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Abstract Nowadays thermoplastic composite materials are
more and more used due to their specific excellent mechan-
ical properties and a good recyclability. However, many
difficulties are encountered during their forming processes,
specially in the case of thermoplastic composites –TPC–.
Therefore, consolidation of thermoplastic composites is
becoming one of the most active research topics in com-
posite manufacturing. Many processes proceed by heating
prepregs to melt the polymer, then apply a compression
in order to remove residual porosity trapped at the layers
interfaces and consolidate the material. Thus the different
layers containing the molten thermoplastic resin are com-
pressed and squeeze flow occurs. Even if some modeling
has been addressed, the flow occurring in the laminate,
inside the yarns and in between the yarns requires rich 3D
numerical descriptions with a fine enough description of
the complex kinematics taking place in the laminate thick-
ness. In this work we analyze the limits of lubrication based
descriptions, justifying the necessity of proceeding with
3D descriptions. In order to alleviate the cost that such
simulations involve, we employ an advanced discretization
technique making use of an efficient in-plane-out-of-plane
separated representation of the different fields involved in
the model. Thus very fine descriptions are possible with a
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computational cost characteristic of 2D descriptions, as the
ones making use of the lubrication hypotheses.

Keywords Squeeze flow · Composite laminates · Proper
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Introduction

Plates and shells are very common in nature and thus they
inspired engineers that used both them from the very begin-
ning of structural mechanics. Nowadays, plates and shells
parts are massively present in most engineering applica-
tions.

This type of structural elements involves homogeneous
and heterogeneous materials, isotropic and anisotropic, lin-
ear and non-linear. The appropriate design of such parts
consists not only in the structural analysis of the parts for
accommodating the design loads, but also in the analysis of
the associated manufacturing processes because many prop-
erties in the final parts are induced by the forming process
itself (e.g. flow induced microstructures). Thus, fine anal-
yses concern both, the structural parts and their associated
forming processes.

In general the whole design requires the solution of some
mathematical models governing the evolution of the quan-
tities of interest. These models consist of a set of partial
differential equations combining general balance equations
(mass, energy and momentum) and some specific consti-
tutive equations depending on the considered physics, the
last involving different material parameters. These complex
equations (in general non-linear and strongly coupled) must
be solved in the domain of interest.
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When addressing plate or shell geometries the domains
in which the mathematical models must be solved become
degenerated because one of its characteristic dimensions
(the thickness in the present case) is much lower than the
other characteristic dimensions. We will understand the
consequences of such degeneracy later. When analytical
solutions are neither available nor possible because of the
geometrical or behavior complexities, the solution must be
calculated by invoking any of the available numerical tech-
niques (finite elements, finite differences, finite volumes,
methods of particles, ...).

In the numerical framework the solution is only obtained
in a discrete number of points, usually called nodes, dis-
tributed in the domain. From the solution at those points,
it can be interpolated at any other point in the domain.
In general regular nodal distributions are preferred because
they offer better accuracies. In the case of degenerated
plate or shell domains one could expect that if the solu-
tion evolves significantly in the thickness direction, a large
enough number of nodes must be distributed along the
thickness direction to ensure the accurate representation of
the field evolution in that direction. In that case, a regular
nodal distribution in the whole domain will imply the use
of an extremely large number of nodes with the consequent
impact on the numerical solution efficiency.

When simple behaviors and domains were considered,
plate and shell theories were developed in the structural
mechanics framework allowing, through the introduction of
some hypotheses, reducing the 3D complexity to a 2D one
related to the problem now formulated by considering the
in-plane coordinates.

In the case of fluid flows this dimensionality reduction is
known as lubrication theory and it allows efficient solutions
of fluids flows taking place in plate or shell geometries for
many type of fluids, linear (Newtonian) and non-linear. The
interest of this type of flow, taking place in plate and shell
geometries, is not only due to the fact that it is involved in
the manufacturing processes of plate and shell parts, but also
due to the fact that many tests for characterizing material
behaviors involve it.

However, as soon as richer physics are concerned by
the models and the considered geometries differ of those
ensuring the validity of the different reduction hypotheses,
simplified simulations are compromised and they fail in
their predictions.

In these circumstances the reduction from the 3D model
to a 2D simplified one is not obvious, and 3D simulations
appear many times as the only valid route for address-
ing such models, that despite the fact of being defined in
degenerated geometries (plate or shell) they seem requiring
a fully 3D solution. However in order to integrate such a
calculations (fully 3D and implying an impressive number

of degrees of freedom) in usual design procedures, a new
efficient (fast and accurate) solution procedure is needed.

A new discretization technique based on the use of
separated representations was proposed some years ago
for addressing multidimensional models suffering the so-
called curse of dimensionality, where standard mesh-based
techniques fail [2]. The curse of dimensionality was cir-
cumvented thanks to those separated representations that
transformed the solution of a multidimensional problem
into a sequence of lower dimensional problems. The inter-
ested reader can refer to the recent reviews [6–8] and the
references therein.

A direct consequence was separating the physical space.
Thus in plate domains an in-plane-out-of-plane decomposi-
tion was proposed for solving porous media flow models in
laminates [8], then for solving elasticity problems [5] and
coupled multiphysics problems [9]. In those cases the 3D
solution was obtained from the solution of a sequence of 2D
problems (the ones involving the in-plane coordinates) and
1D problems (the ones involving the coordinate related to
the plate thickness).

It is important emphasizing the fact that these approaches
are radically different from standard ones. We propose
a 3D solver able to compute the different unknown 3D
fields without the necessity of introducing any hypothe-
sis. The most outstanding advantage is that 3D solutions
can be obtained with a computational cost characteristic of
standard 2D solutions.

In this work we generalize the just referred approach for
calculating the fully 3D solution of squeeze flows in dif-
ferent configurations, involving mono-layers and laminates
of Newtonian and power-law fluids. Finally the approach
will be generalized for considering more complex scenarios
exhibiting different models through the laminate thickness.
For this purpose we propose an efficient 3D solution of the
Brinkman equation, again based on the use of an in-plane-
out-of-plane separated representations of both the model
and their involved unknown fields.

The squeeze flow of Newtonian or non-Newtonian fluids
between two rigid parallel plates is relevant in many indus-
trial problems including the moulding of fiber reinforced
composites. Thermoplastic composite parts are often manu-
factured by compression moulding of concentrated suspen-
sions of continuous aligned fibers, a process where squeeze
flow takes place in reaction of the application of consolida-
tion pressure. Squeeze flow induced by consolidation is an
important stage of any fiber reinforced thermoplastic com-
posite forming process. It allows the local redistribution by
transverse elongation of the polymer/fiber mixture, which is
very important for filling in the gaps between plies ensuring
consolidation. The quality of bonding, through the heal-
ing process, of the different composite layers in laminates
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depends on the transverse squeeze flow mechanism. In addi-
tion excessive flow may lead to uncontrolled fiber motion
and thus affect the mechanical properties of the part. It is
therefore important to understand the squeeze flow behavior
of thermoplastic composite laminates.

Squeeze flow has been used as an experimental method
for rheological characterization [1, 11, 13, 21]. Many
studies have been reported on the squeeze flow of Newto-
nian and non-Newtonian fluids between rigid parallel flat
bodies with or without wall-slip concerning both experi-
mental and numerical analyses, fundamentals and applica-
tions [3, 4, 12, 14–20, 22]. However it has been shown
that flow should be monitored wherever possible (through
appropriate visualization techniques) to get information
about the real flow field during the squeezing. Experimental
investigation of such a mechanism leads to practical diffi-
culties due the small scale at which phenomena take place.
Theoretical models can be used instead, however they have
to be sophisticated enough to predict the real flow field and
capture the actual fluid mechanics of laminate squeeze flow.

In the present work we focus on the squeeze flow occur-
ring in composite laminates, pointing-out the limits of
models based on the lubrication hypotheses, and propos-
ing an alternative and novel route for solving very fine 3D
models while preserving a computational complexity char-
acteristic of lubrication based solutions. For this purpose we
revisit in Section “Revisiting lubrication based descriptions”
lubrication based modeling pointing-out its limits when
addressing multilayered fluid flows as those encountered in
composites laminates that seem requiring a fully 3D solu-
tion. In Section “Fully 3D modelling” we propose such a 3D
efficient solution procedure based on the use of an in-plane-
out-of-plane separated representation. The solutions of the
3D Stokes problem related to a Newtonian and a power-
law fluid allow to conclude of the validity and limits of
lubrication based solutions. Finally in Section “Brinkman’s
model” we address the 3D solution of the Brinkman equa-
tions within the same framework opening new perspectives
on the high fidelity solutions of 3D models defined in such
degenerated geometries.

Revisiting lubrication based descriptions

Lubrication in a fluid monolayer

We assume a layer of a Newtonian fluid characterized by a
viscosity η filling the domain � = � × I, where � ⊂ R

2

and I = [−h/2, h/2] ⊂ R. The layer thickness h is
assumed very small with respect to the in-plane characteris-
tic dimensions. We assume the thickness h being the same
at each location x = (x, y) ∈ �. The layer is squeezed at

a rate ḣ. The resulting fluid flow is governed by the Stokes
equations that allow calculating the velocity v = (u, v, w)

and the pressure p(x, y, z) fields. Due to the very small
thickness the lubrication hypotheses:
⎧
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can be considered into the Stokes equations, and proceeding
as described in Appendix A, the fluid flow model results
finally described from

ḣ = − h3

12η
�p (2)

that allows computing the pressure field p(x, y) that does
not depend on the out-of-plane coordinate z. As soon as
the pressure field is known, the velocity can be obtained by
using (see Appendix A):
⎧
⎨
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The reduction of the computational complexity is quite
impressive because instead of solving the Stokes problem
(involving the three momentum and the mass balances, all
them defined in 3D, for determining the 3D velocity and
pressure fields) one must only calculate the 2D pressure
field from Eq. 2.

In order to address a more complex fluid rheology we
consider a non-Newtonian described by the power-law con-
stitutive equation

η = K · Dn−1
eq · D (4)

where K and n are two material parameters, D the strain rate
tensor and Deq the equivalent strain rate

Deq = √
2 (D : D) (5)

where ” : ” denotes the tensor product twice contracted.
This viscosity law can describe Newtonian fluids n = 1 but
also non-Newtonian fluids (rheothinning and rheothicken-
ing) for n �= 1.

As described in Appendix B, when considering the lubri-
cation hypotheses (1) the velocity results
⎧
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with

α = 1

K

√

(∇p)2 (7)

Now the flow rate q = (qx, qy) can be computed from
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qx(x, y) =
h/2∫

−h/2
u(x, y, z) dz

qy(x, y) =
h/2∫

−h/2
v(x, y, z) dz

(8)

and the mass balance enforced

ḣ = ∇ · q (9)

that results in a second order non-linear partial differen-
tial equation that allows computing the 2D pressure field.
Knowing the pressure field, the velocity can be obtained
from Eq. 6.

Verifying lubrification hypotheses in multilayered
laminates

In this section is verified the validity of the standard lubri-
cation hypotheses in the case of multilayered laminates
by assuming a simple dependence of the viscosity in the
thickness coordinate η(z). Later we will consider that the
reinforcement layers have a viscosity much bigger than the
one related to the fluid layers as sketched in Fig. 1.

Newtonian resin

First we consider a Newtonian resin that allows writing the
momentum balance as

∇p = ∇(η∇v) (10)

that by introducing the standard lubrification hypotheses (1)
leads to:
{

∂p
∂x

= ∂
∂z

(
η ∂u

∂z

)

∂p
∂y

= ∂
∂z

(
η ∂v

∂z

) (11)

with p = p(x, y) ≡ p(x).

Matrix

Fibers

Fig. 1 Composite laminate made of unidirectional prepregs separated
by a pure matrix fluid

By integrating in the thickness I and taking into account
the symmetry of the velocity field at z = 0, i.e. its derivative
with respect to the coordinate z vanishes, we obtain:

{
∂p
∂x

· z
η

= ∂u
∂z

∂p
∂y

· z
η

= ∂v
∂z

(12)

that can be integrated a second time in order to obtain the
flow velocity components. For this purpose we consider a
regular sequencing of resin and reinforcement layers with
the same thickness and with viscosities η1 and η2 respec-
tively, considering that both velocity components vanish at
z = −h/2. As soon as the expression of the velocity com-
ponents is available we can compute the flow rates q(x) and
then enforce the mass balance ∇ · q = ḣ to finally obtain
a second order partial differential equation involving the
pressure field p(x) defined in �.

The case of a 9-layer laminate of total thickness h =
0.0104 m is analyzed. For the resin we considered the
PEEK’s viscosity η1 whereas for describing the rigid-like
behavior of the reinforcement layers we considered a vis-
cosity η2 large enough, η2 = 108 · η1.

Once the pressure is known the velocity can be calculated
from
{

u = ∂p
∂x

· ∫ z

−h/2
s

η(s)
ds

v = ∂p
∂y

· ∫ z

−h/2
s

η(s)
ds

(13)

that is depicted in Fig. 2 and that clearly shows a unphysical
solution where the ”rigid” layers are in fact flowing.

It is easy noticing that the large viscosity assumed in
the reinforcement layers limits its shearing but accommo-
dates an elongational flow that is not described within the
standard lubrication hypotheses.
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Fig. 2 Velocity profile along the thickness in the case of a laminate
involving a Newtonian fluid
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Power-law resin

In this section we analyze the validity of standard lubrifica-
tion hypotheses in the case of a power-law fluid, even if we
do not expect better conclusions than the ones derived from
the analysis in the case of Newtonian fluids.

By following a similar procedure we obtain
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where non-slipping boundary conditions were used. Then
the flow rate can be calculated, and from it, by enforcing
the mass balance, the equation governing the pressure field
distribution that results in the preset case non-linear.

When considering the same problem just addressed, now
taking a consistency parameter K in the reinforcement lay-
ers much bigger than the one considered in the resin ones,
we obtain the velocity profile along the thickness direc-
tion shown in Fig. 3 that as in the Newtonian case seems
completely unphysical by the same reasons.

Fully 3D modelling

We just proved than in the case of laminates composed
of several layers of fluids with very different viscosities
standard lubrication hypotheses fail for describing the flow
kinematics. In that case fully 3D solutions seem compul-
sory. Even if there is no major conceptual difficulties in
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Fig. 3 Velocity profile along the thickness in the case of a laminate
involving a power-law fluid

considering the fully 3D Stokes problem, from the numeri-
cal point of view the situation is radically different because
we should consider a mesh fine enough for representing the
viscosity evolution in the thickness direction and its induced
effects on the flow kinematics. Such a discretization will
imply an extremely large number of degrees of freedom to
avoid too distorted elements in the mesh.

We proposed recently [5] an in-plane-out-of-plane sep-
arated representation that allows solving fully 3D models
defined in plate geometries keeping a computational com-
plexity characteristic of 2D simulations. This separated
representation allows for independent representations of the
in-plane and the thickness fields dependencies. The main
idea lies in the separated representation of the velocity field
according to:

v =
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(15)

that leads to a separated representation of the strain rate,
that introduced into the Stokes problem weak form allows
the calculation of functions Xi(x, y) by solving the corre-
sponding 2D equations and functions Zi(z) by solving the
associated 1D equations. These 2D and 1D problems are
derived considering a fixed point strategy for solving the
resulting nonlinear problem. Functions depending on the
z-coordinate are computed by assuming known the ones
depending on the in-plane coordinates, and then the last are
updated from the just calculated z-dependent functions. The
iteration process continues until reaching convergence. For
additional details the interested reader can refer to [5].

Because of the one-dimensional character of problems
defined in the laminate thickness we can use extremely
fine descriptions along the thickness direction without a
significant impact on the computational efficiency.

In what follows we are considering the solution of the
fully 3D Stokes problem in a laminate composed of a
sequence of resin and reinforcement layers, the last ones
represented thanks to a viscous enough pseudo-fluid. Later,
in order to described more precisely the reinforcement lay-
ers, we will assume that the resin phase that impregnates the
yarns of the reinforcement layers flows in a way that can be
described by the usual Darcy’s model. In order to define a
single model to be solved in the whole domain we combine
the Stokes model that applies in the resin layers with the
Darcy’s one applying in the fibrous layers. Both models can
be coupled within the Brinkman’s model whose efficient
solution will be addressed in Section “Brinkman’s model”.



78 Int J Mater Form (2015) 8:73–83

Newtonian fluid

The Stokes model is defined in � = � × I and reads for an
incompressible fluid:
{ ∇p = ∇ · (η · ∇v)

∇ · v = 0
(16)

To circumvent the issue related to stable mixed formula-
tions (LBB conditions) within the separated representation
used in what follows, we consider a penalty formulation
that modifies the mass balance by introducing a penalty
coefficient λ small enough

∇ · v + λ · p = 0 (17)

or more explicitly
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By replacing it into the momentum balance (first equation
in Eq. 16) we obtain
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⎛

⎜
⎝

∂
∂x
∂
∂y
∂
∂z

⎞

⎟
⎠

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)

+ξ

⎛

⎜
⎜
⎝

∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

⎞

⎟
⎟
⎠ = 0

(20)
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We consider again the fluid monolayer previously consid-
ered in the case of a Newtonian fluid with constant viscosity
and take λ = 10−10. By comparing the 3D Stokes solution
and the one obtained considering the lubrication hypotheses,
the relative error is of about 0.7 %, validating the lubrication
model in the case of a fluid monolayer of constant viscos-
ity. The error related to the separated representation solution
associated to the PGD solver with respect to a fully 3D finite
element solution (computed on a mesh fine enough) was
found lower than 0.1 %.

The fully 3D solution of the Stokes model seems par-
ticularly pertinent when addressing scenarios where the
viscosity evolves in the thickness, as was the case when
considering multilayered laminates.

When the multilayered laminate considered previously is
solved by considering the fully 3D approach instead of the
lubrication based 2D model we obtain the velocity profile
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Fig. 4 Velocity profile related to the fully 3D Stokes solution in a
multilayered laminate

depicted in Fig. 4. When comparing it with the one obtained
within the lubrication framework the following conclusions
can be stressed:

1. the solution obtained within the lubrication framework
is very accurate when describing the squeeze flow of a
Newtonian fluid monolayer with constant viscosity;

2. the solution obtained within the lubrication framework
when addressing a laminate consisting of different lay-
ers of Newtonian fluids with very different viscosities
is definitively wrong;

3. when lubrication approaches fail the only valuable
alternative consists of solving the fully 3D Stokes prob-
lem. The efficient fully 3D solution is possible by
applying the in-plane-out-of-plane separated represen-
tation.

Note that the fully 3D solution was computed by using a
mesh of � involving 3600 nodes and a mesh of I consist-
ing of 800 nodes uniformly distributed along the laminate
thickness. An equivalent finite element description would
require 3600 × 800 = 2880000 nodes, each one contain-
ing three degrees of freedom, the three velocity components.
The separated representation solution addressed in Eq. 15
was computed in 3 minutes on a quad-core laptop, 2.3 Ghz
per core. The separated solution involved 9 terms (N = 9 in
Eq. 15).

Power-law fluid

The Stokes model extended to power-law fluids reads:

{ ∇p = ∇ · T
∇ · v = 0

(22)
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where the extra-stress tensor for power-law fluids writes:

T = 2K · Dn−1
eq · D (23)

with D the strain rate tensor:
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and the equivalent strain rate Deq given by:

Deq = √
2(D : D) (25)

where ” : ” denotes the tensor product twice contracted.
The solution is again carried out by using a penalty

formulation. Moreover, at each iteration of the non-linear
solver we must evaluate the equivalent strain rate, and write
it in a separated form for enhancing the efficiency of the
separated representation solver [5]. The simplest way for
performing such decomposition

Dn−1
eq ≈

i=M∑

i=1

Fi(x, y) · Gi(z) (26)

consists of using a singular value decomposition. This
decomposition is optimal but it requires a 3D reconstruc-
tion and data storage that can be too expensive from the
computational point of view. Alternantives based on the
use of discrete empirical interpolations (DEIM) are being
developed to overcome this important drawback [10].

The solution related to n = 0.49 and h = 0.00104 m.

in a fluid monolayer was compared to the one previously
obtained within the lubrication framework. Both solutions
were in perfect agreement validating the simplified model-
ing based on the lubrication approach.

Then we consider the multilayered laminate previously
addressed within the lubrification framework. The 3D solu-
tion is depicted in Fig. 5. The comparison of solutions
obtained by using both approaches, the fully 3D and the
one based on the use of the lubrication hypotheses, leads to
following conclusions:

1. the solution obtained within the lubrication framework
is very accurate when describing the squeeze flow of a
power-law fluid monolayer;

2. the solution obtained within the lubrication framework
when addressing a laminate consisting of different lay-
ers of power-law fluids with very different viscosities is
definitively wrong;

3. when lubrication approaches fail the only valuable
alternative consists of solving the fully 3D Stokes prob-
lem for power-law fluids. The efficient 3D solution is
again possible by applying the in-plane-out-of-plane
separated representation.
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Fig. 5 Velocity profile along the laminate thickness: the reduced
strain rate around the mid-plane implies a greater viscosity and then
lower velocities

Brinkman’s model

As indicated before, in composites manufacturing processes
resin located between fibers in the reinforcement layers
also flows. A usual approach for evaluating the resin flow
in such circumstances consists of solving the associated
Darcy’s model. It is well known that Darcy-Stokes coupling
at the interlayers generates numerical instabilities because
the localized boundary layers whose accurate description
requires very rich representations (very fine meshes along
the laminate thickness).

In this section we propose to use the Brinkman model that
allows representing in an unified manner both the Darcy and
the Stokes behaviors. In order to avoid numerical inaccura-
cies we use a very fine representation along the thickness
direction and for circumventing the exponential increase in
the number of degrees of freedom that such a fine represen-
tation would imply when extended to the whole laminate
domain, we consider again the in-plane-out-of-plane sepa-
rated representation previously introduced.

The Brinkman model is defined by:

∇p = μ · K−1 · v + η · �v (27)

where μ is the dynamic viscosity, K the layer permeability
tensor and η the dynamic effective viscosity.

In the zones where Stokes model applies (resin lay-
ers) we assign a very large isotropic permeability K = I
(units in the metric system and I being the unit tensor)
whereas in the ones occupied by the reinforcement, the per-
meability is assumed anisotropic, being several orders of
magnitude lower, typically 10−8. Thus the Darcy’s compo-
nent in Eq. 27 does not perturb the Stokes flow in the resin
layers, and it becomes dominant in the reinforcement layers.
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Resin

Fibers at 90o

Fibers at 0o

Fig. 6 Model considered for solving Brinkman equations: Newtonian
layer, unidirectional reinforcement aligned along the y-direction (90◦)
and unidirectional reinforcement aligned along the x-direction (0◦)

Additionally by choosing this outstanding difference in per-
meability, representative of the one observed in liquid Resin
Infusion process when highly porous distribution media are
used, we also want to give the evidence that this type of
problem can be addressed by the proposed approach.

In the numerical examples we consider again a 9-layer
laminate alternating resin and unidirectional reinforcement
layers. On the other hand the fibrous layers alternate the 0◦
and 90◦ directions as depicted in Fig. 6. The permeability
component in the fiber direction is K// = 10−8 m2, being
the one related to the perpendicular directions one order of
magnitude lower K⊥ = 10−9 m2. The viscosities involved
in the Brinkman’s models are η = 200 Pa.s, and as usually
considered η/μ = 2. Finally the penalty coefficient is fixed
to λ = 10−9.

The resulting velocity profile along the thickness direc-
tion depends on the considered velocity component because
the layers sequencing that alternates the x and y directions.
Figures 7 and 8 depicts the velocity profiles u(x1, z) and
v(x2, z) respectively, at positions x1 = (Lx, Ly/2) and
x2 = (Lx/2, Ly). We can notice that as expected when one
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Fig. 7 u(x = Lx, y = Ly/2, z) associated with the 3D Brinkman
solution

v(z) m/s

T
hi
ck
ne
ss

(m
)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

0.002

0.004

0.006

0.008

0.01

0.012

Fig. 8 v(x = Lx/2, y = Ly, z) associated with the 3D Brinkman
solution

velocity component is high in a fibrous layer, the other is
low and vice-versa, because the differences of permeabil-
ities induced by the fibers orientation. On the other hand
because resin can flow from the resin layers to the fibrous
ones and vice-versa the maximum velocity evolves along
the z-coordinate as noticed in the previous figures. These
mechanisms explain the noticed loss of symmetry of the
velocity field along the thickness direction. This fact plenty
justifies the 3D modeling, proving the limits of a lubrication
approaches.

Finally we compute the out-of-plane velocity component
w(x = Lx/2, y = Ly/2, z) and compare it with the one
obtained in the previous section by solving the Stokes equa-
tions. Both are depicted in Fig. 9. When considering the
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Fig. 9 Comparing the out-of-plane velocity component of both the 3D
Brinkman and Stokes solutions
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fully Stokes equation the velocity of the resin in the fibrous
layers (modeled from a pseudo-fluid with large enough
viscosity) was constant along the layer thickness (fibrous
layers behave like a rigid solid) whereas in the case of the
Brinkman model this velocity evolves inside the fibrous
layer proving the existence of complex flow exchanges
between the different layers.

Conclusion

In this paper we analyzed the validity of lubrication
approaches for addressing squeeze flows in composite lam-
inates. We considered different resin behaviors: Newtonian
and shear thinning non-Newtonian fluids described by a
power-law; and different configurations: monolayer or mul-
tilayered laminates. In the latter case we represented the
fibrous layers by using two approaches: (i) a pseudo-fluid
with a large enough viscosity within the Stokes framewotk
or (ii) by taking into account the resin flow within the
fibrous layers from a Darcy’s model. In the last case we
considered the unified formulation due to Brinkman that
combines both behaviors, the viscous one (Stokes) and the
flow in porous media (Darcy).

When describing fibrous layers from a viscous enough
pseudo-fluid the main conclusions are (for both Newtonian
and power-law behaviors):

1. the solution obtained within the lubrication framework
is very accurate when describing the squeeze flow of a
fluid monolayer;

2. the solution obtained within the lubrication framework
when addressing a laminate consisting of different lay-
ers of fluids with very different viscosities is defini-
tively wrong;

3. when lubrication approaches fail the only valuable
alternative consists of solving the fully 3D flow model.
The efficient 3D solution is possible by applying the
in-plane-out-of-plane separated representation.

Finally, the last section allowed considering finer
descriptions based on a more realistic model of resin flow
within the fibrous layers, consisting in the solution of the
fully 3D Brinkman model that revealed a rich kinematics
along the laminate thickness. This rich behavior requires
a fine enough representation, that implies the necessity
of using extremely fine discretizations in the thickness
direction. This fact limits the applicability of standard 3D
discretizations because the number of degrees of freedom
increases too much, however when the solution is addressed
by considering an in-plane-out-of-plane separated represen-
tation the fully 3D solution can be computed with a com-
putational complexity characteristic of lubrication models
(2D).

Appendix A: Monolayer squeeze flow of a Newtonian
resin

We consider a layer of a Newtonian fluid characterized
by a viscosity η filling the domain � = � × I, where
� ⊂ R2 and I = [−h/2, h/2] ⊂ R. The domain thick-
ness h is assumed small enough (with respect to the in-plane
characteristic dimensions) and it is assumed constant.

The Stokes’s equations for an incompressible Newtonian
fluid read:

∇p = η · �v (28)

where v is the velocity vector with components v =
(u, v, w) and p the pressure field. Equation 28 results in the
following three scalar equations:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂p
∂x

= η
(

∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)

∂p
∂y

= η
(

∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)

∂p
∂z

= η
(

∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

)
(29)

When the layer thickness is much lower than the charac-
teristics in-plane dimensions involved in � the following
hypotheses (known as lubrication hypotheses) apply:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂z

� ∂u
∂x

∂u
∂z

� ∂u
∂y

∂v
∂z

� ∂v
∂x

∂v
∂z

� ∂v
∂y

w ≈ 0

(30)

reducing the Stokes’s Eq. 29 to:
⎧
⎪⎨

⎪⎩

∂p
∂x

= η ∂2u

∂z2

∂p
∂y

= η ∂2v

∂z2
∂p
∂z

= 0

(31)

Now, by integrating Eq. 31 with respect to z and taking into
account that p = p(x) = p(x, y) as well as the non-slip
boundary conditions
{

u(z = −h/2) = u(z = h/2) = 0
v(z = −h/2) = v(z = h/2) = 0

(32)

it results:
⎧
⎨

⎩

u = 1
2η

∂p
∂x

(
z2 − (

h
2

)2
)

v = 1
2η

∂p
∂y

(
z2 − (

h
2

)2
) (33)

that integrated in the thickness allows calculating the flow
rates qx and qy

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qx =
h/2∫

−h/2
u dz = − 1

12η
∂p
∂x

h3

qy =
h/2∫

−h/2
v dz = − 1

12η
∂p
∂y

h3

(34)
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The mass conservation, taking into account the fluid incom-
pressibility and the compression rate ḣ, reads:

ḣ = dh

dt
= ∇ · q (35)

or more explicitly:

ḣ = ∂qx

∂x
+ ∂qy

∂y
(36)

that allows deriving the equation related to the pressure
field:

ḣ = − 1

12η

(
∂

∂x

(

h3 ∂p

∂x

)

+ ∂

∂y

(

h3 ∂p

∂y

))

(37)

that when the thickness is the same everywhere reduces to:

ḣ = − h3

12η
�p (38)

Appendix B: Monolayer squeeze flow of a power-law
resin

In order to address a more complex resin rheology we con-
sider it described by the power law constitutive equation

η = K · Dn−1
eq · D (39)

where K and n are two material parameters, D the strain rate
tensor and Deq the equivalent strain rate

Deq = √
2 (D : D) (40)

where ” : ” denotes the tensor product twice contracted.
Now, the momentum balance writes

∇p = K · ∇(Dn−1
eq · ∇v) (41)

Within the lubrication framework the equivalent strain
reduces to

Deq =
√

(
∂u

∂z

)2

+
(

∂v

∂z

)2

(42)

with p = p(x). By integrating Eq. 41 in the z-coordinate
and taking into account that the velocity derivatives vanish
at z = 0 because the flow symmetry with respect to the
mid-plane, it results
{

Dn−1
eq · ∂u

∂z
= 1

K
∂p
∂x

· z
Dn−1

eq · ∂v
∂z

= 1
K

∂p
∂y

· z
(43)

By taking the square of both equalities in Eq. 43 and then
adding both (taking into account Eq. 42) it results

Deq =
( |z|

K

√

(∇p)2

)1/n

(44)

By introducing Eq. 44 into Eq. 43, integrating again in the
layer thickness I and considering the non-sliping condition
at z = h/2 (or z = −h/2) it finally results:
⎧
⎨

⎩

u = ∂p
∂x

1
K

α(1−n)/n n
n+1 ·

(
|z|(1+n)/n − (

h
2

)(1+n)/n
)

v = ∂p
∂y

1
K

α(1−n)/n n
n+1 ·

(
|z|(1+n)/n − (

h
2

)(1+n)/n
) (45)

with

α = 1

K

√

(∇p)2 (46)

Now, the flow rate q can be computed by using Eq. 34 and
the mass balance enforced

ḣ = ∇ · q (47)

that results in a second order non-linear partial differential
equation that allows computing the 2D pressure. Knowing
the pressure field, the velocity can be obtained from Eq. 45.
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