
ORIGINAL RESEARCH

Identification of material parameters for thin sheets
from single biaxial tensile test using a sequential inverse
identification strategy

P. A. Prates1 & M. C. Oliveira1 & J. V. Fernandes1

Received: 12 January 2015 /Accepted: 4 May 2015 /Published online: 14 May 2015
# Springer-Verlag France 2015

Abstract An inverse analysis methodology to simultaneous-
ly identify the parameters of various anisotropic yield criteria
together with isotropic work-hardening models of metal
sheets is outlined. This identification makes use of results of
the cruciform biaxial test, i.e., the evolution of the force during
the test, for the two axes of the sample, and the major and
minor strain distributions along both axes, at a given moment
during the test. Based on a study of the sensitivity of the
constitutive parameters to the biaxial tensile test results, the
inverse identification consists on a procedure that sequentially
minimises the gap between experimental and numerical re-
sults. Each step of the sequence uses a distinct cost function
according to the type of results to be minimised, using a
gradient-based optimisation algorithm, the Levenberg-
Marquardt method. The inverse methodology allows for the
identification of constitutive parameters of complex constitu-
tive models. This sequential identification strategy is com-
pared to a strategy based on a single cost function, involving
all parameters and type of results, which has lower
performance.

Keywords Constitutive parameter identification . Biaxial
tensile test . Inverse analysis . Optimisation algorithm . Finite
element method

Introduction

The accurate modelling of the plastic behaviour of metal
sheets is a fundamental aspect to be considered in numerical
simulation of sheet metal forming processes. The non-linear
nature of the plastic behaviour of metal sheets makes their
characterisation quite complex, depending on factors such
as: (i) the constitutive model used to describe the material
hardening and anisotropic behaviour; (ii) the experimental
tests, comprising the sample geometries and testing conditions
and (iii) the strategy for identification of the constitutive pa-
rameters. Until now, there is no standard approach for
performing the constitutive parameters identification, al-
though several models for describing the yielding [1–9] and
hardening [10–16] behaviours, and identification strategies
[17–26] have been suggested. The use of deep-drawn compo-
nents with increasingly elaborate geometries, together with
the emergence of new metals and alloys in the sheet metal
forming industry, has stimulated the development of sophisti-
cated constitutive models, whose increased flexibility for de-
scribing the material plastic behaviour is associated with a
larger number of parameters to identify. In contrast, relatively
little emphasis has been given to the development of new
strategies for constitutive parameters identification, and the
classical strategies are predominantly used. In this context,
the parameters identification is usually performed using sets
of simple mechanical tests that promote linear strain paths and
homogeneous deformation in the measuring region, like uni-
axial tension, plane strain, shear and biaxial tests. As sheet
metal forming processes are carried out under multi-axial
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strain paths and heterogeneous deformation, the use of these
conventional tests is certainly not the most appropriate option
to characterise the material plastic behaviour. Therefore, effi-
cient inverse identification procedures are being developed as
an alternative to the classical identification strategies. These
procedures make use of one mechanical test unlike the classi-
cal strategies, for which the number of tests increases with the
number of parameters to be identified. In general, this issue
does not arise in inverse identifications, provided that the ex-
perimental results are sensitive to the parameters to be
identified.

The use of optical full-field measurement techniques for
analysing heterogeneous strain fields, such as digital image
correlation (DIC), has motivated the development of inverse
methods for identification of constitutive parameters. These
methods are based on the minimisation of the gap between
the numerical and experimental results of one mechanical test.
A comprehensive overview on this topic can be found in [27].
Approaches for the inverse parameters identification have
been conducted using the biaxial tensile testing of cruciform
specimens (see e.g., [28–32]). For example, in a recent work
by Zhang et al. [32], the parameters identification of Hill’48
[1] and Bron and Besson [5] yield criteria was performed for
AA5086 aluminium sheet, using two methods: (i) a classical
one, using conventional homogeneous tests, and (ii) an in-
verse analysis, from only one biaxial tensile test of a cruciform
sample. The inverse analysis methodology consists of
minimising the gap between the experimental and numerical
distributions of the major and minor strains along the diagonal
direction of the sample central area, at an instant immediately
before rupture, using a SIMPLEX optimisation algorithm.
The authors conclude that both methods provide similar yield
contours, and so a single biaxial tensile test is adequate to
obtain all the material parameters of the yield criterion for
the AA5086 sheet. This and other cases have shown the ca-
pability to identify parameters of the constitutive laws from
tests inducing heterogeneous deformation in the samples, as
the biaxial cruciform test adopted in the current work.

It turns out, however, that the evaluation of the perfor-
mance of inverse methodologies is a sensitive issue.
Generally, this assessment is performed using the following
procedures. One of them consists on the comparison between
experimental and identified results from simple classical tests
(e.g., [31, 33, 34]), which are not representative of the whole
plastic behaviour, even if in a large number. Also, the direct
comparison between the assessed results with those obtained
with other identification strategies is used (e.g., [29, 32, 35,
36]). This allows comparing strategies, but does not assess the
efficiency of the strategy to represent the mechanical behav-
iour of the material. In general, none constitutive model and
identification strategy allows to perfectly describe the behav-
iour of a material. Finally, the use of deep-drawing tests for
assessing the performance of the identification (e.g., [21, 24,

35, 37, 38]) is sensitive not only to the constitutive parameters
but also to process parameters.

The authors of the current work have previously developed
an inverse analysis methodology for the simultaneous identifi-
cation of the parameters of Hill’48 yield criterion and Swift
work-hardening law [11], from results of a single biaxial tensile
test on a cruciform specimen [30]. The inverse identification
procedure consists on determining a solution for the constitu-
tive parameters, according to an algorithm built from a forward
analysis study. The algorithm comprises the minimisation of
four cost functions in a sequence of six steps, each one referring
to the optimisation of distinct parameters. The proposed iden-
tification strategy only requires the measurement of the load
evolutions during the biaxial tensile test of the cruciform spec-
imen and the evaluations of the major and the minor principal
strains along the axes of the specimen, at a givenmoment of the
test. This simplicity, coupled with the wide range of strain paths
occurring in the cruciform specimen during the biaxial test, is
an advantage over identification strategies previously pro-
posed, related to the use of full-field measurement methods
(e.g., [29]). This methodology also proved to be an alternative
to classical identification using conventional tests with homo-
geneous deformation, which is time-consuming, hard to ana-
lyse and liable to uncertainties. In this context, it is now
established an inverse methodology that allows for the param-
eters identification of complex plastic constitutive models,
from a single biaxial tensile test of a cruciform specimen.
Moreover, it also allows the user to decide which constitutive
model best describes the material behaviour. The simultaneous
identification of the constitutive parameters (yield criteria and
isotropic work-hardening laws) is now performed with re-
source to an optimisation procedure using a gradient-based
optimisation algorithm, the Levenberg-Marquardt method
[39], and three distinct cost functions in a pre-specified se-
quence, depending on the type of result that is minimised.

In order to develop the proposed strategy, computer gener-
ated results are used. This allows for the proper design of the
identification strategy, enabling the direct comparison of the
identified constitutive model with that used as input (see e.g.,
[40]). In contrast, the use of experimental results leads to dif-
ficulties in assessing the extent to which the material behav-
iour is described by the identified constitutive model.

Numerical model

The geometry selected for the cruciform specimen was previ-
ously designed and optimised, in order to ensure the occurrence
of strain paths that are commonly observed in sheet metal
forming processes, i.e., strain paths ranging from uniaxial ten-
sion (in the arms region of the specimen) to biaxial tension (in
the central region of the specimen) [30]. Fig. 1 shows the ge-
ometry and the dimensions of the cruciform specimen in the
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sheet plane. The 0x and the 0y axes coincide with the rolling
direction (RD) and the transverse direction (TD) of the sheet,
respectively. The cruciform specimen is submitted to equal
displacements in both 0x and 0y directions. The displacements
along the 0x and 0y axes are measured at points A and B,
respectively. The sheet thickness is equal to 1.0 mm.

Due to geometrical and material (orthotropic) symmetries,
the numerical simulation model only considers one eighth of
the specimen. The specimen is discretised with tri-linear 8-node
hexahedral solid elements associated to a selective reduced
integration, with an average in-plane size of 0.5 mm and one
layer through-thickness. Numerical simulations were carried
out with DD3IMP in-house finite element code, developed
and optimised to simulate sheet metal forming processes [41].

Constitutive model

A constitutive model establishes a relationship between the
stress and plastic strain states of the deformable body. In case
of metal sheets, the full constitutive model is typically defined
by: (i) an anisotropic yield function; (ii) a hardening law and
(iii) an associated flow rule. The yield function and hardening
law allow describing the initial yield surface of the material and
its subsequent evolution during plastic deformation. The
hypoelastic formulation of the constitutive model assumes that
the incremental total strain tensor, dε, can be additively split
into elastic and plastic components, dεe and dεp, respectively:

dε ¼ dεe þ dεp ð1Þ

The linear elastic behaviour is considered isotropic and is
described by the generalised Hooke’s law, as follows:

dεe ¼ 1þ ν
E

dσ −
ν
E
tr dσð ÞI ð2Þ

where ν is the Poisson’s ratio, E is the Young’s modulus and
tr(σ) is the trace of the Cauchy stress tensor,σ. The associated
flow rule states that the increment of plastic strain tensor dεp

remains normal to the yield surface, for any arbitrary stress
increment driven towards the outside of the yield surface:

dεp ¼ dλ
∂ f ðσ; εpÞ

∂σ
ð3Þ

where dλ is a scalar multiplier that depends on the value of the
equivalent stress defined by a given yield criterion function,
and f σ; εpÞð is the yield function, representing herein the
plastic potential, expressed as a function of the Cauchy stress
tensor, σ, and the equivalent plastic strain, εp.

In this paper, material parameters identification is per-
formed for the following anisotropic yield functions: (i)
Hill’48 [1]; (ii) Barlat’91 - below denoted as Yld’91 [2]; (iii)
Karafillis & Boyce - below denoted as KB’93 [3] and (iv)
Drucker+L [4]. The last three yield functions contain a num-
ber of parameters greater than the Hill’48 criterion, namely the
so-called isotropy parameters that provide flexibility to the
shape of the yield surface of anisotropic materials.
Moreover, these criteria can be converted to Hill’48 criterion
for predefined values of its parameters.

Hill’48 yield criterion describes the yield surface for
orthotropic materials as follows:

f ðσi j; εpÞ ¼ F σyy−σzz

� �2 þ G σzz−σxxð Þ2

þ H σxx−σyy

� �2 þ 2Lτ2yz þ 2Mτ2xz

þ 2Nτ2xy−Y
2 εpÞ≤0ð ð4Þ

where σxx,σyy,σzz,τxy,τxz and τyz are the components of the
Cauchy stress tensor (σ) in the orthotropic axes system of the
metal sheet; F,G,H, L,M and N are the anisotropy parameters
to be identified and Y (εp ) is the yield stress, which evolution
during deformation is defined by the work-hardening law.

The criteria Yld’91, KB’93 and Drucker+L are described
through a stress tensor, s, obtained by a linear transformation
of the Cauchy stress tensor, σ:

s¼ L :σ ð5Þ

where L is the linear transformation operator proposed by
Barlat et al. [2]:

L ¼

C2 þ C3ð Þ=3 −C3=3 −C2=3 0 0 0
−C3=3 C3 þ C1ð Þ=3 −C1=3 0 0 0
−C2=3 −C1=3 C1 þ C2ð Þ=3 0 0 0

0 0 0 C4 0 0
0 0 0 0 C5 0
0 0 0 0 0 C6

2
6666664

3
7777775
ð6Þ

in whichCi represents the anisotropy parameters, with i=1,…,
6; Ci is equal to 1 for the isotropy condition.

g
h

R

R
e

f

L1 L2

A

B

0x=RD

0
y

=
T

D L1 [mm] 33.00

L2 [mm] 15.00

R [mm] 3.00

e [mm] 25.60

f [mm] 21.58

g [mm] 5.00

h [mm] 22.54

[º] 9.45

Fig. 1 Geometry and dimensions of the cruciform specimen. The grips,
represented in grey, hold the specimen by grabbing it along the dashed
lines. A and B represent the points for measuring the displacements, Δl
[30]
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The Yld’91 yield criterion is an extension to anisotropy of
the isotropic yield criterion of Hosford [42]:

f σi j; ε
pÞ ¼ s1−s2j jm þ s2−s3j jm þ s3−s1j jm−2Ym εpÞ≤0ð� ð7Þ

where s1, s2 and s3 are the principal components of the stress
tensor s; m is an isotropy parameter that can assume any pos-
itive and real value greater than 1. Hosford [42] proposes
values of m depending on the crystallographic structure of
the material:m is equal to 6 and 8, for metals with BCC (body
centred cubic) and FCC (face centred cubic) structure, respec-
tively. As a more general alternative,m can be optimised in the
context of constitutive parameter identification, as in the cur-
rent work.

Karafillis & Boyce yield criterion describes the anisotropy
as follows:

f ðσi j; εpÞ ¼ 1−að ÞΦ1 þ a
32k

22k−1 þ 1
Φ2−2Y 2k εpÞ≤0;ð ð8Þ

where a is an isotropic weighting parameter, ranging between
0 and 1; 2k is an isotropic exponential parameter, with k inte-
ger and positive to ensure the convexity of the yield surface,
and Φ1 and Φ2 are defined as:

Φ1 ¼ s1−s2ð Þ2k þ s2−s3ð Þ2k þ s3−s1ð Þ2k ð9Þ
Φ2 ¼ s2k1 þ s2k2 þ s2k3 ð10Þ

Any yield surface described by Eq. (8) lies between the
lower bound of the Φ1 function (a=0) (the lower bound of
this function occurs for k=+∞ - Tresca yield surface - and the
upper bound for k=1 - von Mises yield surface) and the upper
bound of Φ2 function (a=1) (the lower bound of this function
occurs for k=1 - von Mises yield surface - and the upper
bound for k=+∞ - outside von Mises yield surface).
Karafillis & Boyce proposed to set k fixed and equal to a high
enough value (k=15), which enables approximately describ-
ing any surface between the lower bound and the upper bound
of Eq. (8), varying only the value of the weighting factor a [3],
as in this work.

Drucker+L is an extension of Drucker isotropic criterion
[43] to anisotropy:

f ðσi j; ε
pÞ ¼ 1=2tr s2

� �� �3−c 1=3tr s3
� �� �2−27 Y εpÞ=3ð Þ6≤0

�
ð11Þ

where tr (s) is the trace of the stress tensor s and c is a
weighting isotropy parameter, ranging between −27/8 and
9/4, to ensure the convexity of the yield surface.

It is worth highlighting that Hill’48 criterion is a special
case of the yield functions described above, under the follow-
ing conditions: (i) m=2, for Yld’91 criterion; (ii) a=0 and k=
1, for KB’93 criterion and (iii) c=0, for Drucker+L criterion.
In all these cases, the equations that relate the Hill’48 yield
parameters with those of Yld’91, KB’93 and Drucker+Lyield
criteria are [44]:

F ¼ 2C2
1 þ C1C2 þ C1C3−C2C3

� �
=6

G ¼ 2C2
2 þ C1C2 þ C2C3−C1C3

� �
=6

H ¼ 2C2
3 þ C1C3 þ C2C3−C1C2

� �
=6

L ¼ 3
�
2C

2
4;M ¼ 3

�
2C

2
5;N ¼ 3

�
2C

2
6

8>>><
>>>:

ð12Þ

The Swift [11] and Voce [10] laws are used for iden-
tifying the isotropic hardening. They are written, respec-
tively:

Y εpÞ ¼ C ε0 þ εpÞnðð ð13Þ
Y εpÞ ¼ Y 0 þ Y Sat−Y 0ð Þ 1−exp −CYε

pÞð �½ð ð14Þ

where εp is the equivalent plastic strain and C, ε0 and n are the
material parameters of Swift law (Y0=Cε0

n is the initial yield
stress) and Y0, YSat and CYare the material parameters of Voce
law. For simplicity, it is assumed that the work-hardening law
is represented by the uniaxial tensile curve along the rolling
direction, which means that the parameters of the yield criteria
must fulfil the following equations:

Hill’48:

Gþ H ¼ 1 ð15Þ

Yld’91:

1

2� 3m
2C2 þ C3j jm þ C3−C2j jm þ C2 þ 2C3j jmð Þ ¼ 1 ð16Þ

KB’93:

1−a
2� 32k

2C2 þ C3ð Þ2k þ C3−C2ð Þ2k þ −C2−2C3ð Þ2k
h i

þ

a

2� 1þ 22k−1
� � C2 þ C3ð Þ2k þ −C2ð Þ2k þ −C3ð Þ2k

h i
¼ 1

ð17Þ
Drucker+L:

3
1

8� 93
C2 þ C3ð Þ2 þ C3

2 þ C2
2

h i3
−

c

94
C2 þ C3ð Þ3 þ −C3ð Þ3 þ −C2ð Þ3

h i2� 	1
3

¼ 1 ð18Þ
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In this study, the anisotropy parameters associated to the
out-of-plane shear stress are kept as in isotropy (i.e., L=M=
1.5, for Hill’48 yield criterion and C4=C5=1, for Yld’91,
KB’93 and Drucker+L yield criteria), since the results of the
biaxial cruciform test are not sensitive to these parameters
[30]. This approach is generally adopted in the constitutive
parameters identification of metal sheets.

Inverse parameter identification

A potential approach for solving the problem of constitu-
tive parameters identification consists on performing suc-
cessive numerical simulations of the physical experiment
using the finite element method, for example, and
obtaining the set of parameters by minimising the gap
between the experimental and the numerical results. This
is known as inverse identification strategy, where the gap
to minimise is described by a cost function that depends
on the variables to be analysed.

The inverse identification strategy developed in this
work follows up a previous one, proposed by the au-
thors, which allows identifying the parameters of
Hill’48 yield criterion and Swift work-hardening law
[30], using the results of a unique test, the cruciform
biaxial tensile test. Now, the strategy covers a wider
range of constitutive models. Hill’48 and three other
criteria that can be converted to Hill’48 criterion for
predefined values of its parameters were used, although
the procedure can be naturally extended to any other
criterion. The Swift and Voce work-hardening laws were
used. The simultaneous identification of the constitutive
parameters (yield surface and work-hardening laws) is
performed with resource to a sequential optimisation
procedure using a gradient-based optimisation algo-
rithm, the Levenberg-Marquardt method. In case of
plastic material parameter identification, gradient-based
optimisation algorithms seem to be more efficient than
gradient-free algorithms, since they require far less iter-
ations, and so a small number of numerical simulations
[29]. The results of the biaxial cruciform test required
for implementing the proposed inverse identification
strategy are:

(i) the evolutions of the load, P, with the specimen bound-
aries displacement,Δl, during the test, for the axes 0x and
0y; Δl is measured at A and B in Fig. 1.

(ii) the distributions of the total equivalent strain, ε, along the
axes 0x and 0y of the sample (i.e., ε as a function of the
distance, d, to the centre of the sample), for a given bound-
aries displacement,Δl, preceding and close to the value of

the displacement at maximum load; the total equivalent
strain is determined using von Mises definition:

ε ¼ 2 ε1
2 þ ε2

2 þ ε1ε2
� �

=3
� �1=2 ð19Þ

where ε1 and ε2 are respectively the major and the minor
principal strains, in the sheet plane. The principal strain axes
are parallel to the axes of the specimen (in case of the 0x axis,
ε1 is equal to εxx and ε2 is equal to εyy, and in case of the 0y
axis, ε1 is equal to εyy and ε2 is equal to εxx - see Fig. 1).
(iii) the distributions of the strain path ratio, defined by

ρ=ε2/ε1, along the axes 0x and 0y of the sample (i.e.,
ρ as a function of the distance, d, to the centre of the
sample), for the boundaries displacement, Δl, as stated
above in (ii).

The strain variables ε1 and ε2 can be experimentally
determined using DIC technique or even the classical
circle grid strain analysis. In order to correctly calculate
the differences for a certain value of d and Δl, the nu-
merical and reference variables were obtained for the
same value of d andΔl. This is achieved by performing
linear interpolations of the results.

A forward analysis previously performed by the au-
thors [30] led to the following conclusions concerning
the sensitivity of the cruciform test results to the varia-
tion of the constitutive parameters values:

(i) the load evolution during the test (P vs.Δl), for the 0x
and 0y axes, is almost only influenced by the work-
hardening law parameters (i.e., the initial yield stress,
Y0, and the parameters that define the work-hardening:
n, in case of Swift law, and RSat (=YSat - Y0) and CY, in
case of Voce law) and by an amount, K, that depends
on the parameters of the yield criterion (e.g., for the
case of Hill’48 criterion this amount, K, is equal to the
value of (F+H)1/2, when G+H=1 (Eq.(15))). In fact,
when altering this amount, the σ0/σ90 ratio (where σ0
and σ90 are the tensile yield stresses along the rolling
and transverse direction, respectively) is changed, and
consequently the relative level of the load evolutions
between the 0x and 0y axes, is also altered. The fol-
lowing equations summarise how to estimate the val-
ue of K for all yield criteria studied in this work, as-
suming that Eqs. (15) to (18) are observed:

Hill’48:

K ¼ F þ Hð Þ1=2 ¼ σ0=σ90ð Þ ð20Þ
Yld’91:

K ¼ 1

2� 3m
C1−C3j jm þ 2C1 þ C3j jm þ 2C3 þ C1j jmð Þ

� 	 1
m

¼ σ0=σ90ð Þ

ð21Þ
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KB’93:

K ¼ 1−a
2� 32k

−C3−C1ð Þ2k þ −C3ð Þ2k þ 2C3 þ C1ð Þ2k
h i

þ a

2� 22k−1 þ 1
� � −C3ð Þ2k þ −C1ð Þ2k þ C1 þ C3ð Þ2k

h i" # 1
2k

¼ σ0=σ90ð Þ ð22Þ

Drucker+L:

K ¼ 1

3

1

8
C3

2 þ C1 þ C3ð Þ2 þ C1
2

h i3
−
c

9
−C3ð Þ3 þ C1 þ C3ð Þ3 þ −C1ð Þ3

h i2� 	1
3

¼ σ0=σ90ð Þ ð23Þ

(ii) the total equivalent strain distribution (ε vs.
d), evaluated nearly before the maximum load,
is influenced by the anisotropy parameters and
by the parameters that define the work-
hardening (for example n, in case of Swift
law);

(iii) the strain path ratio distribution (ρ vs. d), evaluated
nearly before the maximum load, is almost not in-
fluenced by the parameters of the work-hardening
law;

A complementary forward study is now performed in
order to analyse the sensitivity of the cruciform test
results to variations of the value of the isotropy param-
eter of each criterion, which defines the shape of the
yield surface. The illustrative cases shown below con-
cern the Swift work-hardening law (with Y0=100 MPa;
C=288.54 MPa and n=0.2) and the values of the param-
eters of the yield criteria are as in the isotropy condi-
tion. The von Mises yield criterion is used as reference.
The behaviours under comparison are described by
Yld’91 (with m=6), KB’93 (with a=0.90, for k=15)
and Drucker+L (c=2) criteria; it should be noted that:
(i) Yld’91 becomes von Mises for m=2; (ii) KB’93 with
k=15 approaches von Mises criterion when a is close to
0.97; and (iii) Drucker+L becomes von Mises for c=0.
Figure 2a shows the yield surfaces of these materials on
the plane (σxx - σyy) for εp = 0 (i.e., at the onset of
plastic deformation). The results of the forward analysis
are summarised in Fig. 2b, d, showing the effects of
varying the isotropy parameters relatively to the von
Mises yield criterion. These results concern: P vs. Δl
(Fig. 2b); ε vs. d (Fig. 2c) and ρ vs. d (Fig. 2d), which
are equal for 0x and 0y axes (isotropic materials). The
results in Fig. 2c, d are plotted for Δl=3 mm, with d
measured from the centre of the cruciform specimen up
to a distance corresponding to the minimum value of ρ
(see Fig. 2d; this minimum occurs for a d value near
38 mm after which ρ increases approaching zero - not
shown in the figure). The choice of this range of d
values to be used in the inverse analysis intends to

avoid: (i) considering two points with the same strain
path (the strain paths that occur for d values between
about 20 and 38 mm are repeated between this latter d
value and the end of the arms of the specimen) and (ii)
measuring the variables ε and ρ close to the heads of the
sample, where the comparison between experimental
and numerical results can be influenced by the boundary
condit ions, i f they are not properly reproduced
numerically.

The sensitivity of the cruciform test results to the
variation of the values of the isotropy parameters in
the studied range, can be summarised as follows: (i)
the load evolution during the test (P vs. Δl), for the
0x and 0y axes, is almost not influenced by the isotropy
parameters; in contrast, (ii) the total equivalent strain (ε
vs. d) and the strain path ratio (ρ vs. d) distributions are
influenced by the isotropy parameters, showing notice-
ably complex changes.

The forward analysis conclusions allowed developing
an inverse strategy for parameters identification, with
the following assumptions: (i) the experimental results
under the cruciform biaxial test, concerning the evolu-
tions of P vs. Δl, ε vs. d and ρ vs. d are determined in
advance and (ii) the elastic properties of the material are
known.

The proposed inverse parameters identification strate-
gy is detached in two stages. The first stage consists on
the simultaneous identification of Hill’48 and work-
hardening law parameters, using the results of P vs.
Δl and ε vs. d. The work-hardening parameters must
be separately identified for Swift and Voce laws and
the law (Swift or Voce) that best describes the results
of the cruciform test may be selected to proceed to the
next stage of identification. The second stage allows
extending the parameters identification procedure to
more complex yield functions (Yld’91, KB’93 and
Drucker+L, in the current work), whenever the identifi-
cation carried out during the first stage proves to be
insufficient to describe the experimental results of the
cruciform test, namely the ρ vs. d results, not analysed
in the first stage.

552 Int J Mater Form (2016) 9:547–571



First stage of the identification strategy

The first stage of the inverse identification strategy consists
on the identification of the Hill’48 parameters, concurrently
with the Swift law parameters, by one side, and with the
Voce law parameters, by other side. This stage is detached
in three steps: firstly, an initial set of parameters is chosen
(Step 1) and then the Levenberg-Marquardt optimisation
algorithm is applied, in the next two steps (Steps 2 and 3).
These steps sequentially minimise the gap between the fol-
lowing numerical and experimental results of the test: (i) P
vs. Δl results, along the 0x and 0y axes, are minimised in
Step 2 for identifying the parameters of the work-hardening
law and the (F+H)1/2 value; and (ii) ε vs. d results, along
the 0x and 0y axes, are minimised in Step 3, for identifying
the values of the Hill’48 criterion parameters. The choice of
this sequence is derived from the forward analysis, which
allowed concluding that the variables analysed in Step 2 (P
vs.Δl results) remain quite stable during Step 3. Moreover,
it should be noted that the simultaneous minimisation of
both P vs. Δl and ε vs. d results in a unique step could lead
to somewhat unbalanced identifications, resulting in a less
adequate combination of the parameters of the yield crite-
rion and hardening law, as it was concluded from a com-
prehensive study in a previous work [30].

Step 1 Initial estimate of the parameters of Hill’48 yield
criterion and Swift and/or Voce work-hardening
laws. The initial values of Hill'48 parameters can be
set equal to the isotropic material, i.e., F=G=H=0.5
and L=M=N=1.5, as in the current work; alterna-
tively, the initial estimate of the parameters can be
determined, for example, from the Lankford coeffi-
cients values at various directions in the sheet plane
(r0, r45 and r90, for example), if available. For the
first estimate of the parameters of the work-
hardening laws, typical values of the material can
be used, as in the current work; the parameters ob-
tained by fitting a tensile curve for any strain path,
such as tension along the rolling direction, can also
be used. A comprehensive study showed that the
accuracy of the final results is not influenced (i.e.,
the material behaviour is similarly accurately de-
scribed) by the first estimate, although it can influ-
ence the number of iterations.

Step 2 Optimisation of the work-hardening parameters (Y0,
C and n, in case of Swift law, and Y0, YSat and CY, in
case of Voce law) and of the value ofK=(F+H)1/2, by
modifying F orH values, for example. The optimisa-
tion is carried out by minimising the gap between the
numerical and experimental P vs. Δl results, along

(a) (b)

(c) (d)
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Fig. 2 Materials behaviour
studied in the forward analysis:
(a) yield surfaces in the plane (σxx

- σyy), for εp = 0; numerical
simulation results of the
cruciform test concerning (b) P
vs.Δl; (c) ε vs. d; (d) ρ vs. d. The
results in figures (b) to (d) are
equal for the 0x and 0y axes
(isotropic materials)
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the 0x and 0y axes, through the following least-
squares cost function:

F1 Að Þ ¼ 1

Q1

X
i¼1

Q1

δPi

2

0x

þ 1

Q2

X
i¼1

Q2

δPi

2

0y

ð24Þ

where δP is defined as the relative difference between the
numerical, Pnum(A), and the experimental reference load
values, Pexp, during the test, δP=(P

num(A)−Pexp)/Pexp, along
the 0x and 0y axes;A is the set of parameters to be optimised, i
is the measuring point of load (which corresponds to a certain
Δl value) and Q1 and Q2 are the total number of load measur-
ing points, in the 0x and 0y axes respectively. The total num-
ber of load measuring points should be equal for both axes.
The condition G+H=1 can be kept unchanged during this
step, as in the current study.
Step 3 Optimisation of the values of F, G, H and N anisot-

ropy parameters of the Hill’48 criterion. This is per-
formed byminimising the gap between the numerical
and experimental ε vs. d results along the 0x and 0y
axes, through the following least-squares cost func-
tion:

F2 Bð Þ ¼ 1

R1

X
i¼1

R1

δεi
2

0x

þ 1

R2

X
i¼1

R2

δεi
2

0y

ð25Þ

Where δ
ε
is defined as the relative difference between

the numerical, εnum Bð Þ, and the experimental reference
von Mises total equivalent strain, εexp, distributions,
δ
ε
¼ εnum Bð Þ−εexpÞ=εexpð , along the 0x and 0y axes; B is

the set of constitutive parameters to be optimised, i is the
measuring point of the total equivalent strain (which corre-
sponds to a certain d value) and R1 and R2 are the total number
of total equivalent strain measuring points in the 0x and 0y
axes, respectively. The total number of measuring points
should be equal for both axes. This step keeps the work-
hardening parameters and the K=(F+H)1/2 value as identified
in Step 2 and also, by choice, the condition G+H=1 un-
changed; therefore, only N and one of the parameters, F, H,
and G are updated in B.

The optimisation procedure for both F1 and F2 stops when
the relative difference between a given set of parameters and
the next one is less than a user predefined tolerance, for each
of the constitutive model parameters. It is inappropriate to
predefine a tolerance for the minimum values of the cost func-
tions, because it depends on how the selected constitutive
model describes the behaviour of the material. Generally the
parameters are properly identified after Step 3. However, in
some cases, especially for severe anisotropy, it is advisable to
repeat Steps 2 and 3, although one cycle is usually sufficient.
The need to repeat Steps 2 and 3 can be evaluated by comput-
ing the value of the cost function F1 after Step 3 and

comparing its value with that obtained at the end of Step 2.
No updating is needed if the order of magnitude of F1 remains
unchanged.

Second stage of the identification strategy

The second stage of the inverse identification strategy consists
on extending the parameter identification to other yield func-
tions, starting from the solution of the parameters of Hill’48
criterion, as previous identified in the first stage. Yield func-
tions, like Yld’91, KB’93 and Drucker+L criteria, contain
more parameters than Hill’48 criterion, making them more
flexible to describe the experimental reference results.
Typically, such yield functions contain the so-called isotropy
parameters, which affect the shape of the yield surface and
therefore mainly influence the strain path ratio distribution,
along the 0x and 0y axes. It is worth mentioning that, at the
end of Step 3 of the first stage, the gap between numerical and
experimental P vs.Δl and ε vs. d results, along the 0x and 0y
axes, is minimised. But if the experimental ρ vs. d results,
along these axes, are far from those numerically obtained, this
indicates that the Hill’48 criterion does not conveniently de-
scribes the material behaviour. Therefore, at the end of Step 3,
it is required to check if the strain path distributions along both
axes are well predicted by the numerical simulation, to decide
whether to stop or proceed with the optimisation procedure. In
the first case, it is accepted that Hill’48 criterion properly
describes the behaviour of the material; in the second case,
this behaviour is not adequately described and the optimisa-
tion can proceed selecting other criteria that eventually de-
scribes it better.

Step 4 Evaluation of the requirement to expand the identifi-
cation to other yield criteria. This evaluation can be
performed using a function, characterising the gap
between the numerical and experimental strain path
distributions, along the 0x and 0y axes, defined as

F3 Bð Þ ¼ 1

S1

X
i¼1

S1

Δρi
2

0x

þ 1

S2

X
i¼1

S2

Δρi
2

0y

ð26Þ

whereΔρ is defined as the difference between the numerical,
ρnum(B), and the experimental reference strain path ratios,
ρexp, i.e., Δρ=ρnum(B)−ρexp, along the 0x and 0y axes; B is
the set of constitutive parameters determined at the end of Step
3, i is the measuring point of the strain path ratio (which
corresponds to a certain d value) and S1 and S2 are the total
number of strain path ratio measuring points, in the 0x and 0y
axes, respectively. The total number of measuring points
should be equal for both axes.

It is up to the decision maker to choose the degree to which
the correspondence between numerical and experimental re-
sults is acceptable. If proceeding to the second stage of the
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identification strategy, the parameters to continue optimisation
must be obtained from the set of Hill’48 yield criterion param-
eters optimised during the first stage, which must be converted
into the set of anisotropy parameters of one of the Yld’91,
KB’93 or Drucker+L yield criteria, using Eqs. (12) and as-
suming that the isotropy parameters are as follows: m=2 for
Yld’91; a about 0.97 when fixing k=15 for KB’93; and c=0
for Drucker+L. The following step (Step 5) consists on
optimising the isotropy parameter of the yield criterion, keep-
ing the anisotropy parameters and the work-hardening law
unchanged.
Step 5 Optimisation of the isotropy parameters of the yield

criterion (m, a and c, for Yld’91, KB’93 and
Drucker+L criteria, respectively). This consists on
minimising the numerical and the experimental ref-
erence Δρ vs. d results along both 0x and 0y axes,
through the least-squares cost function F3(C), de-
fined as in Eq. (22), where C represents the isotropy
parameter to be optimised. The total number of mea-
suring points should also be equal for both axes. As
for F1 and F2, the optimisation procedure stops when
the relative difference between a given value of the
parameter and the next one is less than the user
predefined tolerance.

It is important to point out that the change of the
isotropy parameter, occurring during this optimisa-
tion step, modifies the shape of the yield surface
and also alters its size. In fact, when changing the
isotropy parameter, keeping fixed the anisotropic
ones, Eqs. (16), (17) and (18) are no longer observed,
i.e., the size of yield surface will change. However,
even changing the isotropy parameter, the size of the
surface can be maintained, as much as possible, by
acting on the anisotropy parameters. This should be
done by multiplying all the anisotropy parameters by
the same amount, such that the full set of parameters
obeys to Eqs. (16), (17) and (18). This allows keeping
the parameters of the work-hardening law unchanged
during this step.

Step 6 Evaluation of the requirement for cycling. At the end
of Step 5 it should be checked if the numerical results
concerning the evolutions of the load during the test,
for both axes, and the distributions of total equivalent
strain along these axes are not changed. This can be
done computing the values of the cost functions F1

and F2, after Step 5 and comparing their values with
those obtained at the end of Step 3. No updating is
needed if the order of magnitude of both cost func-
tions remains unchanged. Generally, the numerical
results concerning the load evolution are not signifi-
cantly changed, unless the isotropy parameter of the
yield criterion is far from the value that takes for the
Hill’48 criterion (i.e., m=2, for Yld’91; a about 0.97,

for the k value used (equal to 15), for KB’93, and c=
0, for Drucker+L). If significant changes are ob-
served, then Step 2 (first stage) must be performed
again (minimisation of F1). Even without the need to
minimise F1, the numerical ε vs. d results are sensi-
tive to the transition fromHill’48 to other criteria and,
consequently, the cost function F2 must be minimised
again after Step 5. Thus, generally it is necessary to
perform a step similar to Step 3 of the first stage, to
optimise the values of C1, C2, C3 and C6, i.e., the
anisotropy parameters of the criterion. As in Step 3
for the Hill’48 criterion, where the value of K=(F+
H)1/2 is kept fixed, the equivalent condition on the
parameters of the other yield criteria, defined by the
K value (Eqs. (21), (22) and (23)), is also kept un-
changed; also the condition defined by one of the
equations (16), (17) and (18), depending on the crite-
rion, can be kept unchanged. Therefore, only C6 and
one of the parameters C1, C2, and C3 need to be
updated. At this point, it is advisable to repeat Step
5 and again check the orders of magnitude of func-
tions F1 and F2. Usually, it is sufficient to perform
only one cycle.

Final remarks

Table 1 summarises the proposed inverse identification strat-
egy, showing the type of results, numerical and experimental,
which are compared at each step, as well as the cost functions
evaluated at each step. The proposed strategy recommends
that the optimisation begins with the Hill’48 criterion, using
results concerning the loading curve (P vs.Δl) and the distri-
bution ε vs. d, along the axes 0x and 0y. The optimisation of
the loading curve allows realizing which law is most suitable
for describing the work-hardening behaviour of the material,
regardless of the criteria, and so to make the choice between
Swift and Voce laws. The optimisation of the strain distribu-
tion allows understanding to what extent the material behav-
iour is described by the Hill’48 criterion. Furthermore, the
comparison between the numerical and experimental distribu-
tions of the strain path ratios, ρ vs. d (not optimised until this
moment) makes an important additional contribution in this
analysis (the distribution ε vs. d, can be satisfactory, but the
strain path ratios may not be adequately described by Hill’48).
In cases where it is deemed appropriate extending the identi-
fication to other criteria, the isotropy parameter of the selected
yield criterionmust be optimised, using the distributions of the
strain path ratios, ρ vs. d. The procedure can continue by
repeating the steps of the first stage using the selected yield
criterion, and restarting with the second or third step. The
latter case occurs when the parameters of the work hardening
law does not need to be optimised.
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This procedure allows addressing the parameter identifica-
tion problem using autonomous cost functions for each step,
which are evaluated one after the other in a pre-specified se-
quence, as an alternative to perform the parameter identification
by minimising a single cost function comprising all material
parameters and results of different types, as commonly per-
formed by other authors (e.g., [21, 23, 24, 29]). As it will be
shown in the next chapter, the use of a single cost function can
lead to a somewhat inadequate description of the plastic behav-
iour of the material, namely the work-hardening. The currently
proposed strategy also has the advantage that, first of all, it
allows perceiving to what extent the Hill’48 criterion describes
the material behaviour, whose usage is always desirable be-
cause of its simplicity. If the Hill’48 criterion does not conve-
niently describes the material behaviour, the identification re-
sults for this criterion provide an initial solution which enables
the extension of the inverse analysis to other criteria.

This inverse identification can be applied directly to any of
the above-mentioned criteria or further criteria, without going
through Hill’48 criterion. The proposal of starting the identi-
fication procedure with Hill’48 criterion has the advantage of
providing a solution that can be used as initial estimate for
parameter identification of more flexible yield criteria. In this
context, it should be noted that it is not possible to know a

priori which is the most convenient constitutive model to de-
scribe the experimental results.

Finally, it should be mentioned that, when the parameter
identification is performed by minimising a unique weighted
cost function comprising all material parameters and different
types of experimental results, as classically used, the solution
is influenced by the pre-selected weights for each portion of
the function. In the methodology proposed herein, the ques-
tion of the relative weight of each type of result is solved by
establishing the sequence of steps for identifying the parame-
ters of the constitutive model. This has the advantage of not
requiring user defined weighting factors to consider the influ-
ence of each type of result in the identification.

Inverse analysis: case studies

To illustrate the above described inverse identification strate-
gy, two case studies are considered in the next sections. In
each case, computer generated results of the cruciform tensile
test were used as Bexperimental^ results. Computer generated
results allows for the suitable comparison between inverse
analysis and Bexperimental^ results, concerning the yield sur-
face and the work-hardening functions. As mentioned in the

Table 1 Inverse analysis algorithm for the sequential identification of constitutive parameters (yield criterion and isotropic work-hardening law)

0 Generate the reference results of the biaxial tensile test:
P vs. Δl
ε vs. d
ρ vs. d

1 Initial estimate of the parameters of the Hill’48 criterion and the Swift and/or Voce work-hardening laws

2
Minimise F1 Að Þ ¼ 1

Q1
∑
i¼1

Q1

δPi

2

0x

þ 1
Q2

∑
i¼1

Q2

δPi

2

0y

Results compared: P vs. Δl
Identification of: work-hardening law parameters and K value

3
Minimise F2 Bð Þ ¼ 1

R1
∑
i¼1

R1

δεi
2

0x

þ 1
R1

∑
i¼1

R1

δεi
2

0y

Results compared: ε vs. d
Identification of: anisotropic parameters of the yield criterion
Note:
Check requirement to return to Step 2,
by comparing the order of magnitude of values of the function F1 at the end of Step 3 with that at the end of Step 2

4 Proceed to other criteria? Evaluation taking into consideration, for example, the function

F3 Bð Þ ¼ 1
S1

∑
S1

i¼1
Δρi

2

0x

þ 1
S2

∑
S2

i¼1
Δρi

2

0y

No - End of the optimisation
Yes - Obtain an initial solution to proceed with the optimisation for more complex yield criteria

5
Minimise F3 Cð Þ ¼ 1

S1
∑
i¼1

S1

Δρi
2

0x

þ 1
S2

∑
i¼1

S2

Δρi
2

0y

Results compared: ρ vs. d
Identification of: isotropic parameter (s) of the yield criterion

6 Cycling? Evaluation: Comparison of the order of magnitude of F1 and F2 at the end of Step 5 with those at the end of Step 3
No - End of the optimisation.
Yes - Proceed to Step 2 or 3, depending on the results to be optimised

556 Int J Mater Form (2016) 9:547–571



Introduction, the use of real experimental cases leads to diffi-
culties in assessing the extent to which the material behaviour
is described by the identified constitutive model. In Case
Study 1, the material plastic behaviour follows Drucker+L
criterion and Swift work-hardening law, while in Case Study
2, the material follows CB2001 yield criterion [4] and a Voce
work-hardening law.

The purpose of both case studies is to show how to identify
the set of parameters of Hill’48 (first stage), Yld’91, KB’93
and Drucker+L (second stage) yield criteria, simultaneously
with the work-hardening law parameters. The main objective
of Case Study 1 is to illustrate in a simple way how to perform
the proposed strategy and only the parameters of Swift law are
identified. In Case Study 2, the set of parameters is identified
for both work-hardening laws, Swift and Voce, in order to
illustrate how to decide which is the more suitable hardening
law for describing the material behaviour. The minimisation
procedure adopted for the cost functions F1, F2 and F3 stops
when the relative difference between a given set of parameters
and the next one is less than 5%, for each of the constitutive
model parameters. It was tested that, using different initial sets
of parameters, the proposed strategy converges to similar so-
lutions, i.e., describing the material behaviour as accurately as
possible according to the selected constitutive model.

Case study 1

In this case study, the material anisotropic behaviour is de-
scribed by Drucker+L criterion and the work-hardening be-
haviour is described by Swift law, which parameters are
shown in Table 2 [30]. The elastic properties are: Young’s
modulus, E=210 GPa and Poisson ratio, ν=0.3. The number
of measured points used to evaluate the cost functions F1, F2

and F3, is equal to 100 (Q1=Q2=R1=R2=S1=S2=100).
The identification is carried out for Hill’48 (first stage),

Yld’91, KB’93 and Drucker+L (second stage) yield criteria
simultaneously with Swift work-hardening law (Voce’s law
was not used). Table 3 shows Hill’48 yield criterion (as for
isotropy) and Swift isotropic work-hardening parameters used
as first estimate for the inverse identifications, as well as the
ones resulting from the identified parameters of Hill’48 yield
criterion and Swift isotropic work-hardening law, by the pro-
posed inverse identification. The first stage of the identifica-
tion procedure involved two returns to Step 2, after Step 3.
Table 3 also shows the identified parameters of the Yld’91,
KB’93 and Drucker+L criteria, together with the Swift law

parameters (second stage). The second stage of the identifica-
tion procedure involved two returns to Step 3, after Step 6, for
Yld’91 and Drucker+L criteria, while for KB’93 criterion it
involved only one return to Step 3.

Figure 3 compares the reference material results (Mat) of
the cruciform test with those obtained in the first stage of the
sequential strategy (Hill’48 yield criterion and Swift isotropic
work-hardening law - Final), for the 0x and 0y axes. The
results concerning the initial estimate (Isotropic) are also
shown in Fig. 3a, c and e. The results concern P vs. Δl and
δP vs. Δl (Fig. 3a, b, respectively); ε vs. d and δ

ε
vs. d

(Fig. 3c, d, respectively) and ρ vs. d and Δρ vs. d (Fig. 3e,
f, respectively). The results in Fig. 3c to f are plotted for Δl≈
6 mm, i.e., theΔl value immediately preceding the maximum
load. These results concern the distance, d, from the centre of
the cruciform specimen up to a distance corresponding to the
minimum value of ρ (see Fig. 3e, where the minimum occurs
for a d value slightly less than 40 mm; after this d value, ρ
increases approaching zero - not shown in the figure). It can be
concluded that the proposed inverse identification strategy
leads to an accurate description of the load evolution during
the test for both axes (absolute relative differences less than
0.12%), although this is not the case for the total equivalent
strain distribution (absolute maximum relative differences of
about 15%) and the strain path ratio distribution results (abso-
lute maximum relative differences of about 30%). In fact, the
values ofF1, F2 and F3 are 1.3×10

−6, 8.6×10−3 and 3.2×10−2,
respectively (see Table 3).

Figure 4 shows the results corresponding to δP vs. Δl
(Fig. 4a, b, for the 0x and 0y axes, respectively), δ

ε
vs. d

(Fig. 4c, d), for the 0x and 0y axes, respectively) and Δρ vs.
d (Fig. 4e and f, for the 0x and 0y axes, respectively), allowing
the comparison between all criteria studied. These results
show that, when compared with the Hill’48 criterion, the ac-
curacy of the load evolution during the test decreases for both
axes, in the case of the KB’93 yield criterion, but increases for
the Yld’91 and Drucker+L criteria. The accuracy of the total
equivalent strain and strain path ratio distribution results are
substantially increased for the Yld’91 and Drucker+L yield
criteria. For the Drucker+L criterion, the comparison of the
identified constitutive parameters (Swift law and criterion)
with the material parameters (Table 2) shows quasi-absolute
coincidence of results, since the Drucker+L criterion allows
for the full description of the material behaviour. The above
findings are supported by the values of the cost functions
shown in Table 3.

Table 2 Constitutive parameters of the reference material of the Case Study 1, described by Drucker+L yield criterion and Swift work-hardening law

Drucker+L criterion parameters Swift law parameters

C1 C2 C3 C4=C5 C6 c Y0 [MPa] C [MPa] n

0.6681 0.8158 1.2394 1.0000 0.9440 1.4265 118.63 502.61 0.268
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In order to visualise the results of the identification, Fig. 5
shows the equivalent stress - equivalent plastic strain curves
(Fig. 5a) and the yield surfaces (Fig. 5b), in the plane (σxx,
σyy), for εp = 0.3, close to the maximum value of ε attained
during the cruciform test (see Fig. 3c, for the material (Mat))
and corresponding to the identifications usingHill’48 criterion
(first stage), Yld’91, KB’93 and Drucker+L yield criteria
(second stage). When comparing the results obtained from
the identified sets of parameters with the material results, the
following is observed: (i) the equivalent stress - equivalent
plastic strain curve obtained from the proposed inverse iden-
tification strategy enables an accurate description of the mate-
rial curve, whatever the yield criteria used; (ii) the Hill’48
criterion does not conveniently describes the material yield

surface, unlike the Drucker+L criterion that exactly fits the
material yield surface, as would be expected.

Case study 2

In this case study, the mechanical behaviour of the material is
described by Voce law and CB2001 yield criterion [4]. The
CB2001 criterion is a generalisation of the Drucker’s isotropic
criterion to anisotropy, and is written as follows:

f ðσi j; ε
pÞ ¼ J 2

3−cJ 32−27ðY εpÞ=3ð Þ6≤0 ð27Þ
where J2 and J3 are, respectively, the second and third gener-
alised invariants of the Cauchy stress tensor:
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The coefficients ak (k=1 to 6) and bk (k=1 to 11) are
the anisotropy parameters of the criterion (ak and bk are
equal to 1 for the isotropy condition) and c is an isotropy
parameter.

This yield function holds 18 parameters and so it is more
flexible than the criteria used for identification. The material
results for Case Study 2 were obtained considering the con-
stitutive parameters, close to ones of aluminium [45], as

indicated in Table 4. The elastic properties are: Young’s mod-
ulus, E=68.9 GPa and Poisson ratio, ν=0.33.

Firstly, the proposed inverse identification strategy was
performed for the following constitutive models: (i) Hill’48
yield criterion and Swift work-hardening law and (ii) Hill’48
yield criterion and Voce work-hardening law. Tables 5 and 6
show the identified parameters (Final) and those used as first
estimate (Step 1) of the inverse identifications. For

Table 3 Cost functions and sequentially identified constitutive parameters (Final), at the end of the stages 1 (Hill’48 yield parameters) and 2 (Yld’91,
KB’93 and Drucker+L yield parameters) of the Case Study 1 (Swift law)

Cost functions Hill’48 yield parameters Swift law parameters

F1 F2 F3 F G H L=M N m Y0 [MPa] C [MPa] n

Step 1 7.9×10−2 9.2×100 2.6×10−1 0.5000 0.5000 0.5000 1.5 1.5000 100.00 490.13 0.300

Final 1.3×10−6 8.6×10−3 3.2×10−2 0.1965 0.3196 0.6804 1.5 1.5026 119.53 507.52 0.268

Cost functions Yld’91 yield parameters Swift law parameters

F1 F2 F3 C1 C2 C3 C4=C5 C6 m Y0 [MPa] C [MPa] n

Final 6.5×10−7 2.5×10−4 9.4×10−4 0.6454 0.7853 1.1920 1 0.9160 6 118.74 503.76 0.268

Cost functions KB’93 yield parameters (with k=15) Swift law parameters

F1 F2 F3 C1 C2 C3 C4=C5 C6 a Y0 [MPa] C [MPa] n

Final 7.5×10−5 2.8×10−3 1.4×10−3 0.6318 0.7732 1.1997 1 0.9144 0.836 119.01 504.76 0.268

Cost functions Drucker+L yield parameters Swift law parameters

F1 F2 F3 C1 C2 C3 C4=C5 C6 c Y0 [MPa] C [MPa] n

Final 1.2×10−7 2.2×10−6 3.3×10−8 0.6680 0.8155 1.2390 1 0.9442 1.4297 118.53 502.63 0.268

The initial estimate of the parameters and the correspondent cost functions (Step 1) are also shown
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comparison, these tables also include the parameters identified
with a single cost function strategy (Single), for those consti-
tutive models. Details of this strategy as well as the discussion
of its results will be made at the end of this section.

The constitutive parameters identified during the first stage
of the sequential identification strategy involved one return to
Step 2 after Step 3, for both work-hardening laws (Voce or
Swift). In case of Voce law, a total of 46 simulations were
performed (25 in Step 2+21 in Step 3); in case of Swift law,
a total of 32 simulations were performed (20 in Step 2+12 in
Step 3). Tables 5 and 6 also show the identified parameters of
the Voce and Swift laws, respectively, together with the
Yld’91, KB’93 and Drucker+L criteria (second stage), whose

identification involved always only one return to Step 3, after
Step 6. In case of Voce law, the second stage of the identifica-
tion procedure required the following additional number of
simulations: (i) 10, for Yld’91 (4 in Step 5+6 in Step 3); (ii)
5, for KB’93 (2 in Step 5+3 in Step 3) and (iii) 20, for
Drucker+L (17 in Step 5+3 in Step 3). In case of Swift law:
(i) 5, for Yld’91 (2 in Step 5+3 in Step 3); (ii) 11, for KB’93 (5
in Step 5+6 in Step 3) and (iii) 11, for Drucker+L (8 in Step
5+3 in Step 3).

Figures 6 and 7 compare the results of the reference mate-
rial (Mat) of the biaxial cruciform test with those obtained
from the parameters identified at the end of the first stage
(Step 3) of the proposed inverse strategy (Final), i.e., for the

(a) (b)

(c) (d)

(e) (f)

Isotropic Mat_0x Mat_0y Final_0x Final_0y
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Fig. 3 Comparison between the
results of reference material (Mat)
and those obtained from the
sequential identification of the
constitutive parameters of the
Swift law and Hill’48 criterion
(end of stage 1 - Final), for the
Case Study 1: (a) P vs.Δl; (b) δP
vs.Δl; (c) ε vs. d; (d) δ

ε
vs. d; (e)

ρ vs. d and (f)Δρ vs. d. In Figs. 3
(a), (c) and (e), the results labelled
BIsotropic^ concern the first
estimate
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Hill’48 yield criterion, with the Voce and Swift work-
hardening laws, respectively. The results presented are P vs.
Δl (Figs. 6 and 7a); ε vs. d (Figs. 6 and 7c) and ρ vs. d (Figs. 6
and 7e), for both axes. The comparison is also performed in
the form of the differences: δP vs.Δl (Figs. 6 and 7b), δ

ε
vs. d

(Figs. 6 and 7 d) andΔρ vs. d (Figs. 6 and 7 f), for both axes.
The results in Figs. 6 and 7c to f are plotted for Δl=3.5 mm,
equal for both 0x and 0y axes, immediately preceding the
maximum load. The results concerning the initial estimate
(Isotropic) are also shown in Figs. 6 and 7a, c and e.

To evaluate which work-hardening law (Swift or Voce) best
describes the material behaviour, the δP vs.Δl results must be

analysed. In fact, the parameters of the work hardening law
mainly influence the load evolution results [30] and obviously
the type of law also influences the load evolution results, as
shown in Figs. 6 and 7b, for the Voce and Swift laws, respec-
tively. These results show that Voce law leads to a quasi-
uniform distribution of δP vs. Δl for both axes (with absolute
relative differences less than 0.8%) while the Swift law leads
to an uneven distribution (with absolute relative differences
that reach about 2%). The quasi-uniform distribution obtained
with the Voce law means that the work-hardening behaviour
of the material is better described by this law than by the Swift
law, as expected (the reference material follows the Voce law).

(a) (b)

(c) (d)

(e) (f)
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Fig. 4 Comparison between the
results obtained from the
sequential identification of the
constitutive parameters for the
Swift law and the Hill’48 criterion
(stage 1), Yld’91, KB’93 and
Drucker+L criteria (stage 2), for
the Case Study 1: (a) and (b) δP
vs. Δl, for the 0x and 0y axes,
respectively; (c) and (d) δ

ε
vs. d,

for the 0x and 0y axes,
respectively; (e) and (f) Δρ vs. d,
for the 0x and 0y axes,
respectively

560 Int J Mater Form (2016) 9:547–571



Nevertheless, the Hill’48 criterion poorly describes the ma-
terial ε vs. d and ρ vs. d distributions whatever the hardening
law. The average (0x and 0y axes) of the absolute values of δ

ε

are equal to 4.84% (Voce) and 5.97% (Swift), and the F3

values are equal to 1.6×10−2 (Voce) and 2.2×10−2 (Swift).
Thus, the parameters identification performed for Hill’48 cri-
terion with Voce and Swift laws were extended to other three
criteria: Yld’91, KB’93 and Drucker+L.

Figures 8 and 9 allows comparing the results of the biaxial
cruciform test obtained from the parameters identified with the
sequential identification strategy for these three criteria with
the ones of the reference materials, for Voce and Swift laws,
respectively. The results are shown in the form of the differ-
ences: δP vs.Δl (Figs. 8 and 9a, b), δ

ε
vs. d (Figs. 8 and 9c and

d) and Δρ vs. d (Figs. 8 and 9e and f). The results in Figs. 8
and 9a, c and e concern the axis 0x and in Figs. 8 and 9b, d and
f concern the 0y axis. Unlike for Case Study 1, in this case it
becomes difficult to realize the improvements attained for
each of the three yield criteria used in the second stage,
Yld’91, KB’93 and Drucker+L, when compared with the
Hill’48 criterion (first stage).

For both work-hardening laws, the results show that the ac-
curacy of the load evolution during the test, for both axes, re-
mains globally the same for the three yield criteria used in the
second stage, although it could be argued that for the KB’93
there is a slightly increase of accuracy, in case of the Voce law.
Regarding the accuracy of the total equivalent strain and strain
path ratio distribution results, the KB’93 criterion is the only one

that gets worse compared to Hill’48 criterion. The accuracy of
the different cases can be better examined from the values of the
cost functions in Tables 5 and 6. The small differences between
the accuracy of the results are, however, sufficient to highlight
the interaction between the work-hardening law and the yield
criterion and show that, as expected for this reference material,
globally better results are attained with the Voce law, whatever
the yield criteria selected. Lastly, it should be mentioned that the
Drucker+L criterion together with the Voce law provides slight-
ly better results (lower values of all cost functions: F1, F2 and
F3) than other criteria. However, when comparing the results of
all criteria, the improvement of accuracy in performing the sec-
ond stage of the identification is not significant.

In order to visualise the results of the identification, Fig. 10
shows the equivalent stress - equivalent plastic strain curves
and the yield surfaces, in the plane (σxx, σyy), for εp = 0.12,
close to the maximum value of ε attained during the cruciform
test for the reference material (Mat - see Fig. 6c) and the
corresponding identifications using Hill’48, Yld’91, KB’93
and Drucker+L yield criteria, combined with Voce law.
When comparing the results of the sets of identified parame-
ters with the reference ones, the following is observed: (i) the
equivalent stress - equivalent plastic strain curves obtained
from the sequential inverse identification strategy provides
an accurate description of the material, whatever the yield
criteria used; (ii) the yield surfaces obtained from the sequen-
tial identification strategy are quite similar for all yield criteria
and close to the reference yield surface.

Table 4 Constitutive parameters
of the reference material of the
Case Study 2, described by
CB2001 yield criterion and Voce
work-hardening law [45]

CB2001 yield parameters

a1 a2 a3 a4 a5=a6
1.043 1.416 1.236 0.922 1

b1 b2 b3 b4 b5 b10 b6=b7= b8=b9=b11 c

1.343 2.436 0.397 0.100 1.015 0.598 1 1.002

Voce work-hardening parameters

Y0 [MPa] YSat [MPa] CY

112.64 318.65 12.99

(a) (b)

Mat Hill'48 Yld'91 KB'93 Drucker+L
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Fig. 5 Comparison between the
results of the reference material
(Mat) and those obtained from the
sequential identification of the
constitutive parameters of the
Swift law and the Hill’48 (stage
1), Yld’91, KB’93 and Drucker+
L (stage 2) criteria, for the Case
Study 1: (a) equivalent stress -
equivalent plastic strain curves
and (b) yield surface, for εp = 0.3
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For this case study, the above results from the sequential
inverse identification strategy are compared with the results
obtained from a single cost function approach, where the pa-
rameter identification is performed, as traditionally, by
minimising a unique cost function comprising all material
parameters and the weighted results of the test:

F Dð Þ ¼ w1F1 Dð Þ þ w2F2 Dð Þ þ w3F3 Dð Þ ð29Þ

where F1(D), F2(D) and F3(D) are the cost functions, whose
formulation is equal to Eqs. (20), (21) and (22), respectively,

and D is the set of constitutive parameters to be optimised, i.e.,
the parameters of the work-hardening law and yield criterion;
each term in the cost function is weighted by a factor, wi, in
order to eventually consider, the influence of each type of result
in the identification. For example, in classic identification,
Barlat et al. (2005) argue that the weight of each data type
should reflect the relative precision with which this can be
determined, i.e., more robust results must have higher weight
values than those less robust [46]. Also, the weight factors may
also be selected according to the preference of the user to favour
the minimisation of a type of result over the other. Otherwise,
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Fig. 6 Comparison between the
results of reference material (Mat)
and those obtained from the
sequential identification of the
constitutive parameters of the
Voce law and Hill’48 criterion
(end of stage 1 - BFinal^), for the
Case Study 2: (a) P vs.Δl; (b) δP
vs.Δl; (c) ε vs. d; (d) δ

ε
vs. d; (e)

ρ vs. d and (f)Δρ vs. d. In Figs. 6
(a), (c) and (e), the results labelled
BIsotropic^ concern the first
estimate
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the accurate choice of such values of wi requires some sort of
optimisation procedure, which is always difficult to accomplish
concomitantly with the identification process. The difficulty of
making a good choice of wi usually leads to consider all weight
factors equal to 1, as in the current work. Similarly to the se-
quential methodology, the minimisation procedure here
adopted for the cost function F (D) stops when the relative
difference between a given set of parameters and the next one
is less than 5%, for each of the constitutive model parameters.

This single cost function identification strategy was per-
formed for all yield criteria and the Voce and Swift laws,

starting with the same initial estimate used in the sequential
identification. Figures 11 and 12 compare the results of the
biaxial cruciform test obtained from the parameters identified
with the single cost function strategy for all criteria and the
Voce and Swift laws, respectively, with those of the reference
materials (as in Figs. 8 and 9 for the sequential strategy).
Regarding the influence of the type of work-hardening law,
whatever the yield criterion used, the single cost function
identification approach leads to a less uniform distribution of
the δP vs. Δl results than the proposed inverse identification,
in case of Voce law, although the same kind of non-uniform
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Fig. 7 Comparison between the
results of reference material (Mat)
and those obtained from the
sequential identification of the
constitutive parameters of the
Swift law and Hill’48 criterion
(end of stage 1 - BFinal^), for the
Case Study 2: (a) P vs.Δl; (b) δP
vs.Δl; (c) ε vs. d; (d) δ

ε
vs. d; (e)

ρ vs. d and (f)Δρ vs. d. In Figs. 7
(a), (c) and (e), the results labelled
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distributions occurs for the Swift law (compare with Figs. 8
and 9b). Furthermore, the accuracy of the load evolution dur-
ing the test is much smaller using the single cost function
optimisation procedure than in case of the sequential optimi-
sation. This happens without a visible gain of accuracy in the
remaining results (total equivalent strain and strain ratio dis-
tributions), as we will see in more detail right away.

The values of the cost function, F4, which is minimised in the
single cost function identification strategy and the identified con-
stitutive parameters are shown in Tables 5 and 6 (BSingle^ in
these tables), for Voce and Swift laws, respectively. These tables
also show the values of F1, F2 and F3, for comparison with the
sequential identification strategy. The F4 cost function shows

similar values (same order of magnitude) for both identification
procedures, although the single cost function identification ap-
proach (Single) tends to present slightly smaller values (only in
one case – Swift law and Hill’48 criterion - F4 is slightly greater
in the single cost function approach); also, both identification
strategies lead to values of cost functions F2 and F3 which are
of the same order of magnitude. However, the values of F1
obtained from the sequential identification strategy are about
one order of magnitude lower than the ones obtained from the
single cost function identification approach. This is the main
feature distinguishing both identification strategies. The implica-
tions of this distinction can be easily visualised when comparing
the equivalent stress - equivalent plastic strain curves and the
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Fig. 8 Comparison between the
results obtained from the
sequential identification of the
constitutive parameters of the
Voce law and the Hill’48 criterion
(stage 1), Yld’91, KB’93 and
Drucker+L criteria (stage 2), for
the Case Study 2: (a) and (b) δP
vs. Δl, for the 0x and 0y axes,
respectively; (c) and (d) δ

ε
vs. d,

for the 0x and 0y axes,
respectively; (e) and (f) Δρ vs. d,
for the 0x and 0y axes,
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results obtained from the
sequential identification of the
constitutive parameters of the
Swift law and the Hill’48 (stage
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yield surfaces obtained from the sequential inverse iden-
tification strategy with those obtained from the single cost
function identification approach, as shown in Fig. 13.
Figure 13a shows the equivalent stress - equivalent plastic
strain curves and Fig. 13b the yield surfaces in the plane
(σxx, σyy), for εp = 0.12, close to the maximum value of ε
attained during the cruciform test for the reference mate-
rial (Mat - see Fig. 6c) and the corresponding identifica-
tions using Hill’48, Yld’91, KB’93 and Drucker+L yield
criteria, combined with Voce law. When comparing the
results from the identified sets of parameters with the
reference ones, it can be concluded: (i) the single cost
function approach mainly overestimates the entire work-

hardening curve; (ii) the yield surfaces obtained from
the sequential inverse identification strategy (see
Fig. 10) are closer to the reference yield surface than
the ones obtained from the single cost function identifi-
cation approach. The comparison of the total number of
iterations and simulations required for both strategies,
also presented in Tables 5 and 6, shows that the first
stage of the sequential strategy is the one requiring
more simulations, which in the worst case can be twice
the total number required by the BSingle^ strategy. It
should be noted that, after identifying the Hill’48 pa-
rameters, the extension to more complex yield criteria
requires a relatively low number of simulations.
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Fig. 11 Comparison between the
results obtained from the single
cost function identification of the
constitutive parameters of the
Voce law and the Hill’48, Yld’91,
KB’93 and Drucker+L criteria,
for the Case Study 2: (a) and (b)
δP vs. Δl, for the 0x and 0y axes,
respectively; (c) and (d) δ
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Final remarks

The results from both case studies allow reaching the follow-
ing conclusions:

(i) The proposed inverse identification procedure (see
Table 1) uses three cost functions that are sequentially
minimised. Priority is given to the fitting of the P vs.
Δl results. The following step concern the minimisation
of the gap between numerical and experimental ε vs. d
results. The quality of the fitting of the P vs. Δl results
can allow choosing which hardening law better describes
the material behaviour, if using several laws. The proce-
dure can use the ρ vs. d results, in order to capture the
experimental strain path ratios observed in the specimen.
The parameter identification can be more or less accurate
depending on the anisotropic material behaviour and on
the flexibility of the yield criterion chosen by the user.

(ii) The use of a unique cost function including P vs. Δl, ε
vs. d and ρ vs. d results for the inverse identification can
lead to inconsistencies regarding the accurate description
of the material plastic behaviour. Namely, this identifica-
tion approach can deteriorate the description of the ma-
terial P vs. Δl results, and so the parameters and the
choice of the hardening law, without improving the de-
scription of the ε vs. d and ρ vs. d results.

Conclusions

This paper presents an inverse strategy to simultaneously
identify the constitutive parameters of complex constitutive
models, i.e., anisotropic yield criteria and work-hardening
laws parameters, from the results of biaxial tensile test of a
cruciform sample. This strategy makes use of experimental
and numerical simulation results of the cruciform biaxial test
on metal sheets and a sequential procedure for the parameter
identification using a gradient-based method, the Levenberg-
Marquardt algorithm. The sequential inverse identification
strategy makes use of three distinct cost functions, and their
minimisation is performed in a pre-specified sequence. Firstly,
the work-hardening law parameters and a quantity that de-
pends on parameters of the yield criterion are identified by
minimising the gap between the numerical and experimental
load evolution during the test, on both axes of the sample.
Thereafter, the anisotropy parameters of the yield criteria are
fully identified, by minimising the gap between the numerical
and experimental total equivalent strain distributions along
both axes of the sample, at a given moment of the test close
to the maximum load. These two stages can be performed
using the Hill’48 or any other criterion. Finally, a third cost
function, minimising the gap between the numerical and

experimental strain path distributions along both axes of the
sample can be used in order to define the most appropriate
criterion for describing the material behaviour. This shows to
be competitive with typical inverse identification strategies,
which make use of a single cost function including all consti-
tutive parameters and different type of results at once.
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