processes
is thus of prime interest. However, the description of voids
in all these micromechanics-based models remains idealized
in the sense that it does not account for particles fragmen-
tation and real forms of voids. In that sense, these models
have clearly more physical bases than the phenomenolog-
ical approaches, but they are still based on an idealized
representation of voids and different underlying assump-
tions that have not been clarified. In addition, since coupled
models (phenomenological or micromechanics-based mod-
els) involve damage softening, the results of damage depend

strongly on the mesh size. This problem can be treated by
considering the mesh size as a parameter (lack of physical
underlying) or using a non-local model (costly).

In this context, the use of “modular” models is pro-
moted [91, 135]. The idea is, regarding its physical origin,
a given damage model can be enhanced by adding suit-
able “ingredients” (e.g., a Lode-dependent term, or a strain
threshold for damage accumulation that depends on the
stress triaxiality) to improve its prediction ability. If all
the ingredients are well-constructed, different models may
converge to a same prediction in terms of damage local-
ization (as shown in [91, 135] for the wire flat rolling
process). Several examples can be taken to illustrate this
idea: the B&W model is obtained from the well-known Rice
and Tracey formulation for fracture at high triaxiality, by
introducing (phenomenologically) a quadratic dependency
of strain to fracture to the Lode parameter; the modified
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Fig. 19 The evolution of normalized damage parameters (normalized
by their critical values) during the multi-stage wire drawing process.
Each pass is represented by the line between two symbols
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GTN model for shear loading is obtained by adding a Lode-
dependent term to the evolution of the void volume fraction;
or the LEL model is obtained from the Lemaitre model by
adding a parabolic Lode dependent term. It should be noted
that, with this kind of approach, all models become phe-
nomenological. To the best of the present author’s knowl-
edge, no purely micromechanical model has been shown
to be capable of capturing both damage mechanisms at
high and low stress triaxiality in real multi-stage shear-
dominated manufacturing processes (due to their construc-
tion and also their current computational inefficiency). For
the moment, the use of phenomenological modular models
might be fully justified if they can provide correct predictive
results.

Several recent studies are seeking to model real
microstructure in a Representative Elementary Volume dur-
ing deformation. The mesh of this real microstructure
and realistic boundary conditions obtaining from tomogra-
phy/laminography images coupled with the volumetric dig-
ital image correlation technique allow modeling and under-
standing ductile mechanisms in complex loading paths.
Examples of modeling of these mechanisms are presented in
[191–193] and offer new opportunities to better understand
the influence of microstructure (inclusion) and loading path
on void nucleation and coalescence mechanisms.

Mesh size sensitivity

Mesh dependency due to softening by damage growth has
been reported in numerous studies in the literature. The
problem with local behavior of a softening model is that
when a material point starts to soften, it takes up most defor-
mation leading to intense damage growth and resulting in
further softening at that point. In FE simulations, after local-
ization, the deformation accumulates in one element (or a
row of elements). An infinitely small mesh would result in
approximately no energy dissipation in the localization band
and diminishing the mesh size does not lead to converged
results [3]. In mathematical point of view, the local mate-
rial model results in the loss of ellipticity of the boundary
value problem in statics. The mathematical problem then
becomes ill-posed, leading to the dependence of the results
on the direction and size of the FE mesh [194]. To solve
the mesh dependency problem, many methods, namely reg-
ularization methods, have been proposed: using enhanced
theories that account for spacial derivatives of displacement
fields [3, 195, 196]; using viscoplastic regularization (e.g.,
[197]); or using non-local models [198, 199]. The enhanced-
theories introduce additional degrees of freedom (DOF)
to describe the deformation and rotation of a microstruc-
ture, in which the most general case is the micromorphic

theory with nine additional DOF for micro-deformation
and micro-rotation [196, 200, 201]. For the case of ductile
damage induced by void growth, a micro-dilatation theory
was derived within this framework [202] but its use was
restricted to models where damage is controlled by volu-
metric variation. Regarding the viscoplastic regularization,
when the deformation rate starts to increase in the soft ele-
ment (i.e., damaged element), the increase of strain rate
makes the element stiffer, which prohibits the deformation
to accumulate in that element. This approach has been prin-
cipally used for dynamic problems [203–205] since there
is no explicit expression derived for the viscoplastic length
scale for static problems. For this reason, the non-local mod-
els are often used to treat the mesh dependency due to
damage induced softening. These models consider that the
behavior of a given material point does not only depend
on the local values of state variables, but also on the val-
ues of one or several variables in a domain around this
point, whose size is defined by a materials characteristic
length independently on any mesh size. There are two main
strategies that allow to compute the non-local variable: (1)
through an integral type function [206]; and (2) through
gradient-based equations [157, 207]. These two approaches
have been shown equivalent, but the latter one is simpler to
implement since the non local variable can be defined as
nodal variables in the FE framework [3]. Details on non-
local models can be found in [3, 198, 199] and are not
recalled here.

For practical applications, especially for real-scale FE
simulations of forming processes, non-local models have
not been often used due to computational cost in terms
of CPU time. Indeed, regardless of non-local methods, a
characteristic length scale, which is an intrinsic parame-
ter of the material, has to be defined and the mesh size
must be smaller than this length. For metallic materials, the
choice of this length is still a subject of numerous debates
(it could be considered as the average size of inclusions
or the average distance between two inclusions or defects,
etc.). Besson [3, 170, 171] also suggested that, it would
be necessary to employ two characteristic length scales in
order to capture two mechanisms (growth and nucleation) of
ductile damage. In addition, since the characteristic length
is in the order of ten to hundred micrometers, the chosen
mesh size is thus very small leading to a huge DOF for real
scale model FE simulations. For this reason, for industrial
forming applications, the mesh size is often fixed, and the
damage and plasticity models parameters have to be iden-
tified from mechanical tests whose FE models employ the
comparable mesh size as in forming applications [91, 144,
182]. This strategy would help reducing partly the influence
of the mesh size.
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Rate and temperature dependencies

Forming processes involve multi-physical problems. Even
for “cold” condition, the friction between tools and work-
piece and the heat due to plastic deformation increases the
temperature of the workpiece. The temperature should be
taken into account, both for elasto-plastic constitutive equa-
tions and damage models. In addition, several processes
are performed at high velocity (e.g., the drawing speed
can be up to 20 ms−1, leading to very high strain rate).
Accounting for such influences would be of great interest
for certain materials. In the present review, the strain-rate
and temperature effects are not accounted in damage mod-
els. They would be easily incorporated in modular models
by adding, e.g., accurately-constructed strain-rate and tem-
perature dependent terms. Johnson and Cook [74] showed
that the ductility of different materials (OFHC copper, 4340
steel and ARMCO iron) increases with the strain rate.
Later, based on their cell computations, Brocks et al. [122]
also found that the void volume at coalescence onset (fc)
increases with strain-rate and decreases with temperature
but these impacts are negligible. The increase of ductil-
ity with strain-rate was also reported in recent studies of
Erice et al. [208] for martensitic stainless steel FV535, Khan
and Liu [209] for aluminum 2024-T351, Roth and Mohr
[210] for DP590 and TRIP780 steel grades. However, for
micromechanics-based models, the problem is more com-
plicated since these dependencies should be accounted from
micromechanical investigations and the derived models
have to remain simple enough for real-scale metal forming
applications.

Anisotropy

Anisotropy of material matrix (due to material process-
ing) and morphological anisotropy (initial non-spherical
particles, or induced by void shape) have been shown to
have important effects on ductile fracture. A non-associated
anisotropic fracture model was proposed for aluminum
6260-T6 based on the MMC model and scalar anisotropic
plastic strain measure is defined through the linear trans-
formation of the plastic strain vector [139]. In the CDM
approach, damage anisotropy can be described though a
damage tensor instead of a scalar as in isotropic models.
The complexity of the model depends on the order of the
damage tensor: first order (see, e.g., [211]), second order
[212–217], or higher order ones (e.g., [218–220]). In the-
ory, the use of high order damage tensor should provide
more accurate prediction on the damage evolution. How-
ever, the high numbers of material constants as well as
the inefficiency of numerical algorithm have limited their

applications in complex industrial forming applications.
The Gurson-like model has also been improved to incor-
porate the anisotropy of material’s matrix (e.g., [26–28]).
However, the void shape-induced anisotropy cannot be cap-
tured by using these models as well as phenomenological
models mentioned in this paragraph. Monchiet et al. [221]
proposed a homogenization-based macroscopic yield func-
tion that combines both orthotropic matrix and void shape
effects, which was further improved by Keralavarma and
Benzerga [128, 222] who considered richer deformation
fields at the microlevel. These models remain complicated
and have not been validated for general three dimensional
complex loadings that involve both void volume and shape
change and void rotation. The use of recent sufficiently sim-
ple models (VAR and GVAR) that have been validated for
real scale FE applications would be of interest when com-
bined with Hill [223], Barlat [224], or Bron&Besson [225]
anisotropic matrix to describe both anisotropies.

Kinematic hardening

The kinematic hardening is of great importance when load-
ing is nearly cyclic (e.g, in the pilgering process - see [135,
226]). In addition, as indicated in [3], comparisons of FE
computations using either isotropic or kinematic harden-
ing and constant damage parameters revealed that kinematic
hardening could accelerate the occurrence of failure. For
the processes presented in this review, loadings are not
cyclic and thus the kinematic hardening has been neglected.
However, it is straightforward to introduce the kinematic
hardening using phenomenological models. For microme-
chanical models (Gurson framework), as also indicated in
the paper, several extensions for kinematic hardening have
been proposed in the literature [23–25]. Accounting for this
effect could be important to describe the effect of restraining
on material ductility (e.g., [227]).

The cutoff value of the stress triaxiality

The cutoff value of the stress triaxiality of -1/3, below which
fracture does not occur, has been often chosen as proposed
in [228] (see [86, 229, 230]). Bao and Wierzbicki [228] ana-
lyzed the tests under pressure of Bridgman [129] to deduce
this value. It should be noted that, the tests performed by
Bridgman used principally axisymmetric specimens (bulk
material). However, Lou et al. [77] showed that this value is
far from universal, and these authors proposed a changeable
cutoff value. Although it was based on phenomenological
grounds, this study revealed that the choice for the cut-
off value of stress triaxiality is still an open question. For
forming processes, this choice is of great important since
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the stress triaxiality in numerous forming process is often
negative or just slightly positive. In [185], the author inves-
tigated the fracture locus (the strain to fracture as a function
of the stress triaxiality) for plane stress state for the same
Aluminum alloy 2024-T351 as in [59] and [77]. The author
reported a cutoff value approximated -2/3 instead of -1/3
used by [59] (see Fig. 5 of [185]). In their comparative
studies, Cao et al. [91] compared the results of damage
localization obtained with the cutoff value of -1/3 [228] and
-2/3 [185]. These authors showed that the choice of the cut-
off value has a strong influence on damage localization in
wire flat rolling process but it has negligible influence on
the drawing process. This reveals the strong influence of this
value, and its identification is still an open question.

Closure remarks

The development of ductile damage models have been con-
tinuously progressed in the last decades. While the reviews
on porous plasticity framework and continuum models were
given in the literature [1–3], the present review focuses
on practical considerations and the comparison between
these two approaches and the uncoupled approach (which
is often preferred in industrial applications). Indeed, reli-
able predictive results can be obtained with uncoupled
phenomenological models if they are well-constructed and
models are correctly calibrated. However, since these mod-
els and coupled phenomenological models are based on phe-
nomenological grounds, the applications outside the identi-
fication zone require special attention. Regarding Gurson-
like approach, its developments and applications have been
the subject of numerous studies in the literature. However,
the Gurson-like model is well-known suffered from several
limitations (Section “Gurson-like limit analysis kinematic
approach”), and attempts to overcome these shortcomings
make the model become phenomenological. Several three-
dimensional models incorporating void shape change and
void rotation have been developed within an alternative
micromechanical framework, based on nonlinear homog-
enization method [109, 111–117]. This class of models
allows better capturing different features of microstructure,
instead of only the volume change (as in Gurson framework)
or eventually void shape change in a more complicated
GLD framework (which, in practical consideration, is com-
putationally expensive for industrial forming applications).
However, since the initial model (VAR) suffers from the
limitation at high triaxiality, its modification (MVAR) in
contrast, leads to high compliant yield surfaces. Moreover,
the SOM model, even very accurate, is currently computa-
tionally inefficient. The latest development by [117] based
on ad-hoc modifications of the original VAR model within
this framework, and in the same time keeping the functional

form of Gurson model, reveals the efficiency of the new
proposed model for real-scale model simulation. Further
applications to metal forming process would be of interest.

The review does not consider a class of numerical meth-
ods for ductile fracture and localization-linked-failure mod-
eling, such as enhanced and mixed finite element methods
[169, 231], cohesive-zone model [123], or non-local formu-
lations [156, 199]. In addition, developments of physically-
based thermal-(visco)-plasticity models are not mentioned
as well. These models are believed allowing to obtain more
accurate results but are currently computationally inefficient
for manufacturing processes. Moreover, as also indicated in
the text, for reliable results for complex stress states, mod-
els have to be calibrated from mechanical tests as well as
microstructure observations, with a robust automatic opti-
mization procedure. The efforts put into improving all these
aspects and the development of new models will open the
door for extensive applications in metal forming processes.

Acknowledgments The author would like to acknowledge Pierre-
Olivier Bouchard and Pierre Montmitonnet at the Center for Material
Forming for fruitful discussions. Special thank is due to Jacques
Besson at the Centre des Matériaux, Mines Paristech for the advices
and the helpful discussions regarding numerical aspects.

References

1. Tvergaard V (1989). Elsevier, pp 83–151
2. Benzerga AA, Leblond JB (2010). In: Advances in Applied

Mechanics, vol 44. Elsevier, pp 169–305
3. Besson J (2010) Int J Damage Mech 19(1):3
4. McClintock FA, Kaplan SM, Berg CA (1966) Int J Fract 2:614
5. McClintock FA, ASME J (1968) Appl. Mech 35:363
6. Rice JR, Tracey DA (1969) J Mech Phys Solids 17:201
7. Gurson AL (1977) J Eng Mater Technol 99(1):2
8. Tvergaard V (1981) Int J Fract 17:389
9. Chu CC, Needleman A (1980) J Eng Mater Technol 102(3):249

10. Dalloz A, Besson J, Gourgues-Lorenzon AF, Sturel T, Pineau A
(2009) Eng Fract Mech 76(10):1411

11. Needleman A, Tvergaard V (1984) J Mech Phys Solids 32(6):461
12. Tvergaard V, Needleman A (1984) Acta Metall 32(1):157
13. Thomason P (1985) Acta Metall 33(6):1087
14. Thomason P (1985) Acta Metall. 33(6):1079
15. Pardoen T (2000) Hutchinson, J.W. J Mech Phys Solids

48(12):2467
16. Benzerga AA (2002) J Mech Phys Solids 50(6):1331
17. Scheyvaerts F, Onck P, Tekoglu C, Pardoen T (2011) J Mech

Phys Solids 59(2):373
18. Benzerga AA, Leblond JB (2014) J Appl Mech 81(3):031009
19. Gologanu M, Leblond JB, Devaux J (1993) J Mech Phys Solids

41(11):1723
20. Wen J, Huang Y, Hwang KC, Liu C, Li M (2005) Int J Plast

21(2):381
21. Monchiet V, Bonnet G (2013) Int J Solids Struct 50(2):320
22. Siruguet K, Leblond JB (2004) Int J Plast 20(2):225
23. Leblond JB, Perrin G, Devaux J (1995) European journal of

mechanics and Solids 14(4):499
24. Besson J, Guillemer-Neel C (2003) Mech Mater 35(1-2):1
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156. Jirásek M (1998) Int J Solids Struct 35(31-32):4133
157. Peerlings RHJ, Borst RD, Brekelmans WAM, Vree JHPD (1996)

Int J Numer Methods Eng 39:3391
158. Abbasi M, Ketabchi M, Izadkhah H, Fatmehsaria DH, Aghbash

AN (2011) Procedia Engineering 10(0):415
159. He M, Li F, Wang Z (2011) Chin J Aeronaut 24(3):378
160. Besson J, Steglich D, Brocks W (2001) Int J Solids Struct 38(46-

47):8259
161. Besson J, Steglich D, Brocks W (2003) Int J Plast 19(10):1517
162. Rousselier G (1987) Nucl Eng Des 105(1):97
163. Cao TS (2014) Int J Solids Struct 51(13):2370
164. El Khaoulani R, Bouchard PO (2012) Finite Elem Anal Des

59(0):1
165. Mediavilla J, Peerlings RHJ, Geers MGD (2006) International

Journal For Numerical Methods In Engineering 66(4):661
166. Mediavilla J, Peerlings RHJ, Geers MGD (2006a) Comput Struct

84(8-9):604
167. Feld-Payet S, Chiaruttini V, Feyel F (2013). In: Conference Pro-

ceedings - CFRAC 2013 Repro Fetterle, Prague, Czech Republic,
p 96

168. Seabra MRR, Sustaric P, Cesar de Sa JMA, Rodic T (2013)
Comput Mech 52(1):161
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198. Jirásek M (1998) Int J Solids Struct 35(4133):31–32
199. Bažant Z, Jirásek M (2002) J Eng Mech 128(11):1119
200. Eringen A, Suhubi E (1964) Int J Eng Sci 2(2):189
201. Suhubl E, Eringen A (1964) Int J Eng Sci 2(4):389
202. Bargellini R, Besson J, Lorentz E, Michel-Ponnelle S (2009).

In: Proceedings of the 17th International Workshop on Compu-
tational Mechanics of Materials IWCMM-17, vol 45, p 762

203. Needleman A (1988) Comput Methods Appl Mech Eng 67(1):69
204. D. J. P. C. G. B C (1996) J Eng Mech 122(10):939
205. Sluys L, Borst de R (1992) Int J Solids Struct 29(23):2945
206. Bazant ZP, Pijaudier-Cabot G (1988) J Appl Mech 55
207. Aifantis EC (1992) Int J Eng Sci 30(10):1279
208. Erice B, Gálvez F, Cendón D, Sánchez-Gálvez V (2012) Eng

Fract Mech 79(0):1

209. Khan AS, Liu H (2012) Int J Plast 37(0):1
210. Roth CC, Mohr D (2014) Int J Plast 56(0):19
211. Krajcinovic D, Fonseka GU (1981) J Appl Mech 48(4):809
212. Chow C, Wang J (1987) Eng Fract Mech 27(5):547
213. Chow C, Wang J (1988) Eng Fract Mech 30(5):547
214. Chow C, Wang J (1988) Int J Fract 38(2):83
215. Chow C, Lu T (1989) Eng Fract Mech 34(3):679
216. Steinmann P, Carol I (1998) Int J Eng Sci 36(15):1793
217. Lemaitre J, Desmorat R, Sauzay M (2000) Eur J Mech A Solids

19(2):187
218. Chaboche JL (1981) Nucl Eng Des 64(2):233
219. Krajcinovic D (1985) J Appl Mech 52(4):829
220. Lubarda V, Krajcinovic D (1993) Int J Solids Struct 30(20):

2859
221. Monchiet V, Cazacu O, Charkaluk E, Kondo D (2008) Int J Plast

24(7):1158
222. Keralavarma SM, Benzerga AA (2008) Comptes Rendus
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