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Abstract Optimization of forming processes seeks an opti-
mal choice of many process parameters. In Electromag-
netic Material Forming (EMF), parameters associated to the
geometry of the forming device or related to the generation
of the pulsed currents have to be set, and are of primary
importance to achieve the proper geometry of the formed
part. Usual optimization procedures proceed by defining a
trial choice of the set of parameters and then evaluate the
optimality of a given cost function computed from a direct
analysis. This iterative process requires many assessments
of the cost function and may lead to a prohibitive computa-
tion cost since the direct analysis may involve a structural
analysis. Others approaches have been proposed to circum-
vent this problem; based on a separated representation of
the solution, the Proper Generalized Decomposition allows
for a parametric resolution by introducing optimization
parameters as extra-coordinates of the problem, hence the
optimization procedure reduces to a simple post-treatment
of the multidimensional numerical solution. The aim of
this work is to develop a numerical tool dedicated to the
optimization of the design of an electromagnetic compres-
sion device. This tool should enable to optimize process
parameters of the generator and geometrical parameters of
the electromagnetic forming device by solving the set of
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electromagnetic equations in quasistatics. To this end, we
take advantage of the Proper Generalized Decomposition
(PGD) to perform a parametric resolution. We show solu-
tions computed with a parameterization of the discharged
current, and with a parameterization of the geometry con-
sidering a multi-layered structure. Finally, an example of
optimization procedure is shown on the latter solution, seek-
ing the configuration maximising the radial component of
the resultant compression force applied on the part to be
formed.
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decomposition

Introduction

Electromagnetic Material Forming (EMF) allows forming
electrical conductive metallic materials at high strain rates.
It uses pulsed magnetic fields to apply electromagnetic
(Lorentz) body forces to shape sheet and tube metal parts.
The magnetic field is generated by discharging into a coil
high intensity currents pulsed from a high energy capacitor
equipped with fast action switches. This kind of form-
ing processes presents several advantages on classical low
strain-rate forming processes, among which contact-free
force application, process repeatability, and small duration
can be cited. But the main interest lies in the fact that it
enables to increase dramatically the forming limits classi-
cally reached with steady-state forming processes. The gain
is all the more significant that the alloy in question has a
low ductility at low strain rate. It also allows for the reduc-
tion of wrinkling and strongly limits the springback due to
the forming operation. Thus, EMF processes are of great
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industrial interest for all types of industries, particularly
concerning the weight reduction and multi-material assem-
bly issues or for the design of complex geometry parts,
thanks to a better formability of metallic alloys at high strain
rate. We refer to [30] for a complete review of EMF.

From the industrial viewpoint, its implementation
requires to determine many process parameters to achieve
the proper geometry of the part to be formed; these para-
meters can be either related to the geometry of the electro-
magnetic forming device (geometries of the part and the
coil) or related to the physical properties of the components
embedded within the device, or even related to the chain
generator-coil that pulses the discharged currents. Mastering
the EMF requires a good knowledge of a domain of validity
of these process parameters, which is often determined by
the accumulated know-how of users. In this context, nume-
rical simulations appear to be an effective way to explore
parameter space, and therefore can limit a more expen-
sive trial and error approach. Numerical parametric analysis
may thus enable to improve and optimize these forming
processes, but leads to the definition of optimization proce-
dures that may turn out to be computationally very costly.
Indeed, the often prohibitive numerical cost of the optimiza-
tion procedure arises from the direct analysis run for each
given set of parameters in order to evaluate the cost func-
tion and its optimality [4]. This iterative process leads to
many assessments of the cost function and therefore to many
direct computations of a given model. Since the numerical
model may involve a structural analysis or the resolution
of a Boundary Value Problem (BVP), this kind of approach
may lead to a huge computation time, and we are led to limit
as much as possible the number of parameters considered in
the analysis, and therefore the size of the problem.

However, others approaches have been proposed to
decrease the optimization computation time. Recently, pro-
cedures based on separated representations such as the
Proper Generalized Decomposition (PGD) [3, 10, 26, 32]
have proved to be particularly effective to reduce the
complexity of problems exhibiting high dimensions, and
circumvent the so-called curse of dimensionality. Indeed,
while classical mesh-based methods like finite elements
exhibit a complexity increasing exponentially with the
number of dimensions, separated representations enable to
alleviate this difficulty and shows a complexity scaling only
linearly with the dimension of the problem. Introducing
extra dimensions appears therefore much less penalizing
with this approach. The Proper Generalized Decomposition
enables a parametric resolution by introducing optimiza-
tion parameters as extra-coordinates of the problem, and
uses a separated representation to approximate the multi-
dimensional solution. Consequently, the evaluation of the
cost function does not require anymore a direct analysis, the
computational effort being previously provided upstream
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of the optimization step. Thus, the optimization procedure
reduces to a simple post-treatment of the multidimensional
numerical solution, and can be done in real time on light
computing devices. This decreases drastically the computa-
tion time allocated to the optimization procedure compared
to classical approaches. PGD has already been used suc-
cessfully in the framework of parametric analysis for the
resolution of thermal problems, accounting for varying geo-
metric [25] or material parameters [12, 23, 29], or related to
boundary conditions [12, 18, 19]. PGD has also been used
to solve stochastic problems [27], for the simulation of com-
posites manufacturing [11], for thin structures [7] and in
crack problems [20], in rheology and kinetic theory [3].

The aim of this paper is to take advantage of the Proper
Generalized Decomposition to build a numerical tool dedi-
cated to the optimization of the design of an electromagnetic
compression device. This tool should allow to perform opti-
mization procedures on this device at a much lower cost
than that generated by conventional procedures coupled
with mesh-based discretization methods. In this work, only
the set of electromagnetic equations in quasistatics is solved
on the electromagnetic compression device. The objective
is to extract from the electromagnetic solution the Lorentz
body forces. These body forces may afterwards be used as
an input to any finite element code to perform the simula-
tion of the mechanical stage of the process. It is well-known
that EMF processes involve coupled multiphysical problems
[14, 34, 35]; though a decoupled approach leads to introduce
further simplifying assumptions, it may also enable (up to
an accepted error of modeling) to view the coupled problem
as a chain of different Boundary Value Problems, each asso-
ciated to one physical phenomenon, and thus allows for
a simplified approach and decoupling difficulties that can
prove to be well-suited both for understanding occuring
physical phenomena and for process optimization purposes.
The study of coupling effects may afterwards be carried out
if needed, but is not part of the scope of this work. It has
to be emphazised that from the industrial viewpoint, it is of
primary interest to have access to the Lorentz body forces
defined on a parameter space. First, the Lorentz forces mag-
nitude is a good indicator of the behavior of the part during
the forming operation, and EMF users can either complete
the numerical simulation by plugging their own mechani-
cal solver or use their accumulated experimental know-how
to relate the magnitude of these forces to the quality of
the formed part. Second, these forces defined on a param-
eter space enable to compute efficiently sensitivities with
respect to additional parameters, quantities of great inter-
est for optimization purpose, without the need to run further
computations. At last, defining the Lorentz forces on a
parameter space allows to build a numerical chart and to
evaluate the solution at a very low cost with respect to clas-
sical approaches.
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The paper starts by recalling the principles of Electro-
magnetic Material Forming processes in section “Electro-
magnetic Material Forming ”. Next, the problem considered
in this work and the formulation of the set of electromag-
netic equations in quasistatics in term of the magnetic vec-
tor potential are detailed. The bidimensional axisymmetric
case is retained as usual in EMF modeling of compres-
sion devices [35]. Section “PGD” is devoted to the Proper
Generalized Decomposition, basic principles [10, 12, 32]
and the multidimensional weak form of the problem con-
sidered are presented. In this work, attention is focused
on the generation of Lorentz body forces, the aim of the
numerical tool built is to optimize the process parameters
of the chain generator-coil and the geometrical parame-
ters of the electromagnetic compression device with respect
to the mechanical loading required to form the part. In
section “Parametric modeling of the electrical loading”,
we consider as a first step a parameterization of the dis-
charged current through the decay time 7 and its angu-
lar frequency w. These two additional parameters can be
related to more convenient quantities from the viewpoint
of the user (capacitance, inductance and resistance), but it
enables a more compact parameterization. Thus, this model
leads to a five-dimensional numerical solution. In section
“Parametric modeling of the geometry”, parameterization of
the geometry of the electromagnetic compression device is
carried out. We consider a multi-layered structure where the
thicknesses of all layers are introduced as extra-coordinates
in the considered problem. The numerical problem has
then height dimensions. Though geometric parameters have
already been treated in the 1D case within the framework
of the PGD [25], it is shown here that some complications
may arise in the axisymmetric case, and that the com-
plexity of the computation may grows asymptotically as
O@m?) if we consider an m-layered structure. In order to
illustrate possibilities offered by the multidimensional solu-
tion, an example of optimization procedure is carried out

Fig. 1 Electromagnetic
material forming process

in section “Optimization procedure of the electromagnetic
compression device”, in which we seek the geometrical
configuration of the electromagnetic compression device
maximizing the radial component of the resultant compres-
sion force applied on the part to be formed. For illustration
purpose, the radial component of the resultant force is plot-
ted on a part of the design space; it is shown that a minimum
exists and is unique. This illustrates a first step towards the
optimization of an electromagnetic compression device.

Electromagnetic Material Forming
Principles

Electromagnetic Material Forming (EMF) is a high-speed
forming technology that relies on the use of electromagnetic
forces to form metallic workpieces at high strain rate [13,
16, 30]. Generally speaking, these processes use a magnetic
coil as a “tool”. It consists in discharging a high intensity
and oscillating current (Fig. 1a) into a coil using a high volt-
age capacitor bank with high-speed switches. This current,
flowing within the coil, generates a pulsed magnetic field in
the vicinity of coil windings. Providing the Faraday’s law
saying that in the presence of a time-varying magnetic field
any electrical conductive material is subjected to induced
eddy currents, the interaction between the pulsed magnetic
flux density and these eddy currents creates strong repul-
sive body forces called Lorentz forces. The resulting brief
and intense mechanical loading accelerates and deforms the
workpiece until it contacts a die giving it its final shape.
Figure 1b shows a magnetic pulse crimping configuration,
which is actually a special case of EMF processes. This
configuration is required if we want to assemble a ring on
a shaft, traditionally of circular cross-sections. The ring is
accelerated and deforms until it contacts the shaft, achieving
the crimping operation.
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The main interest to form at high strain rate lies in the
fact that it improves the formability of metallic alloys, thus
it allows to overcome traditional formability barriers that
prevent a more widespread use of aluminium alloys in
lightweight structural applications [16]. Usual strain rates
reached with such processes are of the order of 10°s~!. This
impressive increase of ductility of metallic alloys results
from the strain-rate sensitivity of the material constitutive’s
response, as shown experimentally in [5] and [6]. EMF pro-
cesses show as well many advantages with respect to classi-
cal low strain rate forming processes, such as the reduction
of wrinkling in compression forming, reduction of spring-
back due to the dynamics of contact with the forming die,
high-productivity due to the high-speed forming operation,
contact-free force application, high-repeatability [30].

Modeling

Electromagnetic Material Forming processes are cou-
pled multiphysical problems. Electromagnetic, thermal and
mechanical effects combine during the forming operation.
Electromagnetic phenomena generate the mechanical load-
ing (Lorentz body forces) on the workpiece, which deforms
and heats due to the mechanical and electrical dissipations.
Many authors have already studied the theoretical formula-
tion of this strongly coupled problem [14, 28, 34, 35], and
its numerical resolution with the finite element method [31,
33].

However in this kind of applications, all the couplings
are not necessarily activated; thus it is commonly accepted
to simplify the modeling by introducing some assumptions.
First, the effective current frequencies being of the order
of 10kHz, i.e. a characteristic length of the electromagnetic
forming device being much smaller than the electromag-
netic wavelength, the propagation is neglected [31, 33, 34].
Second, looking at the ratio of characteristic times of the
different physical phenomena occuring during the process,
many couplings may be neglected. Indeed, we can observe
that for a classical aluminium (2xxx series for instance)
the ratio of characteristic times related to magnetic and
thermal phenomena is of the order of 5 - 1073, Hence,
magnetic and thermal phenomena can be solved separately.
The decoupling between magnetic and mechanical effects
is less evident as stated by many authors that pointed out
the importance of this coupling [13, 33-35]. However, this
coupling will be neglected in this work as stated in the
introduction of this paper, so that the set of electromagnetic
equations be solved independently. The approach followed
here falls into a decoupled strategy of the resolution of the
multiphysical problem, and attention will be focused in this
work on electromagnetic effects.

The geometry considered is defined in the bidimen-
sional axisymmetric case and is presented in Fig. 2. The
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domain £2 consists of a magnetic coil (£2.0i) surround-
ing the workpiece (£2yp) of cylindrical shape, defining an
electromagnetic compression device being plunged into a
volume of air (£2,;;). Hence, the domain 2 admits the
following decomposition:

Q= U Qi: i = {coil, wp, air} 1)

1

The boundary 92 of the domain §2 admits the decompo-
sition:

IN=rLun )

where Iy and I stand for the part of the boundary for which
Dirichlet and Neuman boundary conditions are respectively
prescribed, see Fig. 2. A symmetry condition allows for
limiting the domain of study, and helicity of the magnetic
coil has been neglected.

It is usual to solve the set of electromagnetic equations
by introducing potentials. Among them, the most popular is
a formulation in term of the magnetic potential vector [31,
33, 35], using the third Maxwell’s equation stating the non-
existence of magnetic charge:

b = curl a 3)

where b denotes the magnetic flux density and a the
magnetic vector potential. For bidimensional axisymmet-
ric formulation, only the hoop component of the magnetic
potential vector does not vanish:

a=uaey 4)

It is thus easy to show that the total electric charge balance
and the classical Coulomb gauge are automatically satisfied,

Z A
' a=0
Qair
Qup
[en) | Qcoil [en)
! XT
3

AL
]

| da _

Fig. 2 Geometry of the computational domain
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therefore the initial boundary value problem considered in
this work reads:

da 1 (8% 10a a 8% ,
+jo Vxe 2 (5

o —a\a rar 2Tz
a=0 vxelp (6)
da
— =0 vxeltl (7)
on
a(r,z,t =0) =ay Vxe 2 (8)

where o refers to the electrical conductivity (vanishing in
the air) and u refers to the magnetic permeability of the
medium. In this study, we consider the magnetic coil made
of copper and the workpiece made of aluminium alloy,
therefore the magnetic permeability in these media is almost
equal to the vacuum permeability o = 47 - 10’ Hm™!.
Indeed, these materials are respectively diamagnetic and
paramagnetic, for which the relative magnetic permeabili-
ties are close to unity. Consequently, the initial boundary
value problem Eqgs. 5-8 is linear. The partial differential
equation defined on the hoop component a of the magnetic
potential vector is supplemented with appropriate initial (8)
and boundary conditions. First, a symmetry condition is
prescribed on I'y to restrict the domain of computation:

nxh=0 Vxelj ®

where h denotes the magnetic field and n the outward unit
normal. The Eq. 9 combined with Eq. 3 and the following
magnetic constitutive equation:

b = ;h (10)

reduces to Eq. 7. Second, the magnetic potential vector van-
ishes on the symmetry axis [35] and tends to vanish far from
the device, this leads to Eq. 6. Finally, a time-varying current
density jo = joep is prescribed within the coil, according to
a damped sinusoid (Fig. 1a):

jo = %Oe*f/f sin(wt) (1)
where S denotes the cross-section of the windings, T a decay
time and w the angular frequency of the pulsed current.
The prescribing of a homogeneous distribution of the cur-
rent density in each coil turn constitutes an approximation
which is acceptable here given the intended applications
involving a small dimension of coil turn and a sufficient
mean radius of the coil, otherwise the total current should
be applied in accordance to [33] and [35]. The Lorentz body
forces are then computed in post-treatment from the mag-
netic flux density b and from induced eddy currents flowing
within electrical conductive components of the device j =
—oda/dt, such that:

f=jxb (12)

PGD

The Proper Generalized Decomposition [10, 12, 26, 32] or
PGD consists in seeking the solution of a boundary value
problem in a separated representation. Let’s consider a field
u depending of d coordinates (xq,...,xg) € (2] X ... X
Q4), this approximation reads:

N d
Gt oxa) = Y ] X7 @ (13)

i=1j=1

In other words, if each dimension x; is discretized on a uni-

dimensional mesh that consists of N; nodes, xﬁj ) e RN

represents the vector of components X fj ) x,ﬁj ) ,with 1 <

k < Njetl < j <d,sothat Eq. 13 be rewritten as a sum
of ranked-one tensor product:

N
u22x51)®--~®x§d) (14)
i=1

The whole point of the PGD is to build a tensor prod-
uct approximation basis in order to decouple the numerical
integration of high dimensional model in each dimension.
Indeed, working with functions of one variable leads to that
the computational cost scales linearly with the number of
dimensions of the problem, and no more exponentially as
for mesh-based methods like finite elements, alleviating the
so-called curse of dimensionality.

Functions Xl.(] )(x j) in Eq. 13 are unknown a priori.
The solution procedure is based on a greedy algorithm
and proceeds by successive enrichments. Let’s assume that
the solution at enrichment step n is known, solution at
enrichment step n + 1 is given by:

d
w =t [T @) (1)
j=1

Let’s now consider a tensor product approximation of the
hoop component a of the magnetic potential vector (4)
depending on coordinates (¢, r, z, X1, - . ., Xm) € (2 X Q, X
Q, x Q1 X...x Qy), where (xq, ..., x,,) refer to m addi-
tional coordinates, and €2 in Eq. 1 being decomposed so that
Q = Q, x Q, one gets:

a" = a" + TORCZ() [ XiGwo) (16)
i=1

These m additional extra-coordinates refer to m additional
parameters defined within the problem in order to carry out
a parametric analysis, they can be related to initial or bound-
ary conditions, geometrical, material or process parameters,
etc. The computation of unknown functions at enrichment
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step n + 1 is performed by invoking a multidimensional
weak form of the initial boundary value problem; in the case
of magnetodynamic, the weak form of the problem Eqs. 5-8
reads, accounting for m additional coordinates:

Given the current density jo € Qcoil,

Find a € Ayg, in(£2; x Q, x Q2; X Q1 X...X Q) such that,

Va* € Agd

S+ Sy Joy Jo Jo, (o3 a*+4 (Ge 4 oq 4 dada)
— Jo a*)rdrdzdtdx1 ...dx,, =0

a(r,z,t =0) =ag

a7

Notice that the term aa™*/r arising in Eq. 17 makes the
weak form of the magnetodynamic problem different with
respect to that of the classical transient heat equation in the
bidimensional axisymmetric case.

Test functions may be chosen as follows:

a* = T*R(NZ@) [ [ X + ...
i=1
m—1
+T@)R()Z(2) 1_[ Xi(xi) X, (xm) (18)

i=1

With the trial and test functions given by Eqgs. 16 and
18 respectively, the weak form Eq. 17 becomes a non-
linear problem. From this viewpoint, the PGD is a method
that transforms a linear problem into a sequence of non-
linear problems. Therefore, it must be solved by means of
a suitable iterative scheme. The simplest one is an alter-
nated directions fixed-point algorithm, which was found
particularly robust in this context. Computation of functions
T(t), R(r), Z(z) and X;(x;) (1 < i < m) is performed
alternatively within the fixed-point loop.

Comment: due to the parabolic nature of the problem Eqgs.
5-8, the classical PGD algorithm may not converge if o i is
too large. Therefore we use the so-called residual minimiza-
tion approach. It can be shown that this approach leads to
a monotonic convergence [26] and has proved to be robust,
though much computational effort is required with respect
to Galerkin-based PGD. The global stopping criterion for
the computation of ¢! at enrichment step n + 1 is based
on a residual relative L, error:

IR (a"*") ll2

19
Ilf1l2 1)

where f denotes the loading term.
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Parametric modeling of the electrical loading
Formulation

We are first interested in the electrical loading parameteri-
zation, the objective being to allow for optimizing process
parameters of the generator with respect to the mechanical
loading required to form the part. It is here assumed that
the generator is designed in such a way that the discharged
current be expressed as a damped sinusoid:

1(t) = Ipe™ /7 sin(wt) (20)

The decay time t and the angular frequency w are embed-
ded as two additional coordinates, the PGD approximation
consists thus of five dimensions and reads:

N
a(t,r,z, 7,w) = Z T; (DR (r) Zi(2)Ti (1) Qi (@) 2y

i=1

PGD efficiency stems from the expression of all quanti-
ties in a separated form. Therefore, we are led to seek an
expression of the pulsed current density jj of the form:

N .

JO
Jo(t, T, 0) = Z T; (1)7i (1) (@) (22)

i=1

One possibility among others [12] to express the current
density with a separated form Eq. 22 is to build a PGD
computation as follows:

N .

Jo
Y Ti0n Qi) | = [, 1, 0) (23)

i=1

N =Uo/98 1))
with (.m0 =) f fIf): fl =exp(—1;/1) (24

j=1 fi = sin(wt;)

where .# denotes the identity operator. The right-hand-side
(24) is assessed by sampling the pulsed current density
(11) on the time mesh. In other words, an L? projection is
performed by invoking the PGD solver:

/ / / (o(t, T, 0) — f(t, T, w)) jydtdtdw =0 (25)
2, /2. Jo,

looking for the approximation (22) of jj and accounting for
a test function j; defined analogously to Eq. 18. Besides,
we expect that N j, be much smaller than N;. Another strat-
egy would have been to perform a High Order SVD [24].
Afterwards, the resolution of the magnetodynamic prob-
lem (17) with the electrical loading parameterization (22) is
performed as described in section “PGD”.
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Table 1 Input data

Coordinates Number of nodes Domain Electrical conductivity

t € [0,450] us 225 workpiece (alu.) owp = 37.7 - 10° S.m~!
r€[0,20-10731m 200 coil (copper) Ocoil = 59.6-10° S.m™!
2€[0,20-1073 ] m 200 Other data Values

T €[50, 450] us 50 Iy 30000 A
we[l-10*6-10* rads™! 60

Results forces magnitude applied on the workpiece (respectively on

Table 1 summarizes input data of the computation. The
geometry of the device is set so that the half-length of the
workpiece is 10~2m, its wall thickness 2 - 10~3m and its
mean radius 8 - 1073m. The side length of windings is
2.1073m, the pitchis 4 - 10~3m and the mean radius of the
coilis 111073 m.

The decomposition of the discharged current in separated
representation is performed with 26 enrichments reaching
a residual relative L, error ¢ of 1073, The magnetody-
namic analysis lasts one hour and need 200 enrichments to
reach an error of 1072, Figure 3 shows the Lorentz body

Fig. 3 Lorentz body forces
magnitude (N.m~3) applied on
the workpiece (resp. the coil) as
a function of the decay time 7 in
Fig. 3(a) or the angular
frequency w in Fig. 3(c) (resp. in
Fig. 3(b) and 3(d))

w: 40000.000000
1: 0.000040

(a) ||f(7)]| on workpiece

tau: 0.000050
1: 0.000040

(c) |f(w)|| on workpiece

coil windings) at time ¢ = 4 - 10™*s as a function of the
decaying time (Fig. 3a) or the discharged current angular
frequency (Fig. 3c) (respectively Fig. 3b and d). The post-
treatment uses here the plugin developed by [8] allowing
the export towards pxdmf file read with Paraview [2]. We
observe as expected that the magnitude of Lorentz forces
increases with that of the first current peak as the decay
time grows. Varying the angular frequency shifts the first
peak, the maximum magnitude of forces thus varies accord-
ingly. PGD enables to build a multidimensional solution,
leading to reduce the optimization procedure to a simple
post-treatment of this solution.

PO Y7
6e+7 3648
“de+7 \ rk

Wi 40000.000000 2018

2e+7 1:0.000040 “le+8

47464
512269.8
r
T
(b) [f(T)|| on coil
f Magnitude

9777474

f Magnitude
3700435 oo
X “be+7

e+7 tau: 0.000050 i
+0,000040 i
“le+7 f2e+7
8112.104

137.5744

r

(d) ||f(w)]] on coil
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The solution obtained with PGD solver has been vali-
dated against a solution obtained with the AC/DC module of
Comsol [1]. A comparison performed on the magnitude of
the Lorentz body forces for the following set of coordinates
values (t = 1.07 - 1074, 1 =2-107%s,0 = 2- 104rad.s’1)
shows a relative difference of about fifteen percents within
the workpiece. Given the different meshes and numerical
methods used for this comparison, this difference is found
acceptable.

Parametric modeling of the geometry
Formulation

We are now interested in the parameterization of the geome-
try of the electromagnetic compression device, the objective
being to allow for optimizing geometrical parameters of
the workpiece and the coil with respect to the mechan-
ical loading required to form the part. We consider the
electromagnetic computational domain as a multi-layered
structure, the thicknesses of all layers are introduced as
additional parameters of the problem. Therefore five radial
lengths denoted /;, 1 < i < 5 are introduced within the
numerical problem, which has now eight dimensions. This
parameterization is shown in Fig. 4.

Z 4
' a=0
I I I I
| | I |
I I I I
L
I I I I
| | I |
I I I I
Qupi 11
ﬁ NI : : : Rcoil ?
|
3 M, — 3
| b
1 o
I
| L
1 [
L]
da _
. on =0
lh la I3 14 ls

Fig. 4 Radial parameterization of the electromagnetic compression
device
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The domain associated to the radial coordinate €2, is thus
mapped on a fixed parent domain for each layer, to which
the coordinate s; is associated, so that:

Q = U Q= |0, Zsj (26)

The following change of variable is thus defined in each
layer of the structure:

P o) =) Ll —(—1); j-l<s<
p<j
27)

The PGD approximation is performed on the parent domain,
accounting for extra-coordinates; the test function is defined
analogously to (18):

a"t = ad"+ TS Z@) [ [ Li) (28)
i=1
a* =TS Z@ [[Lit) +...
i=1
m—1
+TOSZ@) [ | L)Ly, Un) 29)

i=1

The change of variable (27) implies that integral quanti-
ties involved within the weak form (17) are expressed as
follows:

f// / (- yrdrdzdly ... dlds =
Q o, Jo. Ja,
f/;//(zfpd

2 ;e\ j=17 )

x (le-f-lj(s—(j—l))) ljds) dzdl; . .. dl,dt (30)

pr<j

The jacobian associated to cylindrical coordinates makes
appear explicitly the change of variable within the inte-
grand. In expression Eq. 30, the jacobian associated to the
mapping on the parent domain has been easily computed as:
ar . .
—G 0, ) =1 j-1<s=<] 31
as
Let’s now consider for instance the term (1/u)(da/dr)
(da™/dr)r within the weak form Eq. 17, involving the deri-

vative with respect to the radial coordinate. Introducing the
change of variable (27), the PGD approximation Eq. 28 and
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the test function Eq. 29 in this term, and noting (-, -),. the

inner L2(.Q ;) product, one gets:

INET NN

=Z (T. %), (1/w)S". $e,,

j=lp<j

AT (o),

=1 li

laa da*

dldt=- -

(Z,Z)q,

3

I ~

* (T, T)a(s—(j=1)S,8)a, (Z,Z)q,

.

I
—_

X (L,',Ll')gzli—i-...

+

™=

D (T T, (VwS'Se,,
j=lp<j

m—1

(Z,Z)gq,

:I

<”H(l,,)7-£ (7). L,»>Qli

H(l,)H (1].—1> L, L;j,)Q

—

—_—

X
Im

+2 (T, T)alls — (= 1)S, e, {Z, Z)a,

g

3
|

x| [ {Lis Lide, (Lm, L)<, (32)

i

where H(l,) denotes a presence function that is equal to
Ip if p = i, 1 otherwise. We observe that the number of
terms grows asympotically as O(m?) for a multi-layered
domain constituted of m layers in the bidimensional axisym-
metric case, as indicated by the double sum on j and p.
Indeed, this decomposition is caused by the presence of the
jacobian of the cylindrical coordinates in the integrand of
the weak form. Thus, much more computational effort is
required with respect to the unidimensional case [25]. Anal-
ogous developments are carried out for other terms of the
weak form Eq. 17.

Fig. 5 Lorentz body forces

(N.m™3) as a function of the gap 11: 0.007000

. 12: 0.004500
(I3) between the workpiece and 13- 0,002000

. 14:0.003250
the coil 15: 0.007000

t: 0.000045

(a) 13 =2-10"3m

Table 2 Input data

Coordinates Number of nodes

€ [0, 300] us 100
sjelj—1,jL,Vj=15 50
7€[0,20-10731m 61

L e2-1073,7-103 I m, Vi =1,5 5

T 140 pus

w 5. 10%rad.s™!

Comment: A particular attention should be payed to the
term aa*/r embedded within the weak form Eq. 17. Indeed,
this term cannot be explicitly separated by introducing the
change of variable (27). A first solution consists in multi-
plying the whole weak equation by the radius r. However, it
squares the radius involved in the integrand (30) and so does
the change of variable (27) for all terms in the weak form
(except the term aa™/r), leading to a huge amount of oper-
ator splitting and thus to a large increase of computational
effort. A second solution is to decompose it numerically in
a separated form. Many solutions are available to perform
such a decomposition: we can either perform a PGD to get
the inverse of the radius in a separated form or use already
implemented algorithms as PARAFAC (PARAllel FACtor
analysis) [9, 21] that decomposes an array of dimension N
(N > 3) into the summation over the outer product of N
vectors (a low-rank model). In other words, it decomposes
an N-way array into a canonical tensor product approxi-
mation (14). Though the second solution using PARAFAC
algorithm requires to build explicitly the N-way array of the
inverse of the radius, it still appears much more computa-
tionally efficient than the first solution, and is hence used in
this work.

Results
Table 2 summarizes the changing input data with respect to

section “Results”. The computation lasts about two hours
and needs 40 enrichments to reach an error ¢ of 1072,

f Magnitude f Magnitude

3352078  11:0.007000 3352078
12: 0.004500
13: 0.007000
de+7 14: 0.003250 de+7
15: 0.007000
1:0,000045
2e+7 2e+7

0

I
0

(b)i3=7-10"%m
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Fig. 6 Lorentz body forces
(N.m~3) applied on the
workpiece as a function of
lengths /> and I3

11: 0.004500
13: 0.004500
14: 0.004500
15: 0.007000
1:0.000048

(a) Iz

Figure 5a and b show the Lorentz body forces isovalues gen-
erated on the device components at its first peak in time,
for the two extremal cases of the gap value (/3) between the
workpiece and the coil. The results suggest as expected that
their magnitude is greater when the gap is smaller.

Then, it is interesting to investigate the evolution of the
Lorentz forces magnitude applied either on the workpiece
or on the coil while varying lengths of the structure layers.
Figure 6 focuses on the workpiece and shows the evolu-
tion of these forces at their first extremum (associated to
the first current peak) varying its thickness /» (Fig. 6a) and
the gap magnitude /3 (Fig. 6b). A best geometrical configu-
ration appears for the length /3 if we want to maximize
the magnitude of Lorentz body forces applied on the work-
piece; as previously stated, the smaller is /3, the greater is the
magnitude of body forces reached. The workpiece thickness
I, does not seem at a first glance to have any signficative
influence on body forces generated, because induced eddy
currents only flow within a skin depth.

During the forming operation, coil windings are gener-
ally destroyed by the forces generated (unless a rigid coil
is used). Therefore, we want to minimize the forces under-
gone by the coil so that it resists at least until the first
current peak has passed. Indeed, a sufficient level of forces
applied on the workpiece is required to achieve the proper
geometry of the part to be formed. Figure 7 shows body

Fig.7 Lorentz body forces
(N.m~3) applied on the coil as a
function of lengths /3 and /4

11: 0.004500
12: 0004500
14: 0.004500
15: 0.007000
t: 0.000048

@ Springer

f Magnitude
f Magnitude 5601821
%758251 i
11: 0.004500
2000000 12: 0.004500 de+b
14: 0.004500 i
15: 0.007000
1000000 t: 0.000048 2e+6
0.19367 7 36003

(b) I3

forces applied on coil windings at their first peak varying
the gap magnitude /3 (Fig. 7a) and its thickness /4 (Fig. 7b).
A best geometrical configuration appears for both parame-
ters if we want to minimize the magnitude of these forces;
the greater are lengths /3 and /4, the smaller is the magnitude
of forces applied on the coil. Their decrease with the gap /3
is moderate and result from the remoteness with the work-
piece; while for the second parameter, increasing /4 leads
to increase the winding cross-section, and thus decreases
the current density flowing within the cross-section (even
though it flows within the skin thickness of the conductor)
for a given intensity provided by the generator. Conse-
quently, lower induced eddy currents lead to lower Lorentz
body forces.

Optimization procedure of the electromagnetic
compression device

Sections “Parametric modeling of the electrical loading”
and “Parametric modeling of the geometry” have illus-
trated the construction of a multidimensional solution with
PGD, and possibilities offered for optimization purpose
once this solution is available. To go further, an exam-
ple of optimization procedure is carried out in this section.
This optimization focuses on geometrical parameters; we

f Magnitude fl\ékﬁgl};de
|1'5 o+ I5e+7
11: 0.004500 de+7
1.2e+7 12: 0.004500 oy
oo B82S =
1:0.000048 2e+7
de+6 lo+7
261427 66361.8

(b) la



Int J Mater Form (2016) 9:101-113

111

seek the geometrical configuration of the electromagnetic
compression device maximizing the radial component of the
resultant compression force applied on the part. The design
space considered is formed with design variables gathered
in the following vector:

x' =1{t,11, 1, 13,14} (33)

The domain of feasability consists thus of five real dimen-
sions (i.e. x € R?). The thickness of the fifth layer I5 has
been removed of the design problem since it does not fit into
account within the geometrical optimization of the device,
but need just to be as large as possible to limit influence of
the Dirichlet boundary condition on the region of interest.
Each dimension is bounded so that it leads to a constrained
optimization problem with inequality-type constraints:

Imin <7 = fmax
lmin =< li =< lma)u 1<i<4 (34)

The optimization problem is thus written as follows:

minF-e.; F=2mh / frdr constrained with (34)
X pr

(33)

where h denotes the half-length of the workpiece. Mini-
mizing the radial component of the resultant force or
maximizing its absolute value with respect to geometrical
parameters is not necessarily the best criterion that will
enable the best forming of the workpiece, because a numer-
ical analysis of the mechanical stage of the process should
be embedded into the optimization procedure to check it.
However, this criterion appears to be a good indicator to
characterize from the process viewpoint the performance of
the chain generator-coil and thus that of the eletromagnetic
compression device.

Many optimization algorithms are available to solve the
problem Eq. 35 [4]. A first class of algorithms are descent
methods, well-suited for convex problems, but it requires
the computation of the gradient of the cost function.
For non-convex optimization problems, zero-degree meta-
heuristic methods allow to explore the domain of feasability
without the need to compute gradients. Choosing the best
suited algorithm to minimize Eq. 35 is not part of the scope
of this work, which just aims at illustrating the possibilities
made available by the multidimensional solution built with
PGD. For illustration purpose and the computational cost of
the evaluation of the cost function being very small here, a
brute approach is chosen in order to build and plot the cost
function on its design space. The cost function is thus evalu-
ated without any intelligence at each node of the hypermesh
of the design space, built with dimension meshes used for
the PGD solver detailed in section “Results”. The time inter-
val has been reduced to focus on the subrange ¢ € [20, 60]us,
containing the minimum sought. Other numerical values

Fr

-0.742337

-2

-4
| § _6

-8
-10
-11.25111

Y

. 14:0002000
% 10000082

Fig. 8 Isovalues of the radial component of the resultant force applied
on the workpiece in the sub-design space (/1, >, [3) respectively in axes
(X,Y,Z)attimet =5.3-103s and length 4 =2 - 103m

remain unchanged, and the length /5 of the fifth layer is set
071073 m.

The cost function is evaluated 12500 times, and the
procedure lasts about one hour. Figure 8 shows isovalues
smoothed by Paraview [2] of the radial component of the
resultant force plotted on a part of the design space. We can
observe that a minimum of the cost function Eq. 35 actually
exists and is unique within the range defined. These iso-
values show that this minimum is obtained for the smallest
values of the gap /3 and wire width I4, as we could expect
as explained in section “Results”, and for the largest values
of the inner radius of the workpiece /1 and of its thickness
I>. The largest value required for /; may be explained with
the parameterization retained in Fig. 4: increasing /| also
increases the coil windings radius, so does the magnetic flux
generated and hence body forces. The largest value required
for the thickness value /; can be explained from the form of
the cost function (35).

Indeed, though body forces magnitude applied on the
workpiece varies little with its thickness (see Fig. 6a), the
integrand of Eq. 35 consists of the radial component of

x10*
* E®
cubic spline

2.5

— 1)

15

1(t)(4)

1.0

0.5

-12 0.0

t(s) x107°

Fig. 9 Plot of the radial component of the resultant force over a sub-
range of the time interval for the set of parameters [; = 7 - 103m,
L=7-107m,l3=2-10m, /4 =2-10m
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ScalarGradient X
-1156.9189
l»200
| -400

-600
-710.7615

. 14:0.002000
x 1. 0.000052

Fig. 10 Partial derivative of the radial component of the resultant
force with respect to length /;

these body forces weighted with the radius, arising from
cylindrical coordinates. This leads to increase the value of
the integral when its upper limit increases as [ increases.
Notice that increasing the workpiece thickness /> will make
the forming more difficult, thus minimizing Eq. 35 is actu-
ally not the best criterion to perform the best forming of
the workpiece. A better criterion would be to maximize the
efficiency between input electrical energy and strain work
undergone by the workpiece, but requires a mechanical
analysis.

Figure 9 depicts the evolution of the radial component
of the resultant force over a sub-range of the time interval,
plotted for the best values of the remaining set of param-
eters (i.e. [;, 1 < i < 4). Points refer to the locations of
the evaluation of the cost function, an extrapolation with a
cubic spline is performed afterwards. The discharged cur-
rent is superposed on the same graph, and we can observe a
shift of about 20 microseconds between the maximum (actu-
ally the first peak) of the current and the minimum reached
by the radial component of the resultant force. This delay
arises from electromagnetic induction phenomenon which is
not instantaneous, and depends on the magnetic diffusivity
1/ /no.

Once the cost function is known on the parameter space,
its sensitivities with respect to design parameters can be
easily computed by partial differentiation. Figures 10 and
11 show partial derivatives of the cost function with respect
to lengths /1 and /3 respectively. Sensitivities are quantities

ScalarGradient Z
3002.822
J3000

2000
1000

238.4204

. 14:0002000
% 10.000052

Fig. 11 Partial derivative of the radial component of the resultant
force with respect to length /3

@ Springer

of great interest for optimization, and enable to decouple
sets of parameters of primary importance to parameters
neglectable with respect to a given cost function.

Conclusion

In this work, a numerical tool dedicated to the optimization
of the design of an electromagnetic compression device has
been developed based on PGD. Attention has been focused
on Lorentz body forces generated during the process by
solving the set of electromagnetic equations in quasistatics,
therefore following a decoupled approach for the resolu-
tion of the coupled multiphysical problem. The purpose of
this numerical tool is to optimize process parameters related
to the chain generator-coil and geometrical parameters of
the electromagnetic compression device with respect to the
mechanical loading required to form the part.

A first analysis has been performed with the parameteri-
zation of the electrical discharged current through its decay
time and angular frequency, defining a five-dimensional
numerical solution, in order to optimize the chain generator-
coil for a given geometry of the device. Then, a parameter-
ization of the geometry of the electromagnetic compression
device has been carried out by considering the computa-
tional domain as a multi-layered structure, the thicknesses
of all layers being accounted as optimization parameters
and introduced as extra-coordinates. It has been shown that
the parameterization of the radial coordinate in the bidi-
mensional axisymmetric case leads to a decomposition into
more operators than for space coordinate in a cartesian
frame. More generally, the keypoint to perform paramet-
ric analyses with PGD lies in the fact to find appropriate
changes of variables so that a separated form of the solu-
tion be kept, allowing to preserve the efficiency of the PGD
solver. Finally, possibilities offered by the multidimensional
solution have been shown on an example of optimization
procedure, seeking the geometrical configuration maximiz-
ing the radial component of the resultant compression force
applied on the workpiece. This illustrates a first step towards
the optimization of an electromagnetic compression device.

PGD turns out to be a particularly attractive method
for parametric analyses. Based on the separated represen-
tation of the solution, optimization parameters are added
as extra-coordinates, and the high-dimensionality of com-
plex problems can therefore be handled more easily than
with mesh-based methods. The definition of the solution on
a parameter space allows to build numerical charts, from
which the solution for a particular set of parameters can
be extracted at a very low cost. Thus several optimization
procedures can be performed once this database has been
built, and their computational cost are severly decreased
with respect to traditional optimization approaches.
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