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Abstract Meshless methods, that appeared in the early
nineties, constitute nowadays an appealing method for the
simulation of forming processes. In this review we revisit
the basic ingredients of the most common of such meth-
ods, by analyzing their theoretical foundations, applicability
and limitations, and give some examples of performance to
show the wide variety of situations in which they can be
employed.

Keywords Numerical simulation · Meshless methods ·
Forming processes

Introduction

Although there are some examples of meshless methods
dating back to the late seventies [57], the strong develop-
ment of meshless methods came after the little revolution
provoked by the seminal paper of Villon and coworkers on
the so-called “diffuse element method” (DEM) [86] and the
popularity given to them by some modifications introduced
on it by Belytschko and coworkers to create the “Element

This work has been partially supported by the Spanish Ministry
of Economy and Competitiveness, through grant number CICYT-
DPI2011-27778-C02-01.

E. Cueto (�)
Aragón Institute of Engineering Research,
Universidad de Zaragoza, Spain,
Edificio Betancourt. Maria de Luna,
s.n. 50018 Zaragoza, Spain
e-mail: ecueto@unizar.es

F. Chinesta
Ecole Centrale de Nantes, France, 1 Rue Noë,
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Free Galerkin” (EFG) method [14, 15] and by Liu to cre-
ate the somehow equivalent Reproducing Kernel Particle
Method (RKPM) [80].

These pioneering works opened the possibility to develop
numerical methods without the need for time-consuming
meshing procedures, since the connectivity of the “ele-
ments” was created by the method itself in a process trans-
parent to the user. What is even more important, meshless
methods do not suffer from lack of accuracy due to mesh (or
cloud) distortion, as finite elements do. This is why, some
years later, a great interest was paid on them in the forming
processes community [24].

After those initial years of exploration, meshless meth-
ods came into an age of maturity once their theoretical
foundations were established by Oden and coworkers [42],
and Babuška and coworkers [9, 10]. The flexibility, nice
properties such as arbitrary degree of consistency or con-
tinuity, the never-before obtained spectacular simulations
obtained with these methods, and also, why not, the under-
standing they provide on the sound properties of finite
elements, provoked a decade or more of strong popular-
ity of meshless methods and very active research interest
on the numerical community. A plethora of modifications
or (very often slight) improvements over existing methods
gave rise to an almost endless list of different names for
methods that share some common characteristics (notably,
the lack of sensitivity to mesh distortion) but that nowadays
remains a difficulty for those coming for the first time to the
field.

After these years of maturity, only some methods came
into play with really different characteristics to the ones
mentioned before. Among them we can cite the Natural
Element Method (NEM) [100], or the Maximum Entropy
(MaxEnt) methods [6, 98]. They respond to some of the
most important criticisms of meshless methods, namely the
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lack of true interpolation along the boundary of the domain,
which leads to difficulties on the imposition of essential
boundary conditions, and (although only partially in the
case of MaxEnt) numerical integration errors.

In this paper a review is made on the use of meshless
methods, with a particular emphasis on their usage in the
framework of material forming, irrespective of the particular
process considered. There have been some prior reviews on
the field of meshless methods and, although some of them
are nowadays somewhat old, we recommend the interested
reader to consult [16, 17, 77, 87], to name a few. There are
also some books available on the topic, such as [78], some
of them specifically devoted to aspects related to forming
processes [27, 28].

During these years, meshless methods have successfully
been applied to the simulation of a variety of forming
processes, involving both solid and fluids, but with the
main characteristic of employing, in general, an updated
Lagrangian perspective for the description of the equations
of motion. This is perhaps the most relevant novelty that
meshless methods introduced, when viewed form the form-
ing process point of view: they successfully overcome the
traditional difficulty related to mesh distortion (or numeri-
cal diffusion, if prefer to employ extensive remeshings, as
in many commercial codes in the field).

In this paper a review is made of the most relevant
meshless (or meshfree) approaches to the field of material
forming. First, a brief overview of the theoretical aspects
is made in Section “Theoretical foundations of meshless
methods”. In it, common aspects of all meshless methods
are reviewed, as well as those characteristics that truly dif-
ferentiate them, far beyond the long list of different names
for methods that differ only in very subtle details. These
include the different approximation schemes, the numerical
integration schemes available to perform quadrature of the
weak form of the equations, and the imposition of essential
boundary conditions. These are some of the most prominent
aspects of meshless methods in today’s literature.

To provide the reader with a clear picture on where
do we stand on the field, Section Examples of application
includes some interesting examples of application of mesh-
less methods that explore the ability of these methods to
be applied under general conditions for the simulation of
material forming processes.

Theoretical foundations of meshless methods

In this section an overview of the theoretical foundations
of meshless methods is made. Particular attention is paid
to the three most relevant aspects of any of such meth-
ods, namely, its approximation scheme (strictly related to
its degree of continuity and consistency), its numerical

integration scheme1 and aspects related to the imposition
of essential boundary conditions. These aspects are here
judged as the most relevant ones for the field of form-
ing processes. For instance, the degree of consistency of
each method (the order of the polynomial they are able to
reproduce exactly) is of utmost importance in the devel-
opment of stable (LBB-compliant) approximations when
dealing with incompressible media, as in plasticity or fluid
mechanics. The degree of continuity is generally not so
important, but having smooth (differentiable) approxima-
tions is essential when developing shell formulations for
sheet metal forming, for instance. In turn, numerical inte-
gration is a well known source of error when dealing
with meshless approximations, due to their inherent non-
polynomial character, and this is so irrespective of the
particular application. Finally, many physical phenomena
occur near the boundaries of the domain (contact, friction,
merging flows, among others), so reproducing accurately
the essential field of the problem in these regions is again a
key aspect. That is why the imposition of essential bound-
ary conditions or, more generally, the accurate interpolation
of the displacement (velocity) field along the boundary
is often required, and not always achieved, for meshless
methods.

Meshless approximations

Probably the best form to integrate a meshless method
within an existing finite element solver is to think of a finite
element as the set of a particular approximation scheme
(in this case, an interpolation scheme formed by piecewise
polynomials) and an integration cell where Gauss quadra-
ture is performed (again, in the case of finite elements, the
intersection of the supports of its nodal shape functions).
By combining different approximation schemes and differ-
ent quadrature schemes, as will be seen, different meshless
methods can be obtained. We review (not exhaustively) in
this section the most important ones in a historic sense. In
the review, moving least squares, natural neighbor, and local
maximum entropy approximations are reviewed. Although
not the only ones in the literature, these three approxima-
tion schemes somewhat represent three different ages in the
development of meshless methods, for reasons that will be
clear soon.

1We focus here on methods based on the weak form of the problem,
although many methods exist that are based upon the strong form, and
that utilize a collocation approach, see [17]. However, their applicabil-
ity to the simulation of forming processes is somewhat lower, due to
aspects such as the description occurring in the vicinity of the bound-
ary of the domain—contact, friction—and therefore are not included
here. We refer the interested reader to the before mentioned reviews or
books on the field for detailed explanations.
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Moving least squares approximation

Although not the first in a strict historical sense, the respon-
sible for the popularity of meshless methods is the so-called
Diffuse Element Method (DEM) [86] and, notably, the
Element-Free Galerkin method (EFG) [14, 15]. Both are
based upon the approximation of the essential field of the
problem (here, assume the displacement) through a mov-
ing least squares approximation. We do not include here the
Smooth Particle Hydrodynamics method (SPH) [57, 77, 83],
since it lacks of some very basic properties such as linear
consistency, nor the Reproducing Kernel Particle Method
(RKPM) [65, 80, 81], that has been shown to be equivalent,
despite its very different origin, to the EFG [16].

In general, not only in EFGM, the domain � is dis-
cretized by cloud of nodes, rather than a mesh, as seen in
Fig. 1. In EFG methods, the essential field (usually, the
displacement or velocity fields) is approximated as

uh(x) =
m∑

i=1

pi(x)ai(x) ≡ pT (x)a(x), (1)

where m refers to number of terms in the basis, pi(x) con-
stitutes a polynomial basis up the desired order and, finally,
ai(x) are the coefficients to determine, that notably depend
on x.

As a polynomial basis, in one dimension, the linear one
is often used

pT = (1, x),

or a quadratic one

pT =
(

1, x, x2
)

,

I

I

Fig. 1 Covering of the domain � by the shape functions associated to
each node, whose support is denoted by �I

which in two dimensions reads

pT =
(

1, x, y, x2, xy, y2
)

.

The approximation given by Eq. 1 can be made local
through

uh(x, x) =
m∑

i=1

pi(x)ai(x) ≡ pT (x)a(x),

where coefficients ai are obtained by minimization of a
functional composed by the difference between the local
approximation to the sought function and the essential field
itself, in a least squares sense, i.e., by minimizing the
following quadratic functional

J =
∑

I

w(x − xI )(u
h(x, xI ) − u(xI ))

2

=
∑

I

w(x − xI )

[
∑

i

pi(xI )ai(x) − uI

]2

,

where I = 1, . . . , n represents the number of nodes in the
model.

Weighting, and the corresponding local character of the
approximation, is given by the function w(x − xI ).This
function is often a gaussian or a cubic spline. We can then
re-formulate the functional as

J = (Pa − u)T W (x)(Pa − u),

where, as usual,

uT = (u1, u2, ..., un),

(in a one-dimensional case) and P

P =

⎛

⎜⎜⎜⎝

p1(x1) p2(x1) · · · pm(x1)

p1(x2) p2(x2) · · · pm(x2)
...

...
. . .

...

p1(xn) p2(xn) · · · pm(xn)

⎞

⎟⎟⎟⎠ ,

where, finally, W

W =

⎛

⎜⎜⎜⎝

w(x − x1) 0 · · · 0
0 w(x − x2) · · · 0
...

...
. . .

...

0 0 · · · w(x − xn)

⎞

⎟⎟⎟⎠ .

To determine the coefficient’s value, it is then necessary to
minimize J

∂J

∂a
= A(x)a(x) − B(x)u = 0.

Matrix A is called matrix of moments and has the following
expression

A = P T W (x)P

B = P T W (x),
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such that

a(x) = A−1(x)B(x)u, (2)

or, equivalently,

uh(x) =
n∑

i=1

φk
i (x)ui,

where

φk =
[
φk

1 , φk
2 , ..., φk

n

]
= pT (x)A−1(x)B(x),

and where k denotes the order of the approximation. The
resulting shape function, for the quadratic case, is depicted
in Fig. 2 for the interval [0,1] discretized with eleven nodes.
Different support sizes for W are considered, from r = 2h,
with h the nodal spacing, to r = 4h.

Duarte and Oden [42] studied the EFG method and estab-
lished for the first time one key characteristic of the method:
that the shape functions constitute a partition of unity and
that, despite the order of the approximation (there called
intrinsic), there is the possibility of establishing and extrin-
sic enrichment of these functions so as to be able to make
them reproduce a polynomial or arbitrary order. Melenk and
Babuška generalized this approach by defining the so-called
Partition of Unity method [9, 10]:

uh(x) =
∑

i

φi(x)
∑

j

βjipj (x),

where βji represent the new unknowns of the problem
(additional degrees of freedom per node) and pj represent a
basis including monomials up to a certain degree (here, care
must be taken so as not to produce linear dependencies with
the basis φi , see details in [11]).

In general, EFG methods acquired a great popularity for
some years, but still present some notable drawbacks. Some

of them are common for most meshless methods, others are
particular of EFG. Among them we can cite the imposition
of essential boundary conditions (due to the influence of
interior nodes on the boundary, see Fig. 1), and the errors
related to numerical integration (due to the use of quadrature
cells not conforming to shape functions’ support and the use
of non-polynomial shape functions, see Eq. 2), that will be
discussed specifically in Sections “Imposition of essential
boundary conditions” and “Numerical integration”.

Natural neighbor approximation

In the quest for a method free of errors in the interpola-
tion of the essential variable along the boundary, the Natural
Element Method (NEM) [99–101] was the first success-
ful attempt. The NEM was originally a Galerkin method in
which interpolation was achieved through natural neighbor
(NN) methods [12, 13, 95, 96].

NEM, as was the case in EFGM, also construct the con-
nectivity of each integration point in a process transparent to
the user (and thus the appearance of no need of any mesh),
but relies on the concept of Delaunay triangulations to do
it. Although Delaunay triangulations are widely used in FE
technology to construct meshes (it can be demonstrated that
it is the best possible mesh in two dimensions), here the
advantage is not the lack of any mesh, but the good accu-
racy provided by the NEM despite the quality or distortion
of this triangulation, as proved in [100] for the first time and
also in [3, 29, 30, 32], among other references.

The Delaunay triangulation D [40] of a cloud of nodes
X = {x1, x2, . . . , xN } ⊂ R

d , d = 2, 3, is the unique
triangulation of the cloud that satisfies the so-called circum-
circle criterion, i.e., no node of the cloud lies within the
circumcircle of any triangle (see Fig. 3).

Fig. 2 Example of quadratic
EFG shape function on a regular
one-dimensional grid for
different support sizes
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Fig. 3 Delaunay triangulation and Voronoi diagram of a cloud of
points. The rightmost figure shows a degenerate situation in which four
nodes lye in the same circle

The dual structure of the Delaunay triangulation is the
Voronoi diagram. It is composed by a tessellation of the
space into cells of the form:

TI = {
x ∈ R

n : d(x, xI ) < d(x, xJ ) ∀ J �= I
}
,

where TI represents the Voronoi cell and d(·, ·) the
Euclidean distance. The simplest interpolation scheme that
can be constructed on top of this geometrical construction
is the so-called Thiessen interpolation, a piecewise constant
interpolation within each Voronoi cell [104], which is there-
fore of continuity C−1 and that has been used for mixed
velocity-pressure approximations in [58, 61], among others.

But the undoubtedly most popular natural neighbor inter-
plant is due to Sibson [96]. If we define the second-order
Voronoi cell as

TIJ = {x ∈ R
n : d(x, xI ) < d(x, xJ )

< d(x, xK) ∀ K �= J ; ∀ K �= I },
then, the Sibsonian shape function is defined as (see Fig. 4):

φsib
I (x) = κI (x)

κ(x)
,

where κ(x) and κI (x) represents the Lebesgue measure of
the cells Tx and TxI , respectively.

x1
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f

Fig. 4 Definition of the Natural Neighbor coordinates of a point x

Thus defined, natural neighbor interpolation has some
remarkable properties, if compared to EFG shape func-
tions. For instance, NN shape functions are smooth (C1)
everywhere except from the nodes, where they are simply
continuous. A simpler form to calculate NN interpolation
(termed Laplace interpolation) that involves area computa-
tions instead of volumes (but produces less smooth shape
functions) has been proposed in [12, 13]. Also, an alter-
native definition has also been proposed by Hiyoshi and
Sugihara to achieve any degree of continuity in [69]. See
Fig. 5 for a comparison of different shape functions on a
regular grid of nodes. All the before mentioned interpola-
tion schemes posses linear consistency, but when needed (as
in the case of plasticity, where incompressibility restraints
needs for the use of LBB-compliant mixed interpolations)
higher-order NN interpolations can also be achieved [62].
Even a combination of NN with bubble shape functions
seems to give good result for incompressible media [108].

In addition to these interesting properties, in the pioneer
work of Sukumar it was reported they Sibson interpola-
tion was interplant along convex boundaries (which is in
sharp contrast to EFGM, for instance). Albeit in non-convex
domains errors of about 2 % were reported due to the lack
of true interpolation. Later on, in [101], Sukumar claimed
the interpolatory character of Laplace functions along the
boundary, although in [31] some counter-examples were
found that demonstrate that in concave domains this inter-
polation may not be true and proposed some nodal spacing
restrictions so as to ensure a proper imposition of essen-
tial boundary conditions. For a deeper analysis of the issue
of imposition of essential boundary conditions we refer
the reader to Section “Imposition of essential boundary
conditions”.

Despite these interesting properties of NN interpolation
(and others explained in Section “Imposition of essential
boundary conditions”), the main drawback of NEM is per-
haps its high computational cost, especially for Sibson
interpolation. In [3] a deep analysis of the computational
cost of several meshless methods was accomplished. In it,
it was shown that mesh distortion could lead to important
inaccuracies when dealing with finite elements in practi-
cal applications, while Sibson interpolation is several orders
of magnitude heavier to compute than traditional piecewise
polynomial shape functions for finite elements. However, in
non-linear computations, while frequent Newton-Raphson
iterations are needed, the relative cost of shape function
computation is obscured by the cost of updating tangent
stiffness matrices.

Local maximum entropy approximation

In the quest for the “perfect” meshless method, local max-
imum entropy (hereafter max-ent) methods are maybe the
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Fig. 5 Sibson (a), Laplace (b),
and Hiyoshi-Sugihara
interpolants with C1 (c) and C2

(d) continuity, respectively
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last to come into play. Sukumar seems to have been the
first in employing global max-ent methods to solve PDEs
[98]. Max-ent approximations provide smoothness (not eas-
ily attainable by NEM), interpolation on the boundary (not
easy to obtain with EFG), but are non-local in nature. That is
why the original work of Sukumar proposed to use this type
of interpolation on polygonally-shaped cells, thus avoiding
full matrices.

More recently, Arroyo and Ortiz [6] proposed a new form
of local max-ent approximation, by viewing it as a prob-
lem of statistical inference in which the linear consistency
requirement is set as a restriction to the problem. A new
parameter controls the support of the shape function, thus
making unnecessary to construct it over polygons.

To see the form of this new way of constructing mesh-
less methods, consider as usual a set of nodes X =
{x1, x2, . . . , xN } ⊂ R

d . Let u : convX → R be a function
whose values {uI ; I = 1, . . . , N} are known on the node
set. “conv” represents here the convex hull of the node set.
Consider an approximation of the form

uh(x) =
N∑

I=1

φI (x)uI ,

where the functions φI : convX → R represent the shape
or basis functions. These functions are required, to be useful

in the solution of second-order PDEs, to satisfy the zeroth
and first-order consistency conditions:

N∑

I=1

φI (x) = 1, ∀x ∈ convX, (3a)

N∑

I=1

φI (x)xI = x, ∀x ∈ convX. (3b)

If these shape functions are, in addition, non-negative
(φI (x) ≥ 0 ∀x ∈ convX), then, the approximation scheme
given by Eq. 2.1.3 is referred to as a convex combination,
see for instance [46].

Since we look for positive functions φI , the max-ent
rationale is based upon the consideration of such functions
as probability measures [98]. In this sense, the Shannon
entropy of a discrete probability distribution is given by:

H(φ) = −
N∑

I=1

φI ln φI .

Proceeding in this way, the basis function value φI (x) is
viewed as the probability of influence of a node I at a
position x [98]. The problem of approximating a function
from scattered data can thus be viewed as a problem of
statistical inference. Following [6], the optimal, or least
biased, convex approximation scheme (at least from the
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information-theoretical point of view) is the solution of the
problem

maximize H(φ) = −
N∑

I=1

φI ln φI , (4)

subject to φI ≥ 0, I = 1, . . . , N,

N∑

I=1

φI = 1,

N∑

I=1

φIxI = x.

Proofs of the existence and uniqueness of the solution to this
problem are given in [6].

While approximations obtained after solving the problem
(4) are global by definition (and thus would produce full
matrices when applied in a Galerkin framework), Arroyo
and Ortiz proposed a local max-ent approximation by
adding spatial correlation to the problem given by Eq. 4. In
this way, the width of the shape function φI can be defined
[6] as

w(φI ) =
∫

�

φI (x)|x − xI |2dx,

which is equivalent to the second moment of φI about xI .
The most local approximation is that which minimizes

W(φ) =
N∑

I=1

w(φI ) =
∫

�

N∑

I=1

φI (x)|x − xI |2dx,

subject to the constraints given by Eqs. 3a, 3b and the
positivity restraint.

The new problem

For fixed x minimize U(x, φ) =
N∑

I=1

φI |x − xI |2 (5)

subject to φI ≥ 0, I = 1, . . . , N

N∑

I=1

φI = 1,

N∑

I=1

φIxI = x

has solutions if and only if x belongs to the convex hull of
the set of points [6]. If these points are in general position,
then the problem (6) has unique solution, corresponding
to the piecewise affine shape functions supported by the
unique Delaunay triangulation associated with the node
set X (see [6] and references therein for the proof of this
assertion).

Arroyo and Ortiz [6] found an elegant solution to the
problem of finding a local approximation satisfying all
the interesting properties of a (global) Maximum Entropy

approximation by seeking a compromise between problems
(4) and (5):

For fixed x minimize fβ(x, φ) ≡ βU(x, φ) − H(φ) (6)

subject to φI ≥ 0, I = 1, . . . , N,

N∑

I=1

φI = 1,

N∑

I=1

φIxI = x.

Proofs of the existence and uniqueness of problem (6) are
also given in the before mentioned reference. Note that the
evaluation of the approximation (6) does not require the
solution of this problem. It is enough to solve an uncon-
strained minimization problem that arises from the dual
form of the problem (6). The calculation of the shape
function derivatives is also explicit, see [6].

In general, max-ent shape functions provide with a
smooth approximation of the essential field, but the max-ent
shape functions recover the piece-wise linear polynomi-
als over the Delaunay triangulation of the point set if the
parameter β tends to infinity (see Fig. 6). Thus defined, the
method possesses linear consistency, very much like natu-
ral neighbor interpolation. It is possible, however, to obtain
a (very complex) quadratic form [37] or, by extending the
algorithm initially designed for NEM in [62], to obtain any
degree of consistency also in a max-ent approach [64]. The
computational cost of max-ent approaches is considerably
less than that of NEM (and higher than the corresponding
FEM approach), making it an appealing candidate for the
simulation of complex forming processes [63, 91]. We will
compare some results in Section “ Examples of application”
to see the relative importance of this assertion in practical
implementations.

Imposition of essential boundary conditions

As introduced before, the imposition of essential boundary
conditions, something very natural in finite elements, has
been a kind of nightmare for meshless methods. See the
excellent analysis by Huerta and coworkers in [48]. Other
works on the topic include [65, 66]. This is so since, due to
the inherent unstructured connectivity between nodes in the
model, interior nodes could eventually influence the result
on the boundary, see Fig. 7. In general, EFG or RKP meth-
ods, whose shape function’s support is normally circular
or rectangular, present this problem. Also very frequently
shape functions do not verify Kronecker delta properties
(i.e., the approximated function does not pass through nodal
values), but this is normally easier to overcome by several
methods.
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Fig. 6 Influence of the β

parameter on the resulting shape
function. Functions φI (x) for
the point located at the centre of
the cloud and parameters
β = 0.2, 0.6, 2.0 and 4.0,
respectively. Note the different
supports, but also the different
heights of the functions on the
scale
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One of the earliest methods to impose essential bound-
ary conditions in EFG methods was simply to couple them
with a strip of finite elements along the boundary [47, 70,
75]. But obviously this method somewhat eliminates the
meshless character of the approximation, although it is very
simple to implement. Other techniques include constrained
variational principles [56], penalty formulations, Lagrange
multipliers, and many others, but in general focused in the

Fig. 7 Lack of true interpolation along the essential boundary due to
influence of interior nodes on the boundary

lack of Kronecker delta condition [21] and therefore did not
attain a true interpolation along the boundary.

If we restrict ourselves to the case of NEM, it was
assumed that the Sibson approach was interplant along con-
vex boundaries. In [29] it was demonstrated that through the
use of he concept of α-shapes a true interpolation could be
achieved even in non-convex boundaries. α-shapes are par-
ticular instances of the so-called shape constructors. Shape
constructors are geometrical techniques that enable to find
the shape of the domain, described solely by a cloud of
nodes, at each time step. α-shapes [43] have been employed
in a number of previous works involving free surface flows,
see for instance [18, 61, 71, 72, 84, 88, 89], among others.
In essence, through the definition of a parameter α that rep-
resents the level of detail up to which the geometry is to
be represented, this technique allows to extract almost with
no user intervention the actual geometry of the domain, see
Fig. 8.

Therefore, in addition to the importance of the true inter-
polation achieved by this method, α-shapes (or, in general,
shape constructors) provide a very efficient means to deal
with nodal clouds evolving in time, as will be analyzed
in Section “Examples of application” for fluid mechanics
problems. Fragmentation, coalescence, merging flows, etc.,
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Fig. 8 Evolution of the family
of α-shapes of a cloud of points
representing a wave breaking on
a beach. Different shapes for
different α values (Sα=0 or
cloud of points (a), S0.5 (b),
S1.0 (c), S2.0 (d), S3.0 (e) and
S∞ (f)) are depicted

can be treated with no user intervention very conveniently
in this way.

In [106] a new approach was developed for the imposi-
tion of essential boundary conditions in the context of the
NEM (Constrained-NEM, or C-NEM) that is based upon
the usage of a visibility criterion, a concept initially devel-
oped in the context of EFGM [90]. It can be demonstrated
that, up to some differences in the implementation aspects,
it produces results entirely equivalent to those obtained by
employing α-shapes, but needs for an explicit description of
the boundary of the domain in the form of a triangulation or
planar straight line graph [27, 28, 73, 74, 107, 109].

For Laplace-type of NN interpolations, it was initially
claimed [101] that they were interplant even on non-convex
domains, but in [31] it was proved that this interpolation
was only node-wise and that some counter-examples could
be found. An alternative method was proposed in this last
reference to impose exactly essential boundary conditions
by employing a planar straight line graph describing the
boundary.

If we restrict ourselves to the case of local max-ent
approximation, in [6] a demonstration is included that
proves that the method possesses a weak Kronecker delta
property, i.e., for convex domains, the value of shape func-
tions associated to interior nodes vanishes on the boundary.
Thus imposing the exact value of the nodal displacement
with Lagrange multipliers, for instance, will suffice to verify

essential boundary conditions straightforwardly, very much
like in finite elements. This is in general not true for non-
convex domains, however. In [62] this approach was later
generalized to arbitrary order of consistency. See Fig. 9
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Fig. 9 Interpolating max-ent quadratic function on the boundary of
the convex hull of the data sites. A discontinuity on the derivative
appears at the node location in this case
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for an example of quadratic max-ent shape function on the
boundary of the domain verifying Kronecker delta property.

Numerical integration

As mentioned before, only formulations based upon weak
forms of the governing equations are being covered in this
review, since collocation methods are, in principle, not so
well suited for the simulation of forming processes. In this
framework, numerical integration plays a fundamental role
for the accuracy of the results. In general, meshless for-
mulation do not employ polynomial shape functions, and
since quadrature formulas were initially designed to inte-
grate such functions, an error is unavoidable. In addition, to
perform numerical integration an integration cell should be
chosen, and these do not generally conform with the support
of shape functions (as is trivially the case in finite elements,
where the integration cell arises naturally as the intersection
of the element’s shape functions support). This provokes a
second source of error.

Historically, the first attempt to overcome problems
related to numerical integration errors was to try to conform
integration cells to shape function support, as in [7, 8, 38,
39, 41, 59], for instance. In general, none of these methods
completely overcome the mentioned deficiencies, due to the
presence of the second source of error mentioned earlier: the
non-polynomial character of the approximation.

The most important advancement in the numerical inte-
gration of meshless methods arose with the development
of the so-called Stabilized Conforming Nodal Integration
(SCNI) by Chen [23]. In essence, this method is based on
assuming a modified strain field at each node:

ε̃h
ij (xI ) =

∫

�

εij (x)	(x; x − xI )d�,

where ε represents the Cauchy strain tensor and 	 is a
distribution function, that is usually taken as:

	(x; x − xI ) =
{ 1

AI
if x ∈ �I

0 otherwise

with �I the Voronoi cell associated to node I (other
approaches in the definition of the area associated to each
node are equally possible) and AI the corresponding area of
this cell. With this definition, the strain smoothing leads to:

ε̃h
ij (xI ) =

∫

�

1

2

(
∂uh

i

∂xj

+ ∂uh
j

xi

)
	(x; x − xI )d�

By the divergence theorem, it can be obtained

ε̃h
ij = 1

2AI

∫


I

(
uh

i nj + uh
j ni

)
d
, (7)


I being the boundary of the Voronoi cell associated to
node I. By introducing shape functions into Eq. 7, a matrix
expression is obtained in the form:

ε̃h(xI ) =
∑

J∈NN(I)

B̃J (xI )uI ,

where NN(I) represents the set of nodes neighboring the
point xI . The approximation to the weak form of the prob-
lem leads to a stiffness matrix and a force vector, in the
absence of body forces, that can be expressed as:

KIJ =
NP∑

m=1

B̃
T

I (xm)CB̃J (xm)V n
m,

f I =
Nnb∑

m=1

φ(xm)t(xm)V n−1
m ,

where V n
m denotes the volume in dimension n of the Voronoi

cell associated to node m. Nnb represents the number of
nodes in the natural boundary.

This nodal quadrature scheme has rendered excellent
results when applied to the EFGM [23]. This technique is
also very well suited for its application within the NEM,
since most of the geometrical entities appearing in its com-
putation (Voronoi cells, circumcenters, etc.) are in fact
previously obtained in the NE shape function computa-
tion and can be easily stored with important computational
saving.

Also specially noteworthy is the fact that SCNI leads to a
truly nodal implementation of the Natural Element method
(or whatever method it is applied to), which means that
no recovery of secondary variables must be performed, nor
nodal averaging, like in the traditional version of the Finite
Element method or in previous non-linear versions of the
NEM [55]. In Fig. 10 an example of application of this
technique is shown over the geometry of a hollow cylinder
[59]. It can be noticed how a Voronoi cell must be com-
puted around each node and a quadrature scheme stablished
on the boundary of it, usually by performing a division on
triangles.

Surprisingly or not, Quak [93, 94] found that by apply-
ing SCNI to standard finite elements very good results were
obtained in terms of accuracy for very distorted meshes.
In this reference, a bending test was simulated with five
different clouds of nodes, see Fig. 11. It was found that
finite elements provided very competitive results, compa-
rable to those of max-ent approximations, and much better
than EFG methods. Nowadays there is a plethora of nodal
integration techniques developed for finite elements that
has provided them with the best characteristics of mesh-
less methods in terms of robustness to mesh distortion
[20, 45, 76, 92].
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Fig. 10 Division of a hollow
cylinder [59] into Voronoi cells.
Note that concave regions need
for an additional triangulation to
intersect Voronoi cells, defined
on the convex hull of the node
cloud
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Examples of application

Once meshless methods acquired an important maturity,
their application to forming process simulation became
almost straightforward, as will be seen. There have been
many applications in the field of solid (bulk) forming pro-
cesses, as well as in fluid mechanics, but slightly less in
sheet metal forming, for reasons that will become clearer
later on. In this section a revision is made on the differ-
ent applications that can be envisaged for an advantageous
application of meshless methods.

Bulk forming processes

Bulk forming processes is maybe the most natural appli-
cation of meshless methods to the field of forming, and

one of the first where they were applied [1, 2, 22]. One
of the most classical formulations when dealing with pro-
cesses like aluminum extrusion, for instance, is to assume
that, since plastic strains are much larger than elastic ones,
one can neglect them and employ the so-called flow formu-
lation (see [82, 110–112], just to cite some of the first and
more recent works using this assumption) to assume that
aluminum behaves like a non-Newtonian fluid, i.e.,

ε̇ = f (σ ).

By assuming a rigid-viscoplastic constitutive law, and a von
Mises plasticity criterion, one arrives at

σ = 2μd − pI , with μ = σy

3d
,

Fig. 11 Distortion test
performed with Stabilized
Conforming Nodal Integration
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where

d =
√

2

3
d : d

is the effective strain rate. In particular, in [1, 2] it was
assumed that the aluminum yield stress varied according to
a Sellars-Tegart law:

σy

(
d
) = Smarcsinh

⎡

⎣
[(

d1

A

)
e

Q
RT

] 1
m

⎤

⎦ with

d1 = max {d, d0}, (8)

and a coupled thermo-mechanic model was implemented.
The key ingredient in this model was to employ an updated
Lagrangian framework to describe flow kinematics, i.e., an
explicit update of the geometry is achieved through

xn+1
I = xn

I + vn
I �t,

and where the velocity field v is obtained after a consis-
tent linearization of the variational problem. Since no loss
of accuracy is produced by ‘mesh’ distortion, this very
simple approach to many forming processes produces very
appealing results for many forming processes like aluminum
extrusion (already mentioned, but also in [5, 49]), friction
stir welding [4], forging [102], casting [1], laser surface
coating [60], machining [25], and many others.

Many practical aspects of forming simulation were stud-
ied in [3]. In particular, aspects related to computational
cost and accuracy were deeply studied. Natural element and
finite element methods were compared and, noteworthy, it
was found than the computational cost of NEM was higher,
particularly if Sibson shape functions are used. However,
since we deal with highly non-lineal applications, this com-
putational cost is obscured by the time spent in obtaining
consistent tangent stiffness matrices in the Newton-Raphson
loop.

In Fig. 12a geometry of an extrusion test is show (only
one half of the domain is simulated by applying appropriate
boundary conditions). At this location, equivalent strain rate
contour plots for finite element, Sibson-NEM and Laplace-
NEM, respectively. Note how finite element approximation
produces an artificial stress concentration near the symme-
try plane, where nothing can provoke this spurious stress
level, that can only be due to mesh distortion. On the
contrary, NEM (both Sibson and Laplace approximations)
produced excellent results, with no apparent spurious stress
concentrations.

Specially noteworthy is the ability of meshless methods
to accurately reproduce the process of porthole extrusion.
Due to the particular geometrical conditions of the dies nec-
essary to obtain hollow profiles, porthole extrusions needs
for a simulation strategy able to take into account the pro-
cess of material separation and welding through extrusion.

In [50] a deep comparison of FE and NEM techniques was
performed for the porthole die extrusion of AA-6082 and
compared with experimental results. In Fig. 13 a compari-
son is made with different die geometries in which different
results can be noticed. In the model, it was assumed that
a proper welding necessitated of a prior level of pressure
within the die chamber. A nodal implementation of NEM
allowed to track the pressure history at nodal positions, thus
enabling to know if a proper welding had been achieved.
In Fig. 13 blue nodes represent lack of true welding after
the porthole, whereas red nodes indicate a good process.
It can be noticed that only the geometry represented in
the middle figure produces good quality profiles due to
its particular geometry. The rightmost figure, despite its
good apparent geometry, shows that no proper welding is
achieved (note the blue nodes all along the geometry of
the extrudate). Under internal pressure, it is expected that
this welding will open again, as shown by experimental
results.

Sheet metal forming

The corps of literature of meshless methods devoted to
sheet metal forming is considerably smaller than that of
bulk forming. In some way it is natural, since meshless
methods do not employ any connectivity dictated by the
user to define a “mesh”. Therefore, shells, that constitute
a manifold geometry in three-dimensional space, are diffi-
cult to reproduce by a method based solely on a cloud of
nodes.

Among the first works devoted to sheet metal forming
one can cite [105] and [79]. In both a kind of solid-shell
approach was employed, i.e., several nodes were placed
through the thickness direction of the shell. Very few works
were devoted to true shell formulations. Maybe [97] can be
considered as the first one, up to our knowledge. In all these
references, since no connectivity is established, and in order
to avoid computations of distances between nodes in secant
directions (instead of in directions tangent to the manifold),
a small enough nodal spacing, h, must be prescribed.

It was not until very recently that a sound basis has
been established for the proper simulation of shells with
meshless methods [85], in this case by employing max-
ent approaches, although the method is completely general.
Briefly speaking, the proposed method is based upon the
assumption that a shell is actually a manifold in geomet-
rical terms, i.e., each point of a shell resembles locally
an Euclidean (flat) space. Therefore, in order to perform
a consistent meshless analysis of shells, it is necessary to
locally learn its manifold structure, by identifying its locally
flat principal directions. This is done on a node-by-node
basis by employing non-linear principal component analysis
(PCA) techniques [103].
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Fig. 12 Contour plot of the
second invariant of the strain
rate tensor at the location
indicated in (a). b FEM, c
Sibson, d Laplace results
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Fluid forming processes

Fluid forming processes involve a great variety of situations,
ranging from casting [2, 107] to mould filling [84], from
Resin Transfer Moulding [54] to spin coating processes

[33–35], where a plethora of different models for polymers,
among other materials, could be taken into account [26].
As in the case of bulk forming processes, meshless meth-
ods allow for an updated Lagrangian description of fluid
flows easily [84]. This is particularly noteworthy when free

Fig. 13 Porthole die extrusion
under different die geometries.
Red nodes indicate a good
quality in the welding of
aluminum after the porthole,
whereas blue nodes indicate
defects. Under these
assumptions, only the central
geometry will provide an
appropriate quality in the
extruded profile. The rightmost
geometry, despite its apparent
good geometry, will provide a
profile that will open once it is
subjected to internal pressure
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surface flows are present, and can be of little help if not.
However, nodal implementations can help in designing effi-
cient algorithms when variables depending to history are to
be taken into account.

To exemplify how this affects the simulation of fluid
flows, let us restrict to Navier-Stokes equations, for
instance:

∇ · σ + ρb = ρ
dv

dt
= ρ

(
∂v

∂t
+ v · ∇v

)
, (9a)

∇ · v = 0, (9b)

σ = −pI + 2μD. (9c)

The weak form of the problem associated to Eqs. 9a, 9b and
9c is:∫

�

2μD : D∗ d� −
∫

�

pI : D∗ d�

= −
∫

�

ρb · v∗ d� +
∫

�

ρ
dv

dt
· v∗ d�, (10)

and∫

�

∇ · v p∗ d� = 0,

where “:” denotes the tensor product twice contracted and
b the vector of volumetric forces applied to the fluid. D∗
represents an admissible variation of the strain rate tensor,
whereas v∗ represents equivalently an admissible variation
of the velocity.

The second term in the right-hand side of Eq. 10 rep-
resents the inertia effects. Time discretization of this term
represents the discretization of the material derivative along
the nodal trajectories, which are precisely the characteris-
tic lines related to the advection operator. Thus, assuming
known the flow kinematics at time tn−1 = (n−1)�t , mesh-
less methods allow to proceed easily as follows, by virtue of
the updated Lagrangian framework:
∫

�

ρ
dv

dt
v∗ d� =

∫

�

ρ
vn(x) − vn−1(X)

�t
v∗ d�, (11)

where X represents the position at time tn−1 occupied by
the particle located at position x at present time tn, i.e.:

x = X + vn−1(X)�t.

So we arrive at∫

�

2μD : D∗ d� −
∫

�

pI : D∗ d� −
∫

�

v · v∗

�t
d�

= −
∫

�

ρb · v∗ d� −
∫

�

ρ
vn−1 · v∗

�t
d�, (12)

and∫

�

∇ · v p∗ d� = 0.

where the superindex in all the variables corresponding to
the current time step has been dropped for clarity.

The most difficult term in Eq. 12 is the second term of
the right-hand side. The numerical integration of this term
depends on the quadrature scheme employed [61].

If traditional Gauss-based quadratures on the Delaunay
triangles are employed, it will be necessary to find the posi-
tion at time tn−1 of the point occupying at time tn the
position of the integration point ξ k (see Fig. 14):
∫

�

ρ
vn−1 · v∗

�t
d� =

∑

k

ρ
vn−1(�k) · v∗(ξ k)

�t
ωk, (13)

where ωk represents the weights associated to integration
points ξ k , and �k corresponds to the position occupied at
time tn−1 by the quadrature point ξ k , see Fig. 14.

On the contrary, if some type of nodal integration, as in
[59], is employed, this procedure becomes straightforward,
with the only need to store nodal velocities at time step tn−1.

In [72] a Lagrangian method that employs Natural Neigh-
bor interpolation to construct the discrete form of the
problem was presented. In that case, however, an implicit
three-step fractional method was employed to perform the
time integration. This approach needs for a stabilization if
small time increments are chosen. See [72] for more details.
In that reference, however, the method is truly a particle
method, since nodes posses volume and mass associated to
them.

If free-surface flows are considered, it is again of utmost
importance to employ any technique for the reconstruction
of the geometry of the evolving domain. While most mesh-
less approaches do not employ any particular technique,
thus provoking results depending on the shape functions’
support, shape constructors have been employed in a num-
ber of works [19, 61, 68, 71, 72, 84]. α-shapes [29, 43, 44]
are perhaps the most widely used shape constructors in this
context. However, it is well known that this technique usu-
ally fails in the presence of holes or merging flows during
the simulation, unless a very fine nodal cloud is employed.
In [53] an improved α-shape method is developed that takes
into account not only geometrical features of the cloud of
points, but also the history of velocity field in order to

Fig. 14 Determination of the position of quadrature points at time step
tn−1
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anticipate merging flows, the appearance of holes, etc, to a
higher degree of accuracy. This method has rendered excel-
lent results in the simulation of free-surface flows and also
in the simulation of fluid-structure interactions [51].

Particularly noteworthy is the ability of meshless meth-
ods to construct node-based approaches for fluids with
complex constitutive equations [52]. Multiscale methods
arising from kinetic theory [67] are a clear example of this.
In these models, a constitutive equation of the type

σ = −pI + τ + 2ηD,

where τ represents an extra-stress contribution coming from
the micro-scale. To obtain this extra-stress contribution,
kinetic theory provides also the equation governing the
evolution of the probability distribution function ψ at the
micro-level. This equation is known as the Fokker-Planck
equation:

Dψ

Dt
= − ∂

∂X
· {Aψ} + 1

2

∂

∂X

∂

∂X
: {Cψ}, (14)

where A represents a vector describing the drift exerted
by the fluid on the function ψ , and C is a symmetric,

positive-definite matrix accounting for brownian effects in
the model. D/Dt represent material derivative. The expres-
sion, finally, that relates the obtained configuration state
with its enforced state of stress is known as the Kramers
formula:

τ =
∫

g(X)ψdX = 〈g(X)〉

where the brackets 〈·〉 denote an ensemble average over all
the molecular conformational space at a physical point, and
g is some function of the configuration state, depending on
the particular model considered.

The stochastic approach to these problems makes use of
the equivalence of the Fokker-Planck Eq. 14 to the following
Itô’s stochastic differential equation [67]:

dX = Adt + B · dW (15)

where

C = B · BT

and W represents a Wiener process. Eq. 15 applies along
individual molecule trajectories.

Fig. 15 Evolution of the
velocity field in the die swelling
flow of an entangled polymer
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Meshless methods allow to attach molecule ensembles
to the nodes, allowing for the integration of Eq. 15 by the
method of characteristics, along the nodal paths straightfor-
wardly [36]. The integration is performed by means of the
so-called Euler-Maruyama scheme:

X
j

n+1 = X
j
n + A(X

j
n, tn)�t + B(X

j
n, tn) · �W

j
n (16)

where n refers to the current time step and j to the individual
molecule being integrated.

For instance, in [36] an study is made by means of natural
elements of the swelling behavior of an entangled poly-
mer modeled by a Doi-Edwards fluid. Four snapshots of
the velocity field are shown in Fig. 15. Elastic effects are
notorious after the outlet of the channel. A minor loss of
symmetry in the flow is noticed due mainly to the statistical
noise. Despite the very low number of realizations per node,
the statistical noise remains surprisingly low.

In [52], for instance, it is shown how meshless methods
provide an approximation to the swelling flow of non-
newtonian flows that improves the accuracy of existing
finite element approximations.

Conclusions

Meshless methods arose in the middle nineties as a promis-
ing alternative to finite elements where the process of
generation of complex meshes constitutes a major issue
or where mesh distortion provoke loss of accuracy in the
results. Meshless methods provide a very flexible alterna-
tive for these cases, although all the problems they presented
initially needed for a very active research activity during
more than a decade. Today, some twenty years after, mesh-
less methods have overcome most of their initial limitations
and constitute nowadays an appealing alternative in many
fields. Noteworthy, material forming simulation is one of
such fields.

During this review it has been highlighted how mesh-
less methods are now able to provide a very competitive
alternative to finite element simulation in many fields, from
bulk forming to complex fluid flows (and perhaps to a lesser
extent in sheet metal forming). Their main ability is perhaps
to provide a very convenient way of performing updated
Lagrangian descriptions of forming processes. This type of
description is helpful when dealing with bulk forming, for
instance, or when free-surface flows are present.

Noteworthy, all the research activity generated by mesh-
less methods has helped to improve also the properties
of finite elements. It has been shown, for instance, how
finite elements with stabilized conforming nodal integration
provide very competitive results at a fraction of the compu-
tational cost of meshless methods. All this research activity

is today, after some 20 years, helping us to understand why
finite elements, originated some sixty years ago, are still
among us, probably for many years to come.
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