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Abstract Within the frame of implicit velocity based formu-
lations with solid elements, usual time integration schemes
often turn out unsatisfactory when the movement has large
rotations, especially in metal forming applications such as ring
rolling or cross-wedge rolling. These rotations generally re-
quire using a much higher order integration scheme with
inherent difficulties in implementing such schemes. For pure
rotation motions, it is possible to use a low order integration
scheme by rewriting the motion equations in the cylindrical
frame that is supported by the rotation axis. Accordingly, a
first order scheme is sufficient to accurately integrate the
movement but it is restricted to specific problems. In the more
general case, it is possible to derive parts of the domain where
rotations are predominant along with the governing rotation
axis from the velocity field gradient. The motion equations are
then rewritten in the resulting local cylindrical frame.
Performances of this first order scheme are first evaluated
and highlighted over simple analytical problems, before being
applied to the finite element simulation of the torsion test, and
then tomore complexmetal forming problems involving large
rotations. The accuracy and efficiency of this scheme is so
numerically demonstrated.
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Introduction

Time integration of large rotation motions has been long an
important scientific issue. The applications cover many fields
such as navigation in aerospace, computer graphics, solid
mechanics.

Within the field of solid mechanics, most of the
studies encountered in the literature mainly relate to
rigid body dynamics problems [1–5] or to structural
analysis problems [6–12]. For such problems, the rota-
tion is generally regarded as a separate degree of free-
dom, deriving from an angular velocity through a dif-
ferential equation. The main challenge lies in develop-
ing an accurate but computationally economic scheme to
integrate the strongly nonlinear differential equation un-
der consideration. The key point of the algorithms pro-
posed in the literature often relies on a combination of
two techniques: suitable parameterization of the rotation
and use of an accurate time discretization scheme. The
suitable parameterization of the rotation plays a major
role since it allows a reduction of the required param-
eters for representing the rotation. Several parameteriza-
tions can be distinguished: The Euler-Rodrigues param-
eterization [4, 8] the rotation vector [3, 13], Cayley’s
parameterization [11], and quaternions [14]. In [13],
Argyris discusses the choice of different parameteriza-
tions while the combined influences of parameterizations
and integration schemes are discussed by Zupan and
Saje [14].

For bulk forming simulation problems, especially
when an implicit velocity based formulation, with solid
finite elements (tetrahedra) is employed, the problem is
slightly different. The rotation is not described as a
separate degree of freedom; it is included within the
velocity field. All the kinematics of the domain is thus
dictated by the velocity field through the evolution
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equation. A robust and accurate integration scheme is
therefore required to describe precisely the trajectory of
each material point of the domain. Another major diffi-
culty comes from the implicit formulation employed,
since it allows relatively large time steps unlike explicit
formulation where time steps are usually smaller. For
many processes such as cogging, drawing or strip
rolling, the use of classical first order schemes such as
Euler one step schemes provides good accuracy.
However, for other processes where the domain un-
dergoes large rotations, such low order schemes require
very small time step sizes to ensure an acceptable
accuracy, which results in excessive computational time.
Therefore, higher order schemes like Runge–Kutta
[15–17] or sub-stepping [16] have been introduced. In
[15], Traore uses a second-order Runge–Kutta scheme
to handle the large rotations of the ring rolling process,
while a fourth-order Runge–Kutta is regarded as neces-
sary by Dialami [16] to properly trace Lagrangian par-
ticles in Friction Stir Welding (FSW). In this particular
case, a backward Euler scheme with sub-stepping and a
back and forth error compensation and correction is not
sufficient to provide the required accuracy. The main
shortcoming of high order or multistep schemes regards
the calculation of intermediate configurations, which can
be either complex or computationally expensive. In [18]
for the application of ring rolling process where, the
domain undergoes constant rotation movement around a
fixed and predetermined axis, the authors show that the
use of a cylindrical integration scheme provides better
volume conservation and a good accuracy of the results.
The main idea of their method consists in writing the
motion equation into the cylindrical frame that is sup-
ported by the rotation axis, such a frame is quite ap-
propriate to describe the rotational kinematics. An Euler
one step scheme is then used to integrate the equation.

In this paper, the idea of [18] is resumed and extended to
any kind of motion and to any kind of problem. The first
important point of the proposed scheme is the automatic
identification of effective rotation zones by means of criteria
concerning the velocity gradient. These criteria enable
switching from a standard time integration scheme (one-step
Euler and RK2) to the proposed one. A second key point of
the proposed scheme is the automatic detection of the local
rotation axes necessary for the construction of the local cylin-
drical frames.

After a brief description of the finite elements model used
for the studied metal forming problems, the cylindrical
scheme is first presented for a constant rotation around the
(Oz) axis before being extended to any arbitrary rotation
motion, which requires both identifying large rotation zones
and the governing rotation axis. Resulting modifications on
contact equations are also discussed. In the last section, the

cylindrical scheme is evaluated over analytical problems and
metal forming processes.

Numerical model for metal forming simulation

This section focuses on a brief description of the mechanical
equations and their finite element discretization for metal
forming simulations. Equations are written within the context
of a simple rigid-viscoplastic material (neither elasticity nor
thermal dilation) as described in [19], although more complex
constitutive models taking into account the thermo-elastic part
of the deformation can also be considered [20]. A velocity
(and pressure) based formulation has been employed, a suit-
able formulation that is widely used for modelling such ma-
terial flows. For a more complete description of scientific
approaches of the finite elements formulations used for metal
forming problems, the reader may refer to [21].

Constitutive equation and integral formulation

The mass conservation of the domain undergoing incompress-
ible deformation is expressed as a function of velocity v by:

div vð Þ ¼ 0 ð1Þ
The rate form of the mechanical equations and boundary

conditions at any time t are expressed by the virtual power
principle, as a function of the velocity v and p pressure fields
satisfying the contact equations (which are presented later on),
for any virtual velocity v* and pressure p* fields:

∫
Ω
s : ε̇*dΩ− ∫

Ω
pdiv v*

� �
dΩ þ ∫

∂Ωc

τ:v*dS ¼ 0

∫
Ω
p*div vð ÞdΩ ¼ 0

þ contact

8>>><
>>>:

ð2Þ

WhereΩ and ∂Ωc respectively denote the domain occupied
by the body and its contact surface at time t.ε̇ is the strain rate
tensor. The deviatoric part s of the stress tensor is given by the
Norton-Hoff constitutive law:

s ¼ 2K
ffiffiffi
3

p
ε
:

� �m−1
ε̇ ð3Þ

Where K is the material consistency ε̇ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3ε̇ : ε̇

p
is the

equivalent strain rate, m is the strain rate sensitivity coeffi-
cient. τ is the tangential shear stress resulting from the friction.
For example, with the Norton frictionmodel, τ is expresed by:

τ ¼ −α f K Δvg
�� ��q−1Δvg ð4Þ

Where αf is a friction coefficient, q is the sensitivity to the
sliding velocity and Δvg is the relative sliding velocity be-
tween the tool and the part.
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Finite elements discretization

The problem is discretized using the P1+/P1 compatible
mixed finite elements [22, 23]. The pressure p is linearly
interpolated on each tetrahedron, while the velocity v is inter-
polated using linear shape functions and further enriched with
a bubble function:

vh xð Þ ¼
Xnbnoe
k¼1

vkNk xð Þ þ
Xnbelt
e¼1

vebe xð Þ ; ∀x∈Ωph xð Þ

¼
Xnbnoe
k¼1

pkNk xð Þ ; ∀x∈Ω ð5Þ

Where vk and pk are the nodal velocity and pressure values.
nbnoe and nbelt respectively represent the number of nodes
and elements.Nk is the linear shape function at a node k and ve
is the enrichment of the velocity field interpolated by the
bubble function be and computed at the center of each
tetrahedron.

Time evolution of the domain

Within the updated lagrangian framework, with our velocity
based formulation, the evolution of the domain over the time is
obtained by integrating evolution Eq. (6) at each time t of the
simulation; unlike displacement based formulations where the
configuration updating is straightforward and given by the dis-
placement fields provided by the finite elements calculations.
dxt

dt
¼ vt xt; tð Þ≡ vt ð6Þ

Where xt and vt respectively denote the position and ve-
locity at time t. Notice that the above equation is the funda-
mental equation around which revolves the study.

A widely used integration scheme is the simple explicit or
implicit Euler one step scheme (Fig. 1a). For this scheme, the
updated xt+Δt configuration is given by:

xtþΔt ¼ xt þ vtΔt or xtþΔt ¼ xt þ vtþΔtΔt ð7Þ

When the rotational component of the movement is mod-
erate, it is often observed that second order Runge–Kutta
scheme (Fig. 1b) provides considerable improvements over
the Euler scheme [15]. (xt, vt) being the current configuration,
this scheme can be summarized by:

& from (xt, vt), compute the middle configuration:

xtþ
Δt=2¼xtþvtΔt

2

& on the middle configuration (xtþ
Δt=2 ), compute a new FEM

solution: vtþ
Δt=2

& from (xt, vtþ
Δt=2 ), compute the updated configuration:

xtþΔt ¼ xt þ vtþ
Δt=2Δt

For a pure rotation motion, Fig. 1 illustrates the time
integration error inherent in the Euler scheme, along with the
improvement provided by the Runge–Kutta scheme. In the
Euler scheme, the velocity field (which is normal to the
rotation axis) is assumed to remain constant during the time
step. The integrated point at time t+Δt consequentlymoves in
the tangent direction and leaves the exact curve (see also
Fig. 2b). The resulting error is proportional toΔt. The second
order Runge–Kutta is significantly more accurate. The error is
second order, then proportional to (Δt)2. However, it doesn’t
allow perfect integration of a pure rotation motion either. A
fourth order Runge–Kutta scheme would then be required, as
utilized in [16] where it is shown to be necessary to accurately
integrate FSW particles motions when the time steps cannot
be sufficiently reduced.

Contact treatment

Forming tools are considered to be rigid. Their surfaces are
discretized by triangular facets. The signed distance between
any point Mt of the part and the surface of the tool is defined
by:

δt ¼ MtPtð Þ:nt ð8Þ

(Xt, vt)

Xt+∆t

Xt+∆t/2

Xt+∆t

(Xt, vt)

)b()a(Fig. 1 Illustration of (a) first-
order Euler and (b) second-order
Runge–Kutta time integration
schemes
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Where nt is the surface normal vector at point Pt of the tool
surface; it is the closest point of the tool from the pointMt. δt>
0 if the point is outside of the tool, δt=0 if it is on the tool
surface, δt<0 if it has penetrated the tool.

A nodal contact (node to facet) formulation [24] is
employed. For any node n, the contact condition is prescribed
at the end of the time increment:

δtþΔt ¼ MtþΔtPtþΔt
� �

:ntþΔt ≥0 ð9Þ

The Eq. (9) is linearized by assuming that the tool can be
locally approximated by its tangential plane during the time
step. So, nt+Δt≈nt, which results into:

−
δtþΔt

Δt
≈

MtMtþΔt

Δt
−vttool

� 	
:nt−

δt

Δt
¼ h vnð Þ≤0 ð10Þ

Where vtool
t is the tool velocity, h(vn) is a contact function. The

discrete contact condition Eq. (10) is enforced by a penalty
formulation, which leads to the following contributions for the
gradient and Hessian of the discretized equations:

Rcontact
n vnð Þ ¼ ρ h vnð Þ½ �þSn∂h vnð Þ

∂vn
; ∀n∈∂Ωc

Hcontact
n vnð Þ ¼ ρ h vnð Þ½ �þSn∂h vnð Þ

∂vn
⊗Sn

∂h vnð Þ
∂vTn

; ∀n∈∂Ωc

ð11Þ

Where ρ is the penalty coefficient and Sn is a surface associ-
ated to the node n, [•]+ denotes the positive part of (•).

The set of non-linear discretized equations is solved by a
Newton–Raphson algorithm, within which underlying linear
systems of equations are iteratively solved by preconditioned
conjugate residual that is fully compatible with parallel com-
putations [23]. For large deformation problems, the updated

Lagrangian formulation results into large mesh distortions that
require frequent and regular remeshings [22].

Cylindrical time integration scheme

Case of rotation around (Oz) axis

For a material point Mt of a body that is spinning around the
(Oz) axis, the curvilinear trajectory is essentially driven by the
tangential component of the velocity (vθ

t ) which is given by the
rotation velocity (angular velocity). The decomposition of the
velocity in the corresponding cylindrical frame provides the vθ

t

component and enables a more accurate integration of the
rotational motion (see Fig. 2b). The cylindrical scheme con-
sists in three steps:

& Transformation into the cylindrical frame
& Time integration of motion equations in the cylindrical

frame
& Inverse transformation into the original Cartesian frame

The coordinates xt and the velocity vt at a time t are mapped
into the cylindrical basis (er,eθ,ez) built around the (Oz) axis.
For any node Mt, its (rt,θt,zt) coordinates are expressed as
follow:

Mtð ÞCyl
rt ¼ xt−xtaxis

� �2 þ yt−ytaxis
� �2h i

θt ¼ arctan
yt−ytaxis
xt−xtaxis

� 	
zt

8>>><
>>>:

1=
2

ð12Þ

Where xaxis
t =(xaxis

t ,yaxis
t ,zaxis

t ) is a point belonging to the rota-
tion axis. The three components of the velocity vr

t , vθ
t and vz

t are
given by the following relations:

er

e

r

xxzz

yy

Mt

t
er

e

r

vx

vy

vr

v

zz

yy

xx

(a) (b)Fig. 2 a velocity decomposition
in a cylindrical frame b material
point trajectory according to the
different time integration schemes
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vtð ÞCyl
vtr ¼ vtxcos θtð Þ þ vtysin θtð Þ
vtθ ¼

vtycos θtð Þ−vtxsin θtð Þ
rt

vtz

8>><
>>: ð13Þ

Using the first-order Euler scheme in the cylindrical frame,
the updated cylindrical coordinates (rt+Δt,θt+Δt, zt+Δt)
(Fig. 2b) are written as:

MtþΔt
� �

Cyl

rtþΔt ¼ rt þ vtrΔt
θtþΔt ¼ θt þ vtθΔt
ztþΔt ¼ zt þ vtzΔt

8<
: ð14Þ

In other words, during the time increment the velocity field is
assumed to remain constant in the cylindrical frame rather
than in the Cartesian frame (7). The updated Cartesian coor-
dinates are then obtained by performing an inverse transfor-
mation of the updated cylindrical coordinates into the original
Cartesian frame:

MtþΔt
xtþΔt ¼ rtþΔtcos θtþΔt

� �
ytþΔt ¼ rtþΔtsin θtþΔt

� �
ztþΔt

8<
: ð15Þ

Generalization to any arbitrary rotation motion

In practice, the rotation axis can be in any direction, and for
many processes such as cross wedge-rolling or screw forming,
this axis is moving all along the process. Moreover, there are
many problems, such as bending, within which only a part of
the domain is actually rotating. Furthermore, in the most
general case, there is a combination of rotation and translation
so that such integration scheme is necessary only when and
where rotation should be regarded as dominant. Therefore, in
order to generalize the cylindrical scheme to any kind of
motion, two important features have been introduced: an
automatic detection of the rotation axis and the identification
of the actually rotating zones.

& Detection of the rotation axis

The rotation axis can be derived from the rotation velocity
vector ωt (ωx

t ,ωy
t ,ωz

t) which itself derives from the skew-
symmetric part of the velocity gradient Ω(vt) as proposed in
[2–5] and [7, 8, 13, 25] where a similar tensor-vector repre-
sentation of the rotation vector is employed:

Ω vtð Þ ¼ 1

2
∇vt− ∇vtð ÞT
h i

¼
0 ωt

z −ωt
y

−ωt
z 0 ωt

x
ωt
y −ωt

x 0

2
4

3
5 ð16Þ

Using a P1 finite elements interpolation for the velocity
(at this level, the enrichment provided by the bubble
interpolation in order to satisfy the compatibility condi-
tion between the velocity and pressure interpolations
should be neglected), the gradient ∇vt and consequently
the angular velocity vector ωt are discontinuous. They
are only defined at the Gauss points of the elements.
Nodal values ωk

t are then obtained by averaging ele-
mentary values over nodal patches Pk (the set of ele-
ments containing node k) presented in Fig. 3:

ωt
k ¼

1

d

Xd
e¼1

ωt
e ; d ¼ card Pkð Þ ð17Þ

& Identification of the effective rotating zones

To account for possible local rotations (only a zone of the
domain is rotating), it is necessary to evaluate the intensity of
the angular velocity. If it is not sufficient, then translation is
dominant and the standard one-step Euler scheme should be
used. The selected criterion consists in evaluating the varia-
tions of the computed rotation velocity (16) and (17) within a
patch of elements. Considering a patch Pk centred on a node k
(see Fig. 3), this criterion is twofold:

(a) The intensity of the averaged rotation velocity ‖ωk
t‖ at a

node k (17) must be closed enough to that of its surround-
ing elements (16):

Fig. 3 Nodal patch centered on a node k
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0 < λ1≤min
ωt

k

�� ��
ωt

e

�� �� ; ωt
e

�� ��
ωt

k

�� ��
 !

≤ 1 ∀e∈Pk ð18Þ

(b) The orientation of the average rotation velocity ωk
t at a

node k (17) must be closed enough to that of its sur-
rounding elements (16):

0 < λ2≤
ωt

k :ω
t
e

ωt
k :ω

t
e

�� ��
 !

≤ 1 ∀e∈Pk ð19Þ

Where λ1 and λ2 are parameters used to check the criteria. In
practice, λ1 and λ2 must be close to 1.

& Updating procedure

Once the effective rotating zones and the rotation axis are
known, the updating procedure presented in the case of a
rotation around (Oz) axis can be utilized after performing a
change of reference frame such that the rotation axis coincides
with (Oz). The three basis vectors (u0

t ,v0
t ,w0

t ) of the new local
frame are expressed as follow:

wt
0 ¼

ωt

ωtk k
vt0 ¼

ωt � vt

ωt � vtk k
ut0 ¼ vt0 � wt

0

8>>>><
>>>>:

ð20Þ

ω =Cte
20 mm

Fig. 4 Rigid body rotation:
simulation set up

Fig. 5 a Relative volume variation and b position error for rigid body rotation for few increments
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The resulting transformation matrix is then given by:

P ¼
ut0x vt0x wt

0x
ut0y vt0y wt

0y

ut0z vt0z wt
0z

0
@

1
A ð21Þ

To fully define the projection of a point Mt into the local
frame, the position of a pointOt of the rotation axis is required.
For a uniform rigid body rotation around a fixed axis, OtMt

satisfies the following relation: vt=ωt×OtMt. This vector
equation has no unique solution, therefore the geometrical
condition OtMt.ωt=0 is added (Ot belongs to the same plane
asMt and is perpendicular to the rotation axis, as for a uniform
plane rotation). Then, the solution of the vector equation is
given by the following relation:

OtMt ¼ −
ωt � vt

ωtk k2 ð22Þ

It should be noticed that when the local material movement
is not a pure rotation then the instantaneous rotation axis is not
strictly defined. This is not a real problem because in practical
applications this “rotation axis” moves slowly, and because
this assumption is only used for building the time integration
scheme.

Using the defined mapping, a position vector OtMt in the
global frame is transformed into otmt in the local frame. The
updated vector ot+Δtmt+Δt is then computed by the cylindrical
scheme presented in section 3.1. The updated vector Ot+

ΔtMt+Δt in the global frame is then deduced from ot+Δtmt+

Δt by an inverse mapping.

Modified contact equations

Because contact equations are enforced at t+Δt (9–10),
values of contact condition (10), gradient and hessian (11)
depend on the utilized time integration scheme. With the one-

step Euler scheme, MtMtþΔt

Δt ¼ vt in Eq. (10) so a simple
expression is obtained for the derivative terms of Eq (11):
∂h vnð Þ
∂vn

¼ nt ð23Þ

With the cylindrical scheme, MtMtþΔt

Δt cannot be approxi-
mated by vt. In fact, MtMt+Δt depends on terms calculated in
the cylindrical frame and involved in the updating procedure.

Fig. 6 Convergence curve for the different time integration schemes

2R= 6 mm

L= 15 mm

Upper die 

Lower die 

Upper die 

Lower die 

Fig. 7 Hot torsion simulation set
up
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So, considering the mapping of MtMt+Δt into mtmt+Δt and
neglecting the dependency of matrix P with respect to the
velocity field, the following relations are obtained:

∂h vnð Þ
∂vn

¼ 1

Δt
P
∂mtmtþΔt

∂v*n
P−1

� 	
:nt ð24Þ

Where vn
* denotes the mapping of vector vn into the local

basis. ∂m
tmtþΔt

∂v*n
is calculated as follows :

∂mtmtþΔt

∂v*n

∂ r*tþΔtcos θ*tþΔt
� �

−r*tcos θ*t
� �� �

∂v*n
¼ ∂r*tþΔt

∂v*n
cos θ*tþΔt
� �þ r*tþΔt∂cos θ*tþΔt

� �
∂v*n

∂ r*tþΔtsin θ*tþΔt
� �

−r*tsin θ*t
� �� �

∂v*n
¼ ∂r*tþΔt

∂v*n
sin θ*tþΔt
� �þ r*tþΔt∂sin θ*tþΔt

� �
∂v*n

∂ z*tþΔt−z*t
� �

∂v*n
¼ ∂z*tþΔt

∂v*n

8>>>>>>><
>>>>>>>:

ð25Þ

Where (r*t,θ*t,z*t) and (r*t+Δt,θ*t+Δt,z*t+Δt) are respectively
the cylindrical coordinates ofmt andmt+Δt. The partial deriv-
atives of (25) are then evaluated considering the cylindrical

updating in the local basis (Eq. (14)) and the decomposition of
the velocity (13):

∂r*tþΔt

∂v*n

∂r*tþΔt

∂v*x;n
¼ cos θ*t

� �
Δt

∂r*tþΔt

∂v*y;n
¼ sin θ*t

� �
Δt

∂r*tþΔt

∂v*z;n
¼ 0

8>>>>>>><
>>>>>>>:

;
∂θ*tþΔt

∂v*n

∂θ*tþΔt

∂v*x;n
¼ −

1

r*t
sin θ*t
� �

Δt

∂θ*tþΔt

∂v*y;n
¼ 1

r*t
cos θ*t
� �

Δt

∂θ*tþΔt

∂v*z;n
¼ 0

8>>>>>>>><
>>>>>>>>:

;
∂z*tþΔt

∂v*n

∂z*tþΔt

∂v*x;n
¼ 0

∂z*tþΔt

∂v*y;n
¼ 0

∂z*tþΔt

∂v*z;n
¼ 1

8>>>>>>><
>>>>>>>:

ð26Þ

1,00E-09

1,00E-07

1,00E-05

1,00E-03

1,00E-01

5 25 45 65 85

dv
/v

0

�me steps

0,9

0,95

1

1,05

1,1

0,02 0,025 0,03 0,035 0,04 0,045 0,05

To
rq

ue
 (N

.m
)

Nb rota�on 

(a) (b)

Explicit_Euler RK2 Act_CylExplicit_Euler RK2 Act_Cyl

Fig. 8 a Relative volume variation and b torque evolution for the hot torsion test
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By combining Eqs. (26) and (27), a simplified form is

obtained for 1
Δt

∂mtmtþΔt

∂v*n
which can be expressed through a

matrix Ψ as follows:

Ψ ¼
Ψ11 Ψ12 0
Ψ21 Ψ22 0
0 0 1

2
4

3
5 Where

Ψ11 ¼ cos θ*tþΔt
� �

cos θ*t
� �þ r*tþΔt

r*t
sin θ*tþΔt
� �

sin θ*t
� �

Ψ22 ¼ sin θ*tþΔt
� �

sin θ*t
� �þ r*tþΔt

r*t
cos θ*tþΔt
� �

cos θ*t
� �

Ψ12 ¼ cos θ*tþΔt
� �

sin θ*t
� �

−
r*tþΔt

r*t
sin θ*tþΔt
� �

cos θ*t
� �

Ψ21 ¼ sin θ*tþΔt
� �

cos θ*t
� �

−
r*tþΔt

r*t
cos θ*tþΔt
� �

sin θ*t
� �

8>>>>>>>>><
>>>>>>>>>:

ð27Þ

140mm

19mm

Upper die

Lower die

Fig. 10 Cross-wedge rolling with dies having a rotation motion

Upper die

Lower die

60mm

25mm

Fig. 9 Cross-wedge rolling with
dies having a translation motion
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It is important to notice that the resulting contact Eq. (10) is
now non-linear with respect to the velocity field. This would
increase the non-linearities of the mechanical problem and
consequently the number of Newton Raphson iterations re-
quired to solve it.

Applications

For all the applications considered, the material is assumed to
follow the Norton-Hoff constitutive Eq. (3) which parameters
are: K=1881 MPa and m=0.15. Also, a value of 0.8 has been

used for λ1 and λ2 (parameters for detecting effectively rotat-
ing nodes), a best compromise provided by numerical tests.

Rigid body rotation

An academic case of rigid body rotation is first presented in
order to evaluate the accuracy and the order of the proposed
scheme. The body consists of a hollow cylinder (see Fig. 4)
subjected to a constant rotation velocityω=10π rad/s.

For such a problem, the analytical solution is well known

( x tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
cos ωt þ θ0ð Þ , y tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
sin

ωt þ θ0ð Þ, z(t)=z0, where θ0 and z0 respectively denotes the
coordinates at time t=0 s). The cylindrical scheme is com-
pared to the first-order Euler and second-order Runge–Kutta
schemes, in terms of accuracy and convergence order. For the
accuracy study, a constant time step size of Δt=10−2s has
been used. Time step sizes of Δt, 2Δt and 4Δt are then
considered for the convergence analysis. Figure 5a and b
respectively show the relative error in the L2 classical norm
for the position vector and the relative volume variation for
few time steps. The relative error for the position vector in the

L2 norm is defined as error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
k

Xexact
k −Xk

�� ��2
∑
k

Xexact
k

�� ��2
vuuuut , where

Xk
exact and Xk respectively represent the exact position vector

and the calculated one on a node k. Logarithmic scale is used for
the vertical axis. As expected, with the Euler scheme a very large
volume dilatation is detected; the volume increases about ten

contact pressure t = 0,05s

contact pressure t = 0,1s

effec�ve rota�ng node t = 0,05s

effec�ve rota�ng node t = 0,1s

Fig. 12 For two different steps of
cross-wedge rolling, Left: contact
pressure. Right: flag of effective
rotating node (isovalue equal to 1
if rotation dominates and equal 0
if translation prevails)
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Fig. 11 Relative volume variation for cross-wedge rolling simulation
with dies in translation
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times. It also results into very large position errors. Second-order
Runge–Kutta scheme significantly improves the results (the
relative volume variation, ΔV/V0~10

−2) but it remains not ac-
curate enough. The cylindrical scheme provides the best results.
The volume variation is very negligible (ΔV/V0~10

−8).
Positions are also very accurate. Figure 6 presents the relative
error in the L2 classical norm for the position vector as a function
of the inverse of the time step size in a Log-Log scale. It can be
pointed out that the cylindrical scheme is a first order scheme (As
shown by the slope∼−1), just like the Euler scheme (but with a
much better accuracy), while the second-order Runge–Kutta is
actually a higher order scheme (but with a poorer accuracy for
the considered time steps).

Hot torsion test

The following application aims at showing the impact of
volume variation on simulation results. In this hot torsion test,
the impacts on the values of calculated torques versus the
number of turns are pointed out. The two jaws of the torsion

machine (see Fig. 7) have opposite rotation velocities of
ω1=π/60 rad/s and ω2=−π/60 rad/s. A time step size of
Δt=10−1s has been employed.

Figure 8a presents the relative volume variation for few
time steps. Once again the lowest volume variation is provid-
ed by the cylindrical scheme. In spite of the low number of
turns, the Euler scheme provides a large volume increase. In
terms of torque (Fig. 8b), results obtained with the cylindrical
scheme are almost identical to that of second-order Runge–
Kutta which can be considered here as a reference solution.
On the other hand, the Euler scheme provides significantly
higher torques, as a consequence of the volume increase.

Cross-wedge rolling

Cross-wedge rolling is employed for manufacturing axisymmet-
ric automotive parts. Starting from a cylindrical billet, the final
component is obtained through the plastic deformation imposed
by two moving dies (by translation or rotation) that make the
billet turn around its axis. For such a tricky process, a slight
default in the kinematicsmodelling results into significant defects
on the shape of the final part. It is therefore important to very
accurately integrate the large material rotations. For this study,
two different dies technologies are considered: with dies in
translation (Fig. 9) and with dies in rotation (Fig. 10).

In the die translation process (see Fig. 9), the relative velocity
of the dies is v=30mm/s. In the rotating process (see Fig. 10), the
velocities of the counter rotating dies are: ω1=1.25 rad/s and
ω2=−1.25 rad/s. A time step size of 10−2s has been used in the
two cases. Since few remeshings are performed to account for the
large mesh deformation, our analysis only regards the first fifty
time steps (before the first remeshing).

& Translating dies cross-wedge rolling

With translating dies kinematics, the rotation axis of work-
piece is continuously moving during the process, so it has to

Act_cyl

RK2

Real  part 

Act_cyl

RK2

(a)
(b)Fig. 14 Final shapes of the billet

during the cross-wedge rolling
simulation with rotating dies
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Fig. 13 Relative volume variation for cross-wedge rolling simulation
with rotating dies
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be continuously updated within the cylindrical scheme. As
can be seen in Fig. 11, once again the volume conservation is
much better along with the cylindrical scheme rather than with
the second-order Runge–Kutta scheme; the error reduces of
two orders of magnitude, from 10−3 to 10−5.

Figure 12 (right) presents isovalues of effectively rotating
nodes, in other words the flags that evaluate whether rotation
(flag equal to 1) or translation (flag equal to 0) prevails.
Although the workpiece is continuously rotating around its
axis, it is found that translation is able to dominate rotation at
some locations between the dies. These isovalues can be

easily correlated to contact pressure isovalues of Fig. 12 (left),
at different deformation stages of the process. The good
agreement between these fields indicates that a translation
motion dominates where the maximum compression (nega-
tive contact pressure) is observed between the dies.

& Rotating dies cross-wedge rolling

With rotating dies, the rotation axis of the workpiece is
almost steady. Figure 13 shows that similar conclusions can be
derived for the volume conservation: clear superiority of the

Fig. 16 Zoom on the end of final
shape of the billet for the
cylindrical scheme and RK2 with
decreasing time steps
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t1= 0,83 s, t2= 2,3 s, t2= 2,8 s
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Fig. 15 Shape evolution during the cross-wedge rolling simulation with rotating dies at different stages of the process: comparison between the
cylindrical scheme and RK2 with decreasing time steps
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cylindrical scheme over the second-order Runge–Kutta
scheme with also two orders of difference on the error. In this
case, with the second-order Runge–Kutta scheme, the volume
increase is one order of magnitude larger than with the previ-
ous kinematics.

Analyzing the shape of the billet can also highlight the
accuracy and robustness of the cylindrical scheme. Figure 14
presents the final shapes of the billet that have been obtained
with the two schemes, as well as the real shape of the billet
resulting from the actual forming process. The cylindrical
scheme allows predicting a very realistic final shape, while
the RK2 scheme provides a noticeable forming defect (see
Fig. 14b) at the end of the process simulation. This unexpected
defect (with RK2) can be explained by the numerical increase
of material volume observed in Fig. 13. Although low (1%), it
can be enough to modify the forming route of such a sensitive
process. This hypothesis is confirmed by carrying out a con-
vergence study with reduced time steps, Δt/4 and Δt/10.
Figure 15 shows the shape evolution over the time and
Fig. 16 provides a zoom on one end of the final shape. They
clearly show that the RK2 scheme converges toward the
solution provided by cylindrical scheme.

Table 1 provides information about the simulations. For the
time step Δt, the cylindrical scheme is just slightly (2.3 %)

more expensive than the RK2 scheme, due to additional
calculations and additional non-linearities in the residual
equations as the average number of iterations needed for the
Newton Raphson algorithm shows it. However, with such
time step Δt, the RK2 scheme provides inaccurate results, with
much more smaller time steps (Δt/4 or betterΔt/10) accurate
results are reached but much higher computational times
(respectively 3 and 6 times larger) is needed. The cylindrical
scheme is then both accurate and much more efficient.

To illustrate the necessity to take into account the cylindri-
cal scheme in the contact Eqs. (24–27) and to solve the
resulting non-linear equations, a comparison of results obtain-
ed with and without changes in the contact equations has been
carried out when the cylindrical scheme is used. Figure 17
shows the isovalues of the contact distance (a positive or zero
value indicates that the concerned node is in contact) at time
t=0.37 s. It can be clearly noticed that the contact area is not
similar; the contact is detected earlier and is more pronounced
when properly taking into account the cylindrical scheme in
the contact equations.

Conclusion

The studied cylindrical time integration scheme consists in
expressing the motion equations into a cylindrical frame, the
rotation axis of which is computed from the skew-symmetric
part of the velocity gradient. This scheme is only applied in
domain areas where the velocity field corresponds to a rota-
tional movement rather than to a translational movement. It
provides a general scheme that can be applied to any problem.
This cylindrical scheme is only first order but it shows more
accurate (and much easier to implement) than a higher order

Fig. 17 Isovalue of the contact
distance (a) without taking the
cylindrical scheme into account
and (b) taking it into account in
the contact equations

Table 1 Information about the simulations

Schemes CPU time on 4 cores
(hours)

Average number of non linear
iterations per step

Act_cyl (Δt) 5.4 20

RK2 (Δt) 5.28 17

RK2 (Δt/4) 17 15

RK2 (Δt/10) 33.7 13
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scheme such as second-order Runge–Kutta, which is clearly
shown by the analytical example of the rotating rigid body.
With respect to the original Euler scheme, which is often used
in implicit metal forming formulations, the accuracy of the
cylindrical scheme is several orders of magnitude higher. It is
particularly suited to problems where the rotation axis contin-
uously varies over time, while making it possible to take into
account that, in some particular portions of the domain sub-
jected to large deformations (between the rolling dies), the
material flow rather corresponds to a translation and should
therefore be integrated with a standard scheme. For studied
forming problems involving very large rotations, such as the
torsion test or cross-wedge rolling, the cylindrical scheme
provides significantly better results than the second-order
Runge–Kutta, both for the volume preservation; the torsion
torques values or else the computed geometries at the end of
rolling.

This scheme can rather easily be introduced into existing
code without specific difficulties. Changing an Euler time
integration scheme into the cylindrical scheme is rather
straight forward (equations of section 3.1), while detecting
the rotation axis and the rotation occurrence, as well as intro-
ducing the changes to the contact equations (section 3.3)
requires going further into the data structure of the code.
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