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Abstract A strain-based forming limit criterion is widely
used in sheet-metal forming industry to predict necking. How-
ever, this criterion is usually valid when the strain path is linear
throughout the deformation process [1]. Strain path in incre-
mental sheet forming is often found to be severely nonlinear
throughout the deformation history. Therefore, the practice of
using a strain-based forming limit criterion often leads to er-
roneous assessments of formability and failure prediction. On
the other hands, stress-based forming limit is insensitive
against any changes in the strain path and hence it is first used
to model the necking limit in incremental sheet forming. The
stress-based forming limit is also combined with the fracture
limit based on maximum shear stress criterion to show neck-
ing and fracture together. A derivation for a general mapping
method from strain-based FLC to stress-based FLC using a
non-quadratic yield function has been made. Simulation mod-
el is evaluated for a single point incremental forming using
AA 6022-T43, and checked the accuracy against experiments.
By using the path-independent necking and fracture limits, it
is able to explain the deformation mechanism successfully in
incremental sheet forming. The proposed model has given a
good scientific basis for the development of ISF under non-
linear strain path and its usability over conventional sheet
forming process as well.
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Introduction

With advanced computer hardware and software, it is possible
to model sheet metal forming processes. Although the fine-
tuning of product manufacturing and performance is empirical,
modeling can be an efficient tool to guide and optimize design,
to evaluate material attributes, and to predict life time and fail-
ure. Moreover, modeling can be used as a research tool for a
more fundamental understanding of physical phenomena that
can result in the development of improved or new products.

The success of a sheet forming operation can be limited by
several phenomena, such as fracture, buckling, and plastic
flow localization. For a given forming operation, the sheet
may undergo deformation up to a given strain prior to failure
by one of the limiting phenomena. The forming limit curve
(FLC) or diagram illustrates the major and minor strains ex-
pected on the surface of a deforming sheet material at the onset
of local necking. This curve is usually plotted on axes
representing the major and the minor strains in the plane of
the sheet. It can be plotted in either strain or stress space. The
characterization of forming limits in sheet metal is a signifi-
cant challenge in complex processes since the conventional
strain-based FLC is sensitive to strain path effects.

The most promising solution for dealing with strain-path
effects in the FLC is to use a stress-based curve, as indepen-
dently proposed by Kleemola and Pelkkikangas [2], Stoughton
[3], and Stoughton and Yoon [1, 4]. These authors have shown
that the stress-based FLC is not affected by strain path, and
should be applicable without modification to analysis of all
forming problems. As can be seen in Fig. 1, the FLCs described
in strain space with pre-strains are mapped to a single curve in
stress space. This verifies the path independency of the stress-
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based FLC. Furthermore, Kuwabara et al. [5] measured the
stress state at the forming limit in tube expansion with end feed
under proportional and non-proportional conditions and direct-
ly confirmed that the forming limit as characterized by the state
of stress is insensitive to loading history.

In this research, stress-based forming limit combined with a
fracture polygon approach based on maximum shear stress cri-
terion [6] which used for deep drawing is employed to explain
the mechanism of incremental sheet forming following nonlin-
ear strain path for AA 6022-T4E32. A Barlat’s yield function
[7, 8] (called Yld2000-2d) has been used to predict anisotropic
behavior of the aluminum sheet. In Haque and Yoon [9], a brief
result from the Yld2000-2d has been presented for a cone
shape. In this work, in order to provide a theoretical basis, a
detail derivation has been made for a general mapping method
from strain-based FLC to stress-based FLC using a non-
quadratic yield function. Also, the theory has been also applied
for a pyramidal shape as well as a cone shape to show a gen-
erality of method. Local strain and stress along the rolling di-
rection has been also measured and incorporated in the fracture
model. The related experimental data have been presented.
Necking and post-necking behavior during incremental sheet
forming has been discussed with the proposed stress-based
forming limit curve at necking and fracture limit curve at frac-
ture. The proposed model incorporating the limit curve at neck
and fracture together gives an advantage to explain the post
necking ductility of incremental sheet forming.

Constitutive modelling

Constitutive laws in materials generally consist of a
state equation and evolution equations. The state

equation describes the relationship between the strain
rate ε̇, stress σ, temperature T and state variables xi,
which represent the microstructural state of the material.
This can be translated, for instance in a scalar form for
uniaxial deformation, as

ε̇ ¼ ε̇ σ; T ; xk
� � ð1Þ

The evolution equations describe the development of the
microstructure through the change of the state variables and
can take the form

ẋk ¼ ẋk σ; T ; xk
� � ð2Þ

At the continuum scale, for a multiaxial stress space,
plastic deformation is well described with a yield sur-
face, a flow rule and a hardening law. The yield surface
in stress space separates stress states producing elastic
and elasto-plastic deformation. It is a generalization of
the tensile yielding behavior to multiaxial stress states.
Plastic anisotropy is the result of the distortion of the
yield surface shape due to the material microstructural
state. Życzkowski [10] discussed different phenomena
attached to the yield surface shape at a macroscopic
scale. Regardless of the shape of the yield surface,
strain hardening can be isotropic or anisotropic. The
former corresponds to an expansion of the yield surface
without distortion. Any other form of hardening is an-
isotropic and leads to different properties in different
directions after deformation, even if the material is ini-
tially isotropic. Whether the yield surface expands,
translates or rotates as plastic deformation proceeds, a
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Fig. 1 Comparisons of path effects: (a) Strain-based FLC (path effect), (b) Stress-based FLC (no path effect) (taken from Stoughton [3])
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shape must be defined to account for the current aniso-
tropic axes.

The material description is fully defined using the follow-
ing set of equations

ϕ σð Þ ¼ ϕ σi j

� � ¼ σ yield conditionð Þ
ε̇i j ¼ λ̇

∂ϕ
∂σi j

flow ruleð Þ
σ ¼ σ εð Þwithσε̇ ¼ σi jε̇i j hardening functionð Þ

ð3Þ

It is assumed that the effects of temperature and strain rate
can be included in the formulation through σ, for instance
using σ ¼ σ ε;ε̇; Tð Þ. However, deformations involving creep
and grain sliding are not accounted for in this discussion. The
problem reduces to define the functions σ and ϕ.

The yield surface of FCC and BCC metals is usually rep-
resented adequately by an even function of the principal
values Sk of the stress deviator s suggested by Hosford [11],
i.e.,

ϕ ¼ S1−S2j ja þ S2−S3j ja þ S3−S1j ja ¼ 2σa ð4Þ

The exponent a is connected to the crystal structure
of the material, i.e., 6 for BCC and 8 for FCC. This
was established as a result of many polycrystal simula-
tions. Therefore, although this model is macroscopic, it
contains some information pertaining to the structure of
the material.

Yoon et al. [7] introduced two linear transformations
operating on the sum of two yield functions in the case
of plane stress. The complete form of the linear
transformation-based plane stress function was proposed
by Barlat et al. [8] called Yld2000-2d. FE implementa-
tion of Yld2000-2d can be found in Yoon et al. [12].
More sophisticated yield function (called Yld2004-18p
[13]) was developed and implemented especially for
highly anisotropic rigid-packaging alloys which have
more than four ears shown in Yoon et al. [14]. Howev-
er, in this study, Yld2000-2d is only used to consider a
moderate anisotropy for AA6022-T4E32 (which has on-
ly four ears).

Extensions of Eq. 4 based on the case of planar an-
isotropy are briefly summarized for a plane stress state
and a general stress state. Both formulations are based
on two linear transformations of the stress deviator. The
two linear transformations can be expressed as

es 0 ¼ C
0
s ¼ C

0
Tσ ¼ L

0
σ es″ ¼ C″s ¼ C″Tσ ¼ L″σ ð5Þ

where T is a matrix that transforms the Cauchy stress

tensor σ to its deviator s. es0 and es″ are the linearly
transformed stress deviators and C′ and C″ (or L′ and
L″) are the matrices containing the anisotropy
coefficients.

For plane stress, these two linear transformations reduce to

es 0
xxes0yyes0xy

� �
¼

α1 0 0
0 α2 0
0 0 α7

2
4

3
5 sxx

syy
sxy

2
4

3
5; es ″xxes″yyes″xyh i

¼ 1

3

4α5−α3 2α6−2α4 0
2α3−2α5 4α4−α6 0

0 0 3α8

2
4

3
5 sxx

syy
sxy

2
4

3
5 ð6Þ

Let eS 0
i and eS″j denote the principal values of the tensors es0

andes″ defined above. The plane stress anisotropic yield func-
tion Yld2000-2d is defined as

ϕ ¼ eS 0

1−eS 0

2

����
����a þ 2eS″2 þ eS″1

����
����a þ 2eS″1 þ eS″2

����
����a ¼ 2σa ð7Þ

Note that this formulation is isotropic and reduces to Eq. 4
if C′ and C″ are both equal to the identity matrix. It also
reduces to the von Mises and Tresca yield functions if a=2
(or 4) and a=1 (or ∞), respectively. More details regarding
Yld2000-2d can be obtained in Barlat et al. [8].

Strain-based formability

The forming limit curve (FLC) corresponds to the maximum
admissible local strains achievable just before necking. This
curve is usually plotted on axes representing the major (ε 1)
and the minor (ε 2) strains in the plane of a sheet.

For materials exhibiting isotropy or planar isotropy (same
properties in any direction in the plane of the sheet), the main
equilibrium equation of the The Marciniak and Kuczynski
(MK) model reduces to the following form:

1−D½ � h εI
� �
h εð Þ

� �
σI
1

σ1

� �
¼ 1 ð8Þ

where h εð Þ is the hardening law and σ1 ¼ σ1=σ is the maxi-
mum principal stress normalized by the effective stress. The
superscript BI^ stands for the imperfection region.

The MK model also suggests the necking direction. In the
negative ρ range (ρ=dε2/dε1) lying between uniaxial tension
and plane strain tension (ε2≤0), the necking direction is at an
angle with respect to the maximum principal strain. However,
in the biaxial stretching range (both ε1 and ε2 are positive),
necking occurs most of the time in a direction perpendicular to
the major principal strain, which correspond to the assumption
of Eq. 8. Studies of damage based on microscopic observa-
tions and probability calculations have shown that the order of
magnitude of ‘D’ in Eq. 8 for typical commercial alloys is
0.4 %. In the following discussion the value of 1−D=0.996
has been used to quantitatively characterize the imperfection.
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Stress-based formability

The discussion above assumed that deformation occurs along
linear strain paths, i.e., ρ=dε2/dε1 is constant. In practice, par-
ticularly for multi-step forming, this is not the case. Moreover,
it was shown by Stoughton and Yoon [1] that non-linear strain
paths have an influence on the FLC. Graf and Hosford [15]
showed that the FLC strongly depends on the strain path for
steel and aluminum alloy sheets, respectively. The characteri-
zation of forming limits in strain space is therefore a practical
challenge for complex forming processes due to this sensitivity.

In this section, a general mapping procedure from strain-
based FLC to stress-based FLC for a non-quadratic yield func-
tion including Yld2000-2d is derived. In order to compute the
stress-based FLC, a representation of the forming limit behav-
ior for proportional loading in strain space, i.e., the locus of
principal strains, is specified as follows

strain−FLC ¼ eFLC1
eFLC2

� �
¼ eFLC1 ρ; θ

0
� � 1

ρ

� �
ð9Þ

where ρ is a parameter in the range ρ=[−1,+1] that
defines the ratio of the principal strains on the FLC
and θ′ is the angle between the principal strain axis
and the rolling direction of the sheet in the strain space.
A serious limitation of the strain-based FLC is that it
applies only to cases of proportional loading, and will
lead to a false assessment of formability in a multi-stage
cup drawing, where the strain-path is highly non-linear.
The solution to the latter issue is to use the stress-based
FLD, which has been shown to be independent of load-
ing history. This section describes how to derive the
stress-based forming limit criterion from the strain-
based FLC defined in the above strain-based forming
limit criterion.

The minor principal stress, σ2
FLC, is proportional to

the major stress by a parameter α=[−1,+1], i.e., σ2FLC=-
ασ1

FLC. Note that with the specified range for the α
parameter, the magnitude of the minor principal stress
is always less than or equal to the major stress, so that
we can use the major principal stress as a normalizing
factor in the following derivation without concern about
singularities in the calculations. The stress tensor components
at the stress state (σ1

FLC,σ2
FLC(=ασ1

FLC),θ) where θ is the angle
between the principal stress axis and the rolling direction of
the sheet in the stress space are given by

σFLC
11

σFLC
22

σFLC
12

2
4

3
5 ¼

σFLC
1 cos2 θð Þ þ σFLC

2 sin2 θð Þ
σFLC
1 sin2 θð Þ þ σFLC

2 cos2 θð Þ
σFLC
1 −σFLC

2

� �
sin θð Þcos θð Þ

2
4

3
5

¼ σFLC
1

λ11

λ22

λ12

2
4

3
5 ð10Þ

where
λ11

λ22

λ12

2
4

3
5 ¼

cos2 θð Þ þ αsin2 θð Þ
sin2 θð Þ þ αcos2 θð Þ
1−αð Þsin θð Þcos θð Þ

2
4

3
5 ð11� aÞ

Specifically when θ=0 (normal anisotropy), Eq. 11-a
reduces to

λ11

λ22

λ12

2
4

3
5 ¼

1
α
0

2
4

3
5 ð11� bÞ

Using Eq.10 with the selected material model, we can de-
fine the yield function as a constant σ1

FLCmultiplying the yield
function,

σ σFLC
11 ;σFLC

22 ;σFLC
12

� � ¼ σFLC
1 σ λ11;λ22;λ12ð Þ ð12Þ

The gradient of the plastic potential at this stress state is
also uniquely defined in terms of the λij coefficients and the
material parameters, independently of the magnitude of σ1

FLC.
These equations are described in the next section using
Yld2000-2d. Under proportional loading, the plastic strain
tensor components are proportional to the gradients of the
plastic potential,

eFLC11

eFLC22

2eFLC12

2
4

3
5 ¼ εFLCp

p11
p22
p12

2
4

3
5 ¼ εFLC

p

∂σ
∂σFLC

11

∂σ
∂σFLC

22

∂σ
∂σFLC

12

� �T

ð13Þ
and the principal strains on the forming limit are given by

eFLC1

eFLC2

2
4

3
5 ¼ 1

2

eFLC11 þ eFLC22 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eFLC11 −eFLC22

� �2 þ 2eFLC12

� �2q

eFLC11 þ eFLC22 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eFLC11 −eFLC22

� �2 þ 2eFLC12

� �2q
2
64

3
75

ð14Þ

Substitution of Eq. 13 into Eq. 14 gives,

eFLC1

eFLC2

2
4

3
5 ¼ εFLCp

2

p11 þ p22 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11−p22ð Þ2 þ p212

q

p11 þ p22−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11−p22ð Þ2 þ p212

q
2
64

3
75 ð15Þ

Note that the principal strains at this stress state are oriented
at an angle θ′≠θ for anisotropic materials given by

tan 2θ
0� �

¼ 2eFLC12

eFLC11 −eFLC22

¼ p12
p11−p22

ð16Þ

meaning that the orientation of the principal strains is in gen-
eral not parallel to the orientation of the principal stresses for
an anisotropic material. From Eq. 15, the ratio of principal
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strains is defined uniquely in terms of the gradients of the
plastic potential,

ρ ¼ eFLC2

eFLC1

¼
p11 þ p22−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11−p22ð Þ2 þ p212

q
p11 þ p22 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11−p22ð Þ2 þ p212

q ð17Þ

Using the values for θ′ and ρ from Eqs. 16 and 17, respec-
tively, the strain tensor components on the forming limit are
now fully specified for this stress state,

eFLC11

eFLC22

2eFLC12

2
4

3
5 ¼ eFLC1 ρ; θ

0� � cos2 θ
0� �

þ ρsin2 θ
0� �

sin2 θ
0� �

þ ρcos2 θ
0� �

2 1−ρð Þsin θ
0� �
cos θ

0� �
2
6664

3
7775 ð18Þ

where e1
FLC(ρ,θ′) is defined by Eq. 9. Adding together the two

components of the principal strains from Eq.15 and solving
for the effective plastic strain leads to the following equation,
whose value can now be calculated explicitly,

εFLCp ¼ eFLC1 þ eFLC2

p11 þ p22
¼

1þ ρð ÞeFLC1 ρ; θ
0� �

p11 þ p22

¼
2eFLC1 ρ; θ

0
� �

p11 þ p22 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11−p22ð Þ2 þ p212

q ð19Þ

Using the power law (Swift law) and inverting Eq. 12, we
can finally calculate the major principal stress,

σFLC
1 α; θð Þ ¼

K εo þ εFLCp

� �n

σ λ11;λ22;λ12ð Þ ð20Þ

and then the minor principal stress σ2
FLC=ασ1

FLC. This proce-
dure is followed for all values of α=[−1,+1], defining the
locus of points (σ1

FLC,σ2
FLC) on the stress-based FLC for major

stress at an angle θ to the rolling direction of the sheet. Each
point on this curve, characterized by the function σ1

FLC(α,θ),
has a corresponding point on the experimental strain-based
FLC given by the function e1

FLC(ρ,θ′). The only difference is
that the stress-based curves are applicable for arbitrary loading
history, while the strain-based curves apply only for propor-
tional loading.

Material characterization

The data from hydraulic bulge test, and uniaxial test at seven
different directions (00, 150, 300, 450, 600, 750, 900) are avail-
able from Numisheet benchmark data for AA 6022-T4E32
[16]. Due to the lack of the materials taken from the same
stock, one additional tensile test has been conducted to

measure a local fracture stain along 45o direction by using
Digital Image Correlation (DIC) technique as shown in
Fig. 2. A local fracture strain reached around 0.5. It is inter-
ested to know that very good part of hardening is observed at
the time of fracture without any saturation. Therefore, Swift
fits better than Voce law in overall. The hardening curve has
been modeled by Swift. Table 1 shows Swift and Yld2000-2d
coefficients used in the simulation. The stress ratios input for
Yld2000-2d are calculated based on principle of minimum
plastic work to fracture.

In Fig. 3a, the results are compared with the experimental
data shown in a Progress Report published by US department
of Energy [17] which determined the necking limit using the
limit-dome test apparatus at the Advanced Materials Process-
ing Laboratory at NWU. It is found that the MK prediction in
the right-hand side shows very good correlation with experi-
mental data.

To plot the failure limit, maximum shear stress (MSS)
criterion is used, can be expressed as follows:

σmss ¼ 1

2
max σ1;σ2;σ3ð Þ−min σ1;σ2;σ3ð Þð Þ ð21Þ

The fracture polygon is drawn with the available
maximum shear stress data in uniaxial tension direction
in Fig. 3b.

Experiment and finite element analysis of cone
and pyramid shapes

Both cone and pyramid shapes (base diameter 140 mm) are
formed by a CNC machine with the slope of 450 to the depth
of 45 mm tool by using a spherical ball of 12.66 mm diameter.
Very low friction co-efficient is selected considering very well
lubricated experimental condition. The length and width of the
initial finite elements are 2.5 mm×2.5 mm. The dimension of
the initial blank is 200 mm×200 mm x 1 mm. Tool path is
generated with a CAM software. A constant speed of
1000 mm/min is maintained in anticlockwise motion

Table 1 Material properties and anisotropic coefficients for AA 6022-
T4E32

Material properties for AA 6022-T4E32

t (mm) σmax, MPa (at 450) Hardening parameters (Swift)

K, Mpa n e0 σ0, Mpa

1 362.5 448.58 0.255 0.005 127

Yld2000-2d material coefficients

α1 α2 α3 α4

0.9380 1.0451 0.9291 1.029

α5 α6 α7 α8

0.9874 1.0359 0.9528 1.1010
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throughout the experiment and downward step size is kept
constant with 0.5 mm at the completion of each incremental
cycle. The finished part is then put under ASAME target sys-
tem to measure the strain at non-contact surface. The result is
presented in strain space with the experimentally measured
(strain-based) forming limit in Fig. 4a, which clearly shows
failure for cone and pyramid shapes. However, number of
repeated experiments was successfully carried out without
any crack or failure. In the initial FEM modelling, the rolling
direction is coincided with the global X-direction. The fixed
boundary condition was imposed on all edges of the blank and
support plate is introduced as a fixed rigid body. High normal
force is applied over the blank to provide the stability
of the top plate. A ball-shaped tool with a radius of
6.33 mm was modelled as a rigid body and a small
amount friction coefficient (surface to surface) of
0 .01 i s imposed be tween the ba l l and b lank .

Experimentally generated tool path has been imported.
The time step is selected carefully compatible with the
experiment condition and a forming depth is kept
0.5 mm. Implicit FE simulation under the plane stress
condition is carried out at 9 through thickness integra-
tion points with Yld2000-2d and Swift hardening model
by using 4-nodes Belytschko Wong and Chang (BWC)
element. In Fig. 4a and c, experimental measurements
for major & minor strains and thickness strain contours
have been displayed from the automatic strain measurement
system for the cone and pyramidal shapes. The compatible com-
parisons have been made in Fig. 4b and d for the cone and
pyramidal shapes. For both the cone and pyramidal shapes, the
corresponding principle strain distribution in Fig. 4(b) and (d)
shows the results exceeding both the necking and failure limit.

The same simulation data are plotted in Fig. 5 based on the
stress-based necking and failure space shown in Fig. 3b. There

Fig. 2 Fitting of experimental
hardening curve to fracture with
Swift and Voce curves

Fig. 3 Representation of predicted forming limit and failure curves for AA 6022-T4E32: (a) Strain space, (b) Stress space

Int J Mater Form (2016) 9:413–421418



are the differences in stresses between continuous loading and
unloading by the tool movement. However, a projection

method based on the final stresses only was introduced to
compensate the current unloaded stress by projecting it back

enoC)b(enoC)a(

dimaryP)d(dimaryP)c(
Fig. 4 (a) Thickness strain contour of experimental results for a cone
shape with experimentally measured major & minor strains, (b)
Thickness strain contour obtained from Yld2000-2d model for a cone
shape with the predicted strains at the bottom plane plotted in strain-
based necking and fracture limits (c) Thickness strain contour of

experimental results for a pyramidal shape with experimentally measured
major & minor strains, (d) Thickness strain contour obtained from
Yld2000-2d model for a pyramidal shape with the predicted strains at
the bottom plane plotted in strain-based necking and fracture limits

Int J Mater Form (2016) 9:413–421 419



to the current yield surface or hardening (called the projected
stress) using the following equation [6], i.e.,

σp
i j ¼ σi j

h εp
� �

σ σi j

� � ð22Þ

In the reconstruction, the projected stress is based on
the effective plastic strain and the set of the final stress
components. The projected stress state is determined by
the effective plastic strain and yield function. The
projected stresses calculated using Eq. 22 are plotted
in Fig. 5 for both top and bottom surfaces. Figure 5a
& b and c & d include the major and minor stresses at
the top and bottom surfaces for the cone and pyramidal
shapes, respectively. It is shown that the stress data are
within the failure limit under post necking, which is
consistent with experimental data. It is because nonlin-
ear path effect has been considered in the stress path
combined with path-independent stress-based forming
and fracture limits.

Summary

Stress-based forming and fracture limits have been introduced
as a new approach to predict necking and failure in incremen-
tal sheet forming. The reliability of this new stress-based

approach for necking and failure were successfully verified
through experimental testing and finite element simulation.
An advanced constitutive model of Yld2000-2d was also in-
troduced in the analyses. It is shown that predictions from
stress-based necking and failure model are consistent with
the experimental observation.
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