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Abstract The concept of a Forming Limit Curve (FLC), in-
troduced in the sixties, has been widely used in the sheet metal
industry, both to check out die designs at the design stage, using
FE simulation techniques, and also to sign off stamped parts in
the press shop. However, this approach should be strictly
limited to stamping processes where the strain path is propor-
tional during the stamping process. An alternative concept, the
Forming Limit Stress Diagram (FLSD), was proposed back in
the eighties. This FLSD concept is path independent, and solves
the problem of possible non-linearity of the strain path during a
press forming operation. The following paper uses a procedure
for the transformation of an experimental path dependent strain
based FLC into a stress based path independent FLSD, for three
different yield functions, von Mises, Hill’48 and Hill’s 90.
Having derived the FLSD criterion, this paper then shows a
comparison between the FE stamping simulations carried out
on a selected component, using both the standard FLC ap-
proach and the more recent FLSD approach, using each one
of the three different yield criterion considered. The FE simu-
lation results using the FLSD transformation and the original
FLC approach show good agreement for each of the yield
functions considered. Some differences between the yield func-
tions are also highlighted and discussed, in particular the limi-
tations of Hill’s 48 in the balanced bi-axial stress state for
materials with an r value less than one, i.e. aluminium alloys.

Keywords Forming limit diagram . Forming limit stress
diagram .Sheetmetal forming .Yield function .Finiteelement
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Introduction

Following the introduction of the concept of a Forming
Limit Diagram (FLD), or a Forming Limit Curve (FLC),
by Keeler& Backhofen [1] and Goodwin [2], this ap-
proach has been widely used in the sheet metal industry,
both to check out die designs at the concept stage,
using FE simulation techniques, and to sign off stamped
parts in the press shop. Provided the strain paths of the
stamped part are sensibly proportional during the
stamping process, this technique can be used to good
effect. However, it is known that the final position of
the FLC depends upon the strain path undertaken to get
to the end state point [3–6]. Hence, for a stamped part
undergoing a variable strain path, the concept of an
FLC becomes increasingly invalid the greater the degree
of non-linearity of the strain path.

The concept of a Forming Limit Stress Diagram
(FLSD), introduced by Arrieux et al. [7], and developed
over time by a number of authors [8–15], has not been
adopted throughout the sheet metal industry as was the
case with the FLC approach. This is surprising in view
of the fact that the FLSD is path independent, and
eliminates the problem of possible non-linearity of the
strain path during the press forming operation. However,
experience has been very limited in applying the FLSD
in the industry, and more experience needs to be built
up over time by the stamping industry, perhaps running
both criterion in parallel, to gain the necessary confi-
dence in the FLSD approach.
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In the following lines we briefly detailed the equa-
tions needed to apply the FLSD concept using the
models actually still in used in industry. FE simulation
of a pressing is then made comparing the various clas-
sical yield models used with the FLD and the FLSD
criterion.

Basic theory and transformation of experimental FLC
to stress space of the FLSD

Although the FLC failure criterion is normally displayed in
strain space in the plane of (ε1, ε2), (true plastic strain
neglecting the elastic portion), the failure criterion can be
transformed to alternative planes using known formulae for
plane stress plasticity [16]. Following a similar approach
adopted by Bai & Wierzbicki [17], strain and stress ratio are
defined respectively as:

β ¼ dε2=dε1

and

α ¼ σ2=σ1

with

σ3 ¼ 0

for plane stress present in thin sheet deformation. In
introducing the symbols for the stress and strain ratios,
the authors are conscience of the fact that various au-
thors have adopted the same notation used here, where-
as numerous other authors have adopted the opposite
usage of α and β.

Now it follows that:

σ2 ¼ ασ1 ð1Þ

Also,

dε2 ¼ βdε1 ð2Þ

Also from volume constancy it can be shown that:

dε3 ¼ − 1þ βð Þdε1 ð3Þ

von Mises yield function

A relationship between the stress ratio α and the strain ratio β
can be obtained by substituting the above equations for the
strain increments, together with that for σ2, into the Levy-
Mises equations below [18]

dε1 ¼ dε�=σ�
� �

σ1−0:5 σ2 þ σ3ð Þ½ �and dε2 ¼ dε�=σ�
� �

σ2−0:5 σ1 þ σ3ð Þ½ �

giving the following well known equations:

α ¼ 1þ 2βð Þ= 2þ βð Þ ð4Þ

β ¼ 1−2αð Þ= α−2ð Þ ð5Þ

The increment of equivalent strain is defined in terms of the
incremental plastic strain components:

dε� ¼ 21=2=3
� �

dε1−dε2ð Þ2 þ dε2−dε3ð Þ2 þ dε3−dε1ð Þ2
h i1=2 ð6Þ

Substitution of Eqs. (2) and (3) into Eq. (6) gives the
increment of equivalent strain in terms of the strain ratio β:

dε� ¼ 2=31=2
� �

dε1 1þ βþ β2
� �1=2 ð7Þ

Under the proportional loading of plane stress conditions,
the strain ratio is constant, and Eq. (7) may be integrated to
give:

ε� ¼ 2=31=2
� �

ε1 1þ βþ β2
� �1=2 ð8Þ

Now introducing the von Mises Yield function [19]:

σ� ¼ 1=21=2
� �

σ1−σ2ð Þ2 þ σ2−σ3ð Þ2 þ σ3−σ1ð Þ2
h i1=2

ð9Þ

and substituting the stress ratio α, Eq. (1), together with σ3 =
zero for plane stress, gives:

σ� ¼ σ1 1−αþ α2
� �1=2 ð10Þ

Hence:

σ1 ¼ σ�= 1−αþ α2
� �1=2 ð11Þ

σ2 ¼ ασ�= 1−αþ α2
� �1=2 ð12Þ

It is now necessary to introduce a constitutive law to define
the material’s work-hardening behaviour. Bai &Wierzbicki
[17] introduced a simple power law, (which is more applicable
to various steels), to describe the materials work-hardening
behaviour.

σ� ¼ Aε
�n ð13Þ

In the current paper, which relates to an aluminium mate-
rial, all presented and discussed results have been based upon
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a saturation stress Voce equation model, fitted to the measured
tensile test data. This one may not be the best model but it is
widely used in industry as it present the safest model and
produce accurate enough fit to experimental tensile flow
curve.

σ� ¼ Aþ BeC
ε� ð14Þ

The Voce equation Eq. (14) can now be directly substituted
into Eqs. (11) and (12) giving:

σ1 ¼ Aþ BeC
ε
�� �

= 1−αþ α2
� �1=2 ð15Þ

σ2 ¼ α Aþ BeC
ε
�� �

σ= 1−αþ α2
� �1=2 ð16Þ

Starting from the experimental plastic strain pairs defining
the FLC, ε1 : ε2, it is possible to transpose the FLC into the
FLSD. For a given strain data pair, the strain ratio is known
from the experimental strain points, and hence the stress ratio
can be determined from Eq. (4). The principal stresses can
then be solved using Eqs. (15) and (16), together with Eq. (8).

When the procedure of Bai &Wierzbicki [17] was follow-
ed, but using the saturation Voce equation Eq. (14) instead of a
simple power law, a “convex” shaped FLSD was obtained –
see Figs. 1 and 2 below. This differs from the normal “con-
cave” shaped FLSD in literature, [3] and [17].

In this paper, all FE simulations were conducted using the
code PamStamp, version 2G v2012.0.

FE analysis was carried out on a simple pressing to assess
the correlation between the conventional strain based FLC
criterion and the stress based FLSD criterion. The results are
shown in Figs. 3 and 4.

As mentioned previously, the FE simulation work was
conducted using a Voce equation saturation stress constituen-
cy model of the form:

σ ¼ Aþ BeC
�ε

ð17Þ

where “e” is the natural logarithm base. For the Ac170PX
material under consideration, (alloy AA6014), the constants
of the Voce equation, when fitted to the measured tensile test
data, were evaluated as:

A ¼ 297:3780 B ¼ −178:4069 C ¼ −11:68287

In the current analysis, experimentally determined plastic
strain pairs defining the FLC, ε1 : ε2, were transposed onto the
FLSD. A safety margin offset of −0.08 was applied to the
major strain ε1 and introduced into the FLC diagram to define

the marginal zone. It is normal practice to define an offset for
the marginal zone, although the magnitude of the offset may
vary. This safety margin has also been transposed into the
FLSD using the same procedure as outlined for the FLC.

The results of the FE simulation work, shown in Figs. 3 and
4, show very good agreement between the conventional FLC
analysis and the transposed FLSD analysis. The marginal and
failed areas in the central dome and the right hand upper
corner, (i.e. at the plane strain tangent point of the punch

Fig. 1 Experimental FLC

Fig. 2 Transposed FLC into FLSD — von Mises
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radius), are reproduced very well in both Figs. 3 and 4.
However, the FLSD criterion shows additional marginal zones
around the die entry radius of the two corner features. These
marginal zones are not present in the FLC analysis. This is
particularly interesting as one can occasionally observe, in
practice, stress related fractures in the area of the die entry
corner radius where the conventional FLC strain analysis does
not show any associated problems.

The reason that the FLC approach does not pick up this
marginal area may be related to the strain path change as the
material moves over the hold down/binder area towards the
die corner under plane strain conditions ε1 : ε2, (constant

thickness in the binder clamping region), towards plane strain
tension conditions in the side wall ε1 : ε3 during additional
forming.

One additional point which should be noted is that the
offset in the strain based FLC, in this case −0.08, maps to a
much smaller region in the FLSD. Some concerns regarding
the use of a stress criterion within the FE calculation were that
the resolution in stress is less accurate in the code than the
resolution in strain. Although the mapped marginal zone is
somewhat smaller in the FLSD, the FE code and the analysis
carried out to date have not highlighted any issues in resolving
the element stresses to the necessary level of accuracy, and

Fig. 3 FE simulation conducted using von Mises yield criterion with FLC Criterion

Fig. 4 FE simulation conducted using von Mises yield criterion with FLSD Criterion
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hence in predicting the safe, marginal and failed areas on the
pressing.

Hill’s 48 yield function

Following on from the work discussed above for the von
Mises yield function, Hill’48yield function will now be
considered.

Hill’s 48 yield function can be stated in the following form
[20, 21]:

σ� ¼ 3½ �1=2
2½ �1=2

H σ1−σ2ð Þ2 þ F σ2−σ3ð Þ2 þ G σ3−σ1ð Þ2
h i1=2

Fþ Gþ H½ �1=2
ð18Þ

where r = (H/G) = (H/F), i.e. a sheet with rotational symmetry
about the through thickness axis.

This can be restated assuming rotational symmetry in the
plane of the sheet, (planar isotropic), and also for plane stress
conditions, as:

σ ¼ 3½ �1=2
2½ �1=2

r σ1−σ2ð Þ2 þ σ2
2 þ σ1

2
h i1=2

2þ r½ �1=2
ð19Þ

Equation (1) may be substituted into Eq. (19) to define the
yield function in terms of the stress ratio α as:

σ ¼ 3½ �1=2
2½ �1=2

σ1

2þ r½ �1=2
α2 1þ rð Þ−2αr þ 1þ rð Þ� �1=2 ð20Þ

Rearranging Eq. (20) and substituting the saturation stress
Voce equation, Eq. (17), gives the expression for the maxi-
mum principal stress as:

σ1 ¼ ðAþ BeC
εÞ 2½ �1=2 2þ r½ �1=2

3½ �1=2 α2 1þ rð Þ−2αr þ 1þ rð Þ½ �1=2
ð21Þ

The corresponding expression for the minor principal stress
can be obtained by substituting Eq. (1) into Eq. (21), giving:

σ2 ¼ αðAþ BeC
εÞ 2½ �1=2 2þ r½ �1=2

3½ �1=2 α2 1þ rð Þ−2αr þ 1þ rð Þ½ �1=2
ð22Þ

The corresponding expression for the equivalent plastic
strain, from Johnson & Mellor [21], can be stated as:

ε ¼ 2½ �1=2
3½ �1=2

2þ rð Þ1=2
1þ 2rð Þ ε2−rε3ð Þ2 þ ε1−rε3ð Þ2 þ r ε1−ε2ð Þ2

h i1=2

ð23Þ

Now following the same procedure outlined in “von Mises
yield function” section, Hill’s 48 yield function, Eq. (20), can
be substituted in place of the von Mises yield function
Eq. (10), and Hill’s 48 equivalent plastic strain, Eq. (23), in
place of Eq. (8). It will of course be necessary to redefine the
stress and strain ratios,α andβ, to be used in conjunction with
Hill’s 48 yield function. These expressions have been taken
from the work of Stoughton [16], as:

α ¼ 1þ rð Þβþ r½ �= 1þ r þ rβð Þ ð24Þ
β ¼ 1þ rð Þα−r½ �= 1þ r−rαð Þ ð25Þ

Note: for the aluminium material being evaluated in this
paper, the r value distribution was measured as follows:

r0 ¼ 0:78 r45 ¼ 0:49 r90 ¼ 0:68

andraverage ¼ 0:61 from the well know expression rav
¼ r0 þ r90 þ 2r45ð Þ=4

Starting from the known experimentally determined plastic
strain pairs defining the FLC, ε1 : ε2, the FLC was transposed
into the FLSD. For a given strain data pair, the strain ratio is
known from the experimental measured instability strain
points, and hence the stress ratio can be determined from
Eq. (24). The stresses may then be solved using Eqs. (21)
and (22), togetherwith Eq. (23). The analysis, shown in Figs. 5
and 6, again shows a “convex” shaped FLSD. The safety
margin of −0.08 has been included in the FLC diagram, and
has also been transposed to the FLSD.

It again should be noted that the offset in the strain based
FLC, in this case −0.08, maps to a much smaller region in the
FLSD. However, the FE Code and the analysis carried out to
date have not highlighted any issues in resolving the element
stresses to the necessary level of accuracy, and hence in
predicting the safe, marginal and failed areas on the pressing.

FE analysis was again carried out on a simple pressing, used
in “von Mises yield function” section, to assess the correlation
between the conventional strain based FLC criterion and the
stress based FLSD criterion. The results are shown in Fig. 7 for
the FLC criterion and Fig. 8 for the FLSD criterion.

The agreement can be seen to be good, particularly in the
area of the right hand punch radius. However, it can be seen
that there is no failure predicted in the central dome when
using the FLSD criterion, Fig. 8. The reduced marginal zone
areas and lack of any failure zones in the central dome under bi-
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axial stress state conditions, when using the FLSD criterion, is
perhaps understandable as it is known that Hill’s 48 yield func-
tion gives a relatively poor representation of the stresses at the
balanced bi-axial stress state for materials with r values less than
one, i.e. aluminium alloys. The poor description of the yield
function will in fact result in lower stresses than are present in
practice. In fact this is one reason why Hill developed his
subsequent non-quadratic yield function. This point will be
discussed further in “Hill’s 90 yield function” section of this
paper when considering Hill’s 90 criterion.

Additionally, the FLSD criterion is again showing marginal
zones around the die entry radius of the lower left hand corner,
highlighting possible stress fractures around the die inlet radius.
This is not highlighted in the FLC analysis probably due to the
strain path change, as discussed in “Hill’s 48 yield function"
section.

Hill’s 90 yield function

Following on from the work discussed above, for both the von
Mises and Hill’s 48 yield functions, Hill’s 90 yield function
will now be considered.

Hill’s 90 yield function [22] and [16] may be stated in the
form:

σ ¼ 1

2 1þ rð Þ½ �1=m
1þ 2rð Þ σ1−σ2j jm þ σ1 þ σ2j jm½ �1=m ð26Þ

where r is the average plastic anisotropy in the plane of the
sheet. Equation (1) may be substituted into Eq. (26) to define
the yield function in terms of the stress ratio α giving:

σ ¼ σ1

2 1þ rð Þ½ �1=m
1þ 2rð Þ 1−αj jm þ 1þ αj jm½ �1=m ð27Þ

Rearranging Eq. (27) and substituting the saturation stress
Voce equation, Eq. (17), gives the expression for the maxi-
mum principal stress as:

σ1 ¼ ðAþ BeC
εÞ 2 1þ rð Þ½ �1=m

1þ 2rð Þ 1−αj jm þ 1þ αj jm½ �1=m
ð28Þ

The minor principal stress can be obtained by substituting
Eq. (1) into Eq. (28), giving:

σ2 ¼ αðAþ BeC
εÞ 2 1þ rð Þ½ �1=m

1þ 2rð Þ 1−αj jm þ 1þ αj jm½ �1=m
ð29Þ

The corresponding expression for the equivalent plastic
strain [16] is given by:

ε ¼ 2 1þ rð Þ½ �1=m
2

ε1−ε2j jm= m−1ð Þ
� �

= 1þ 2rð Þ1= m−1ð Þ
n o

þ ε1 þ ε2j jm= m−1ð Þ

2
666664

3
777775

m−1ð Þ=m

ð30Þ

Now following the same procedure outlined in “von Mises
yield function” section, Hill’s 90 yield function, Eq. (27) can
be substituted in place of the vonMises Yield Criteria Eq (10),

Fig. 5 Experimental FLC

Fig. 6 Transposed FLC into FLSD
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and Hill’s 90 equivalent plastic strain, Eq. (30), in place of
Eq. (8). Once again it will be necessary to redefine the stress
and strain ratios,α andβ, to be used in conjunction with Hill’s
48 yield function. These expressions have been taken from the
work of Stoughton [16], as:

α ¼ 1þ 2rð Þ 1þ βð Þ½ �1= m−1ð Þ− 1−βð Þ1= m−1ð Þ

1þ 2rð Þ 1þ βð Þ½ �1= m−1ð Þ þ 1−βð Þ1= m−1ð Þ ð31Þ

β ¼ 1þ αð Þ m−1ð Þ− 1þ 2rð Þ 1−αð Þ m−1ð Þ

1þ αð Þ m−1ð Þ þ 1þ 2rð Þ 1−αð Þ m−1ð Þ ð32Þ

Following the same procedure as outlined previously, and
starting from known experimentally determined plastic strain
pairs defining the FLC, ε1 : ε2, the FLC was transposed into
the FLSD. For a given strain data pair, the strain ratio is known
from the experimental measured instability strain points, and
hence the stress ratio can be derived from Eq. (31). The
stresses can then be obtained using Eqs. (28), (29) and (30).
The analysis, shown in Figs. 9 and 10, again shows a “convex”
shaped FLSD. A safety margin of −0.08 has been included in
the FLC diagram, and has also been transposed to the FLSD.

As highlighted previously, it should be noted that the offset
in the strain based FLC, in this case −0.08, maps to a much

Fig. 7 FE simulation conducted using hill’s 48 yield criterion with FLC criterion

Fig. 8 FE simulation conducted using hill’s 48 yield criterion with FLSD criterion

Int J Mater Form (2015) 8:45–57 51



smaller region in the FLSD. However, the FE Code and the
analysis carried out to date have not highlighted any issues in
resolving the element stresses to the necessary level of accu-
racy, and hence in predicting the safe, marginal and failed
areas on the pressing.

In order to determine the appropriate value of the
power “m” in Hill’s 90 yield function, it was necessary
to compare the experimentally determined bi-axial
stress–strain data with a prediction of the bi-axial data
from the yield function. This was achieved by using the
measured tensile stress–strain data to predict the bi-axial
stress–strain data through Hill’s 90 yield function, and
selecting the best fit m value, as follows:

For the case of balanced bi-axial tension, σ1 = σ2 = σB.
Substituting these values into Hill’s 90 yield criterion, Eq. 26,
gives:

σ ¼ 2

2 1þ rð Þ½ �1=m
σB ð33Þ

Also, for simple tension, σ1 = σT and σ2 = zero. Substitut-
ing these values in Eq. 26 gives the expected result:

σ ¼ σT ð34Þ

From Eqs. 33 and 34 an expression can now be obtained to
predict the balanced bi-axial stress data from the measured
tensile data, via the yield function:

σB ¼ 2 1þ rð Þ½ �1=m
2

σT ð35Þ

A similar approach can now be adopted to predict the bi-
axial strain from the measured tensile strain by way of the
yield function. For the case of balanced bi-axial tension, ε1 =
ε2, and ε3 = εB = -2ε1. Substituting these values into Eq. 30
gives:

ε ¼ 2 1þ rð Þ½ �1=m
2

ε3 ¼ 2 1þ rð Þ½ �1=m
2

εB ð36Þ

Also, for simple tension:
r = (ε2/ε3) and from volume constancy ε1 + ε2 + ε3 = 0,

hence

ε1=ε3ð Þ ¼ − 1þ rð Þ and ε1=ε2ð Þ ¼ − 1þ rð Þ
r

ð37Þ

Substitution of Eq. 37 in Eq. 30 gives the expected result:

ε ¼ ε1 ¼ εT ð38Þ

Equations 36 and 38 now give the corresponding expres-
sion to predict the bi-axial strain, from the measured tensile
strain data, via the yield function:

εB ¼ 2

2 1þ rð Þ½ �1=m
εT ð39Þ

Using Eqs. 35 and 39, the prediction of the bi-axial stress–
strain behaviour from the measured tensile data can now be

Fig. 9 Experimental FLC

Fig. 10 Transposed FLC into FLSD
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calculated and plotted along with the measured bi-axial stress–
strain data. By varying the power m, the most appropriate
value of the non quadratic yield function power can be select-
ed — See Fig. 11.

As can be seen from Fig. 11, a value of m = 1.7 gives a very
good fit between the measured bi-axial stress strain data, (red
line) and the corresponding predicted data via the yield func-
tion using the measured tensile data, (black line). In fact for an
m value of 1.7, the two lines are virtually coincident.

The measured tensile data, (light blue), although not visi-
ble, is directly below the predicted m = 1.7 line (black).

FE analysis was again conducted on the same pressing,
used in Sections “von Mises yield function” and “Hill’s 48
yield function”, using both the FLC and the FLSD criteria.
The results are shown in Fig. 12 for the FLC criterion and
Fig. 13 for the FLSD criterion.

The agreement can again be seen to be very good, partic-
ularly in the area of the right hand punch radius and the central
dome, where both FLC and FLSD criteria show very similar
failed areas. The central dome FLSD red failure zones, when
applying Hill’s 90 yield function, contrasts the lack of failed
zones when using Hill’s 48 yield function in “Hill’s 48 yield
function” section. This difference may be understood from
Fig. 11 by comparing the plots for m = 1.7, derived for Hill’s
90, together with the m = 2 plot, which converts Hill’s 90 into
a quadratic yield function similar to the 48 yield function. The
lower predicted stress levels at the bi-axial stress state using
Hill’s 48 would necessarily predict a non failed region as
compared to the transposed FLC – FLSC criterion. This can
be illustrated by comparing the yield surfaces for the different
yield functions — Fig. 14.

The influence of decreasing the magnitude of the m value in
Hill’s 90 yield function is illustrated in Fig. 15. This shows that
as the m value is decreased, the Yield Function is “stretched” to
a greater degree in the bi-axial state, so obtaining a better
prediction of the balanced bi-axial stress–strain behaviour, as
is observed in practice.

Now referring back to Fig. 13, the FLSD criterion for Hill’s
90 shows both marginal and failure zones around the die entry
radius of the lower left hand corner. This is not evidenced in
the FLC analysis, and is again an important indicator of
possible stress fractures which can occasionally occur in die
entry corner areas. As discussed previously in “von Mises
yield function” section, the reason that the FLC approach does
not highlight this marginal area may be related to the strain
path change as the material moves over the hold down/binder
area towards the die corner under plane strain conditions ε1 :

ε2, (constant thickness in the binder clamping region), towards
plane strain tension conditions in the side wall ε1 : ε3 during
additional forming.

The FLC approach, when using all three yield functions,
predicts no marginal or failed areas in the region of the die entry
corner, Figs. 3, 7, and 13. However, FLSD approach when

using the von Mises and Hill’48 functions predicts marginal
areas in the region of the die entry corner, Figs. 4 and 8, whilst
Hill’s 90 predicts a failure in this region, Fig. 13. Firstly, the
FLSD analysis in this area should be more accurate due to a
strain path change over the die entry radius, which will not be
captured accurately in the FLC analysis due to the strain path
change. Hence a cautious approach would need to be applied to
the design of the component in this area. Secondly, the different
severity of the predictions shown in the region of the die entry
corner area, when applying the three yield functions considered,
should be investigated experimentally to resolve the accuracy
of the predictions from the FE analysis, and hence the accuracy
of the three different yield functions in describing correctly the
yield surface of the material considered.

One final point should be noted as follows. When starting
from a unique measured proportional strain path FLC, the
resulting FLSD will necessarily depend upon the assumed
yield function, as well as the assumed material constituency
law. Figure 16 shows the difference in the transposed FLSD
criteria, when starting from the same FLC data pairs, as a
function of the three different yield functions considered in
this paper. In all cases the material constituency law was the
saturation Voce equation fitted to the measured tensile test
data.

Right use of these FLSD implies to use only the same
material model in the simulation as was used to derive the
FLSD. If an FE analysis is conducted by selecting a given yield
criterion, say Hill’s 90, but an FLSD criterion derived from the

Fig. 11 Hill’s 90 Yield Function with different m values showing good
agreement with m = 1.7.Note : Tensile data lies directly under the value of
m = 1.7
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vonMises is adopted as the safe/marginal/failure criterion, then
erroneous results will be obtained which could be very
misleading.

Standard FLC together with instability strains determined
from a pre-strained material, with subsequent mapping
to an FLSD using the von Mises yield function

As discussed in the Introduction, if a significant deviation
from a linear or proportional strain path occurs, the final
instability strains will be different to those obtained by a linear
or proportional strain path FLC approach. Figure 17, (LHS),
shows the influence of a 15 % tensile pre-strain on the final

instability strains [13], (in red), as compared to the conven-
tional FLC, (in black). Figure 17 (RHS) shows the transposed
data to the FLSD using the von Mises yield function, follow-
ing the approach given in “von Mises yield function” section
above. Figure 18 shows the corresponding information for a
15 % Bi-axial pre-strain [13].

It can clearly be seen that the instability strains change
between having no pre-stain, (FLC), and either a 15 % tensile
strain or a balanced bi-axial pre-strain. However, a single
FLSC encompasses all the different strain conditions, (RHS
graphs of Figs. 17 and 18). In principle, a matrix of tests can
be conducted with varying levels of pre-strain in different
strain path directions, and then the corresponding instability

Fig. 12 FE simulation conducted using hill’s 90 yield criterion with FLC criterion

Fig. 13 FE simulation conducted using hill’s 90 yield criterion with FLSD criterion
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strains determined over a range of strain paths. However, this
would be a very time consuming and laborious task, as well as
very expensive, for all materials and all gauges to be supplied.
Also at this moment in time, although the strain path can be
tracked within the FE software, multiple marginal and failure
criteria can not be entered into the codes for a multitude of
non-proportional strain paths. On the other hand, all non-
proportional strain paths sensibly map to a single FLSC crite-
rion which can be applied in current FE analysis, together with
a safety margin offset, as demonstrated in this paper.

If a stamped sheet panel is pressed with sensibly propor-
tional strain paths over the entire pressing, then it is quite
acceptable and legitimate to use the conventional FLC ap-
proach, as has been carried out for many decades. However,

any significant deviation from proportional strain paths will
introduce significant errors, as shown in Figs. 17 and 18.
Under these situations the FLSD approach, highlighted in this
paper, may be successfully applied as demonstrated in sec-
tions “von Mises yield function”, “Hill’s 48 yield function”,
and “Hill’s 90 yield function”.

Summary

FLSD’s presented in literature, based upon a steel FLC and a
simple power law, usually have a “concave” type shape. The
analysis presented in this paper, based upon a “flatter” alu-
minium FLC and a saturation stress Voce equation model,
have shown “convex” shaped FLSD criteria.

The analysis in this paper, following on from the work
Stoughton [16] and Bai &Wierzbicki [17], has demonstrated
a method to transpose the strain based FLC into a stress based
FLSD, using a Voce equation saturation stress constituent law
together with the von Mises yield function.

This method was then successfully applied to two addi-
tional yield functions, namely Hill’s 48, and Hill’s 90. The
same Voce equation saturation stress constituent law was used
with each of the two additional yield functions.

FE stamping simulations were carried out, using the com-
mercial code PamStamp, and good agreement was demon-
strated between the traditional FLC analysis and the trans-
posed FLSD analysis. Good agreement was generally demon-
strated for all three yield functions considered in this paper,

Fig. 14 Comparison of the different yield surfaces for an aluminium
alloy. Note: Hill’s 90 m value was 1.7

Fig. 15 Comparison of the different yield surfaces for an aluminium
alloy produced by varying the m power in hill’s 90 yield function

Fig. 16 Comparison of the different FLSD criteria using the different
yield functions
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with some differences highlighted betweenHill’s 48 and Hill’s
90 yield functions around the balanced bi-axial stress state.

Comparison of the results using the different yield func-
tions has shown the reduced ability of Hill’s 48 to predict
correctly the balanced bi-axial failure zones for materials with
an r value less than one, as compared to the von Mises and
Hill’s 90 yield functions. The lower predicted stress levels at
the bi-axial state with Hill’s 48, shown in Fig. 11, would
predict a non failed FLSD region as compared to the failed
FLC region in the central dome, (Figs. 7 and 8). It is known
that Hill’s 48 yield function does not give good agreement
compared to experimental stress–strain data around the bal-
anced bi-axial stress state, particularly for materials with an r
value less than one, i.e. aluminium alloys. This relatively poor
performance prompted Hill to derive his 90 criterion, which
has been demonstrated to show both a failed FLC region and a
failed FLSD region in the central dome, (Figs. 12 and 13).

The FLSD analysis has highlighted additional marginal/
failure zones around the dies entry radius which are not
present in the FLC analysis. Two of the yield functions con-
sidered in this paper predict marginal zones in this region,

whilst that of Hill’s 90 predicts a failed region. Therefore a
cautious approach would need to be applied to the design of
the component in this area on the basis of the presented
analysis. However, the difference between the marginal and
failed areas in the region of the die entry corner area, when
applying the three yield functions considered, would need to
be investigated experimentally to resolve the accuracy of the
predictions from the FE analysis, and hence the accuracy of
the three different yield functions in describing correctly the
yield surface of the material considered.

The main drive to adopt an FLSD type criterion for FE
analysis resides in the fact that the FLSD criterion is path
independent. Hence, as demonstrated in this paper, only one
FLC curve would need to be measured, for each material, and
then transposed to an FLSD criterion for FE analysis. One
remaining concern is that the FE calculation show lower accu-
racy in stress calculation than in strain calculation. Nevertheless
this do not appears to be an issue in the present work as
mentioned previously in “von Mises yield function” section.

Under the traditional FLC method, it would strictly be
necessary tomeasure numerous “FLC’s”, starting with a series

Fig. 17 Standard proportional strain path FLC (Black) & FLC determined after 15 % tensile pre-strain in the rolling direction (Red). Pre-strain data
measurements carried out by Werber [25]

Fig. 18 Standard proportional strain path FLC (Black) & FLC determined after 15 % bi-axial pre-strain (Blue). Pre-strain measurements carried out by
Werber [25]
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of different pre-strains along differing initial strain paths, and
then determining the final instability strains under the different
strain ratios for each initial starting condition. This would be a
very time consuming and a very expensive task. However, even
if all this data was available, at present multiple marginal and
failure criteria can not be entered into FE analysis codes for a
multitude of non-proportional strain paths. However, it has
been demonstrated that all non-proportional strain paths sensi-
bly map to a single FLSC criterion which can be applied in
current FE analysis codes together with a safety margin off-set.

In principle the type of analysis conducted in this paper
with the currently use material models could be easily extend-
ed to higher order yield functions which have been developed
over the last fifteen to twenty years, such as those presented in
the literature for example by Barlat [23] and Banabic [24].
This is something which would be of great benefit as a number
of the higher order yield functions, particularly the Barlat2000
and BBC05 functions, show a very good fit to the measured
in-plane sheet properties, such as the r value and the stress
value distributions.

The flow curve law used in the model as well should be
adapted to more advanced models that best fit the data. Ex-
perimentally a saturation stress is not observed for the alumin-
ium alloys studied here if we extend the flow curve using the
biaxial data from the bulge test (see Fig. 11). Thus Voce law
usually used should in the future be replaced in industry use
by something more accurate like a Voce-Voce, a Gosh, or a
Swift-Hockett-Sherby better fit.

As a final point, it should be remind that the transposed
FLSD, derived from a unique measured FLC in the form of
data pairs, have to be used only with the material models
(yield function and flow curve) that were used to define the
FLSD. Otherwise it will yield to inaccurate FE results.
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