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Abstract In this work we have revisited the problem of
molding a deformable substrate with a rigid flat punch. The
work is motivated by the recent experiments by Chen et al.
(Acta Mater 59:1112−1120, 2011) where it was shown that
systematically determined characteristic molding pressure
H increased significantly with decrease in punch width,
for widths less than ∼ 25 μm. This size effect, akin to
the indentation size effect observed in nano-indentation of
metals, assumes importance in applications involving mold-
ing of metallic microstructures. Numerical simulations have
been conducted within the framework of a finite defor-
mation higher order strain gradient model. While classical
plasticity predicts almost uniform stress with severe plas-
tic strain concentration at the sharp corners to prevail just
beneath the punch, our simulations present a significantly
different picture. Very narrow punches have fairly uniform
plastic strain with severe concentration of strain gradi-
ents and large contact stresses close to the edges. Wider
punches however, behave in a manner closely resembling
the predictions of classical plasticity.
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Introduction

The problem of a flat punch indenting a deformable elasto-
plastic half space (shown in Fig. 1) is one of the most
well-studied problems in mechanics. Hill’s [2] slip-line field
solution for a rigid perfectly plastic half space yields the
simple solution that the pressure beneath the indenter is a
constant and is given by

H

σ0
= 2 + π√

3
, (1)

where σ0 is the yield stress of the material. Unlike inden-
tation with wedges or cylinders, flat punch indentation is
not self similar and the deformation evolves with the depth
of indentation h. In spite of this complication, the above
estimate of H seems to be a rather good one. In fact, Neper-
shin [3] has shown that the slip line field solution is very
accurate for h/2w ≥ 8, where 2w is the punch width.
Moreover, Finite Element (FE) analysis of the problem (see
[4]) using a strain hardening elasto-plastic material has con-
firmed that beyond the elastic regime (during which H

increases linearly with h) H is a weakly increasing func-
tion of h/2w with a value that is close to what is given by
Eq. 1. Recently (see [5]), the slip line field solution has been
verified experimentally through particle image velocimetry.
Especially striking was the visualization of a ‘dead metal
zone’ right beneath the indenter with width equal to 2w,
where the metal was pushed downwards at the same velocity
as the indenter.
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Fig. 1 Schematic of the flat punch molding

In recent years, attempts have been made to fabri-
cate metal based microscale structures with characteris-
tic feature sizes of tens of microns [6–8]. Metal based
microscale structures are attractive in applications like
micro-electromagnetics and microscale heat exchanger
devices. An attractive route to rapid mass production of
such microscale structures is the LiGA protocol [9]. In this
protocol, a primary microscale mold insert is fabricated
by combining deep lithography and electrodeposition. Sec-
ondary structures are then generated repetitively from the
primary insert by compression molding. The process has
been successfully applied to transfer the pattern on the insert
with high fidelity to thin polymeric films (see, for example
[10]). However, Cao et al. [6] and Cao and Meng [7] have
successfully used this technique to compression mold high
aspect ratio metallic microscale structures onto Pb, Zn and
Al using specially surface treated Ni inserts.

The problem of the flat punch indenting a semi infi-
nite substrate assumes renewed importance in the light of
the above developments. However, now we have to contend
with the fact that in the micro molding process, the punch
width 2w may be extremely small and size dependent plas-
ticity models like the mechanism based and higher order
strain gradient theories of Nix and Gao [11] and Fleck and
Hutchinson [12, 13] respectively are more appropriate than
classical ones. It is indeed the case that while indenting a
material with indenters of self-similar geometries like cones
or spheres, the measured hardness turns out to be much
higher at small depths of indentation for cones (see [11])
and small radii for spheres [14]—facts that have been called
the indentation size effect (ISE).

Studies of microscale molding with flat punches has been
made by Jiang et al. [8] and Chen et al. [1]. In the for-
mer, it has been shown that for punch widths larger than
150 μm, the molding response of Al is almost size indepen-
dent. However, the latter work extends this to even smaller
punch widths (of the order of 25 μm and lower) and shows
that the characteristic pressure under the punch increases
significantly with decrease in 2w below ∼ 10 μm. Like
in the case of ISE, the explanation to this phenomenon is
based on the concept of geometrically necessary disloca-
tions (GND) which have to be present near the punch in
order to accommodate the volume of the material displaced
by it. Evidently, when feature sizes as small as 1 μm are

being attempted, a reliable estimate of H(w) is needed to
predict the molding loads.

In this work, numerical simulations are used to under-
stand the size dependence of the molding pressure observed
by Chen et al. [1]. To this end, we use a formulation
for plasticity at small scales provided by the strain gra-
dient plasticity model originally proposed by Fleck and
Hutchinson [12] and subsequently reformulated [13] to a
framework that is more suitable for numerical applications
and closer in spirit to the early models of Aifantis [15].
The mathematical structure of strain gradient based models
is different from the Nix and Gao [11] model in the sense
that more boundary conditions compared to conventional
theories of plasticity need to be specified. As a result, the
theory can capture boundary layer phenomenon related to
surfaces and interfaces. These theories aspire to provide a
framework for a large gamut of problems where a size effect
manifests eg. nano-indentation, bending of thin beams [16]
and torsion of fine wires [17]. We use a large deformation
based Finite Element (FE) implementation of the viscoplas-
tic version [18] of the reformulated [13] model to capture
the effect of punch size w on the molding pressure.

Material model

Basic kinematics

The displacement of a point in space is denoted as,

ui = xi − Xi, (2)

where Xi is a material point and xi is the position of the
same in the deformed configuration. The deformation gra-
dient tensor and the velocity gradient tensor are given in the
conventional manner as

Fij = ∂xi

∂Xj

and (3)

Lij = ∂u̇i

∂xj

= u̇i,j . (4)

The strain rate is derived from the symmetric part of Lij as

ε̇ij = 1

2

(
Lij + Lji

)
. (5)

Further ε̇ij is decomposed additively into the elastic and the
plastic part as

ε̇ij = ε̇e
ij + ε̇

p
ij . (6)

The skew-symmetric part of the velocity gradient tensor is

ω̇ij = 1

2

(
Lij − Lji

)
. (7)
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It is also assumed that the material follows von-Mises mate-
rial behavior and the normality rule holds true under the
present formulation, which implies,

ε̇
p

ij = 3σ ′
ij

2σe

ε̇p = mij ε̇
p, (8)

where ε̇p is the equivalent plastic strain defined as√
2ε̇

p
ij ε̇

p
ij /3 and σ ′

ij is the deviatoric part of the stress ten-

sor. The tensor mij = 3σ ′
ij /2σe is defined in terms of the

equivalent stress σe =
√

3σ ′
ij σ

′
ij /2. In order to incorporate

non-local effects due to strain gradient following [13], an
effective plastic strain rate is defined in terms of the plastic
strain rate and the gradient of plastic strain rate as

Ėp2 = ε̇p2 + l2∗ ε̇
p

,i ε̇
p

,i , (9)

where l∗ is the characteristic length scale of the material
introduced to maintain dimensional consistency.

Virtual work relation and material model

Under the framework of gradient plasticity the conventional
virtual work relation is augmented by the virtual work cor-
responding to the gradient of plastic strain and its work
conjugate, a higher order stress quantity. According to [19]
the virtual work relationship for a gradient plastic material
is given as

∫

V

(
σij δε̇

e
ij +Qδε̇p + τiδε̇

p
,i

)
dV =

∫

S

(
Tiδu̇i + tδε̇p

)
dS,

(10)

where left hand side of Eq. 10 corresponds to the internal
virtual work and the right hand side, the external virtual
work. Here, σij δε

e
ij represents the virtual work due the elas-

tic strain increment and Q is a scalar microstress which
contributes to the virtual work due to the plastic strain
increment. Additionally, τi is the higher order stress, work
conjugate to the virtual incremental quantity δε

p
,i (the gra-

dient of plastic strain). The above virtual work relation is
different from the corresponding conventional equation in a
sense that both the displacement and the equivalent plastic
strain are considered to be independent kinematic quanti-
ties. As a consequence of the above consideration additional
boundary conditions on ε̇p or on the higher order tractions
need to be imposed. The right hand side of Eq. 10 hence
represents the external virtual work by the conventional
tractions and the external virtual work due to higher-order
tractions. The equilibrium equations and the boundary con-
ditions can be obtained from Eq. 10 by the application of
the Gauss’ theorem and noting that Eq. 10 holds true for any
arbitrary variations of u̇i and ε̇p. The equilibrium equations

consist of the conventional equilibrium equation σji,j = 0,
with an additional consistency condition given by,

Q = σe + τi,i . (11)

The boundary conditions are,

Ti = σjinj , and (12)

t = τini, (13)

where ni is the unit normal to the surface where the bound-
ary tractions Ti or the higher order tractions t are specified.
Additionally boundary conditions of the form,

ui = u∗
i and (14)

εp = εp∗, (15)

on some parts of the boundary may be prescribed. Here,
u∗

i and εp∗ are imposed displacement or equivalent plastic
strain.

Updated Lagrangian framework

With a view to develop a finite deformation model under
updated Lagrangian framework, the virtual work relation
in Eq. 10 is now rewritten in the reference configuration
following [19]. The Kirchhoff stress measures for various
stress quantities are defined as,

ζij = Jσij , (16)

σζ
e = Jσe, (17)

q = JQ, and (18)

ρi = Jτi. (19)

Similarly, the first Piola–Kirchhoff stress measures are
defined as,

sij = JF −1
ik σkj = F −1

ik ζkj , and (20)

�i = JF −1
ik τk = F −1

ik ρk, (21)

where J is the determinant of the deformation gradient
tensor. Using the above relations in Eq. 10, the virtual
work equation in the reference configuration is obtained as
follows,
∫

V0

(
sij δḞij + (

q − σζ
e

)
δε̇p + �iδε̇

p

,0i

)
dV0

=
∫

S0

(
T0i δu̇i + t0δε̇

p
)
dS0. (22)

The incremental version of the above virtual work equation
in the reference configuration becomes:
∫

V0

(
ṡij δḞij + (

q̇ − σ̇ ζ
e

)
δε̇p + �̇iδε̇

p

,0i

)
dV0

=
∫

S0

(
Ṫ0i δu̇i + ṫ0δε̇

p
)
dS0. (23)
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As the constitutive relations will be formulated in terms of

the Jaumann rate of Kirchhoff stress (
�
ζ ij ) and convected

rate of the higher order Kirchhoff stress (
∨
ρi ), [18] the fol-

lowing identities have been used under updated Lagrangian
framework,

ṡij = �
ζ ij − σkj ε̇ik − σikε̇jk + σikLjk, and (24)

�̇i = ∨
ρi. (25)

As mentioned in [19], the convected rate for higher order
stress vector is employed in stead of the Jaumann rate
because using the latter to define the constitutive relation
for higher order stress yields a non-symmetric stiffness
matrix. Finally the virtual work relation in the reference
configuration takes the following form:

∫

V

(�
ζ ij δε̇ij − σij

(
2ε̇ikδε̇kj − Lkj δLki

)

+ (
q̇ − σ̇ ζ

e

)
δε̇p + ∨

ρiδε̇
p

,0i

)
dV

=
∫

S

(
Ṫ0iδu̇i + ṫ0δε̇

p
)
dS − 1

�t
[Eqm Corr], (26)

where [Eqm Corr] is given by,

Eqm Corr =
∫

V

(
σij δε̇ij + (Q − σe)δε̇

p + τiδε̇
p

,0i

)
dV

−
∫

S

(
T0iδu̇i + t0δε̇

p
)
dS, (27)

and is required in order to prevent the solution from drifting
with time from equilibrium for large strain problems.

Constitutive relations

In this section the constitutive relations are defined by fol-
lowing a viscoplastic material model as described in [18].
A viscoplastic potential  is defined which is a function
of a generalized effective stress σc, which is work conju-
gate to the effective plastic strain rate Ėp. It is assumed
that the higher order stress quantities are derivable from the
viscoplastic potential in the following manner,

σc = ∂

∂Ėp
,

q = ∂

∂ε̇p
= σc

∂Ėp

∂ε̇p
, and

ρi = ∂

∂ε̇
p
,i

= σc
∂Ėp

∂ε̇
p
,i

. (28)

Using Eqs. 9 and 28, the constitutive relations for a strain
gradient viscoplastic material becomes,

q = σc

Ėp
ε̇p, (29)

ρi = σc

Ėp
l2∗ ε̇

p
,i , and (30)

σ 2
c = q2 + l−2∗ ρiρi. (31)

In case l∗ = 0 (i.e. for a conventional material) σc reduces
to q . The viscoplastic material behavior is modeled as,

σc = σ0

(
1 + Ep

ε0

)1/n (
Ėp

ε̇0

)m

, (32)

where σ0 is the initial yield strength of the material and
g(Ep) = σ0 (1 + Ep/ε0)

1/n describes the uniaxial strain
hardening response of the material. The quantity n is the
strain hardening exponent, m governs the strain rate sensi-
tivity and ε̇0 is the reference strain rate. When Ėp is close
to or less than ε̇0, Eq. 32 exhibits rate-independent behavior
as σc ≈ g(Ep). The strain at initial yield is ε0 = σ0/E. It is
to be noticed that the above material behavior incorporates
Ep and Ėp in the power law, instead of εp and ε̇p.

The incremental constitutive relations for the above vis-
coplastic material model can be summarized as,

�
ζ ij�t = Rijkl

(
�εkl − mkl�εp

)
, (33)

q̇�t = σc

Ėp

(
(m − 1)

ε̇p

Ėp
�Ėp + �ε̇p

)

+
(

Ėp

ε̇0

)m
dg

dEp
ε̇p�t, and (34)

∨
ρi�t = l2∗

(
σc

Ėp

(

(m − 1)
ε̇
p

,i

Ėp
�Ėp + �ε̇

p
,i

)

+
(

Ėp

ε̇0

)m
dg

dEp
ε̇
p
,i�t

)

. (35)

The elasticity tensor Rijkl is given by,

Rijkl = E

1 + ν

(
1

2
(δikδjl + δilδjk) + ν

1 − 2ν
δij δkl

)
, (36)

and increment in the effective plastic strain rate using Eq. 9
is given by,

�Ėp = ε̇p

Ėp
�ε̇p + l2∗ ε̇

p
,i

Ėp
�ε̇

p
,i . (37)

Finite element formulation

For FE analyses, we use isoparametric quadratic triangu-
lar elements. In addition to the increment of displacement
components �ui , increment of equivalent plastic strain rate
�ε̇p is also used as a degree of freedom for each node. Both
the displacement increments and the increments of equiv-
alent plastic strain rate are interpolated within the element
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using quadratic functions in terms of their respective nodal
components �DN and �ε̇

p
N as,

�ui =
2k∑

N=1

NN
i �DN, and (38)

�ε̇p =
k∑

N=1

MN�ε̇
p

N, (39)

where Ni and M are the shape functions and k = 6 is the
number of nodes used for interpolation. Accordingly from
the above relations, increments in the velocity gradient and
the strain tensor can be represented in terms of the nodal
displacement increment as,

�Lij =
2k∑

N=1

NN
i,j�DN, and (40)

�εij =
k∑

N=1

EN
ij �DN, where,

Eij = 1

2

(
NN

i,j + NN
j,i

)
. (41)

In a similar manner, the gradient of equivalent plastic strain
rate is given by,

�ε̇
p

,i =
k∑

N=1

MN
,i �ε̇

p

N . (42)

Finally the virtual work relation is discretized using the
above relations and can be expressed in the following form:
[

Ke 0
Kep Kp

][
�DN

�ε̇
p
N

]
=

[
�F1

�F2

]
+

[
C1

C2

]
, (43)

where the elastic stiffness matrix

KNM
e =

∫

V

(
EN

ij RijklE
M
kl

+σij

(
NM

k,jN
N
k,i − 2EM

ik EN
jk

))
dV, (44)

the coupling matrix

KNM
ep = −

∫

V

mijRijklE
M
kl M

NdV, (45)

and the plastic stiffness matrix

KNM
P =

∫

V

((
ε̇p

Ėp2 (m − 1)q + σc

Ėp

)
MMMN

+ l2∗ ε̇
p
,i

Ėp2 (m − 1)qMMMN
,i + ε̇p

Ėp2 (m − 1)ρiM
M
,i MN

+ l2∗ ε̇
p

,i

Ėp2 (m − 1)ρkM
M
,k MN

,i + l2∗σc

Ėp
MM

,i MN
,i

)

dV,

(46)

need to be calculated for each element. The force vectors on
the right of Eq. 43 are given by

�F N
1 =

∫

S

�TiN
N
i dS + �t

∫

V

EN
ij Rijklmkl ε̇

pdV, (47)

where the conventional force vector is augmented by a
volume force contribution from Eq. 33. The force vector
corresponding to the higher order traction is given by,

�FN
2 =

∫

S

�ρiniM
NdS

−�t

∫

V

((

mijRijklmkl ε̇
p + ε̇p dg

dEp

(
Ėp

ε̇0

)m
)

MN

+l2∗ ε̇
p

,i

dg

dEp

(
Ėp

ε̇0

)m

MN
,i

)

dV . (48)

Further the force vectors corresponding to the equilibrium
correction terms are

CN
1 = −

∫

V

σijE
N
ij dV +

∫

S

TiN
N
i dS, and (49)

CN
2 = −

∫

V

(
(Q − σe) MN + τiM

N
i

)
dV

+
∫

S

tMNdS. (50)

It can be observed that the system of equations in Eq. 43 are
decoupled, in the sense that once �DN is solved, �ε̇

p

N can
be obtained using �DN .

Six noded triangular elements with three Gauss integra-
tion points have been used in all the simulations reported
here. Though stress oscillations have been reported for these
elements by [20], we note that the present structure of the
FE equations in Eq. 43 is significantly different from those
dealt with by [20] or [19]. We obtained consistent results
with these elements and no stress locking was noted.

However, as observed by [21], the use of CN
2 in simula-

tions lead to numerical problems and therefore, CN
2 = 0 has

been assumed.
We have used a viscoplasticity model for the numeri-

cal stability that it offers. A small value for m = 0.04 has
been chosen which produces a rate-independent limit of the
uniaxial response.

After the displacement increments and the plastic strain
rate increments are solved, the various stress rates can be
updated using the constitutive relations in Eqs. 34–35. The
increments of Cauchy stress tensor and the higher order
stress vector are calculated from the Jaumann rate of Kirch-
hoff stress tensor and the convective rate of higher order
stress vector respectively according to,

�σij = �
ζ ij�t + �ωikσkj + σikωjk − σij�εkk, and (51)

�τi = ∨
ρi�t + �Likτk − τi�εkk. (52)
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Table 1 Values of the material paramaters used for the analysis

Reference Strain hardening Reference Strain rate

strain parameter strain rate sensitivity

parameter

ε0 n ε̇0 m

0.001 5 0.005 0.04

Further effective stress, σc is obtained from Eq. 31 and
thereafter the equivalent plastic strain rate, ε̇p and its gradi-
ent, ε̇

p

,i is obtained from Eqs. 29–30.
All material parameters used in this work are listed in

Table 1.

Results and discussions

In the analysis reported in this section, the length scale
parameter l∗ has been used to normalize all distances. The
absolute value of this parameter has been determined for a
number of materials (see, [22]) and ranges from ∼ 1 μm

for superalloys to ∼ 10 μm for Ni. It should be noted how-
ever that, it is still unclear if l∗ is a material parameter or is
dependent on the problem geometry.

Chen et al. [1] has followed a systematic procedure for
determining the characteristic molding pressure from their
experiments. We have followed the same procedure and it
is explained in Fig. 2a–c. The normalized total load on the
punch P/σ0 for different values of the normalized punch
width w/l∗ used is plotted against the normalized depth
h/l∗ in Fig. 2a. The total load P experienced by the flat
punch is evaluated as,

P(h) =
W∫

−W

σ11(x2, h)dx2, (53)

where σij is the Cauchy stress. Additionally, the part of the
surface (S) in contact with the flat punch is subjected to the
following boundary condition,

u̇1 = −ḣ, on S, (54)

ḣ being the constant downward velocity at which the punch
is pushed into the substrate. A very low rate of loading
ḣ = 0.005l∗s−1 has been used. The punch is assumed to be
frictionless in this work.

A sufficiently fine mesh has been used, especially close
to the region where the corner of the flat punch makes
contact with the substrate, with smallest elements having
≈ 0.04l∗ long sides.

Fig. 2 a Variation of total load
with the depth experienced by
the flat punch, for punches with
various widths. b Plot of
pressure P/wσ0 under the
punch with hp/w for various
punch width. The curves
represented by the dotted lines
corresponds to the same for
conventional plastic material for
two different punch widths. The
curves for conventional material
collapses to one. c Variation of
characteristics hardness with the
characteristic length, i.e. punch
width w for flat punch indenter

a b

c
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The plastic part of the depth of penetration h, namely hp ,
gives the residual depth of the impression that will remain
when the punch is withdrawn from depth h. This quantity
has been calculated in the experiments by Chen et al. [1] in a
manner that is shown in Fig. 2a. Here hp = h−P/S, where
S is the slope of the initial linear portion of the P(h) curve.
When H(hp) = P/2wσ0 is replotted against hp/w (see,
Fig. 2b), the small depth limit can be obtained by extrap-
olating the linear portion of the H(hp) plot to the vertical
axis. The extrapolated quantity H(hp = 0) (which will be
denoted as H in the subsequent discussion) is a measure of
the characteristic pressure on the punch at the onset of plas-
tic deformation beneath the punch and is akin to the estimate
in Eq. 1. Moreover, H(hp = 0) = σ0H(h/w, w, n, m)

for small w. Note that, according to classical plasticity the-
ories, at any given hp/w, the curves for all punch widths
should collapse into a single curve as in the experiments of
Jiang et al. [8] with wide punches with 2w > 150 μm.
Unlike Eq. 1, in the present case, the characteristic pressure
is dependent on w/l∗ since we have used a strain gradi-
ent plasticity theory to estimate it. The variation of H with
w/l∗ has been plotted in Fig. 2c where it is seen that even
for w 
 25l∗, H is higher than what is predicted by Eq. 1
i.e. H = 2.96σ0. The variation of H with w is remarkably
similar to the experimental results of Chen et al. [1] which
pertain to the molding of single crystal Al substrate with
focused ion beam milled diamond punches.

The plastic zone underneath a wide flat punch has been
reported by early FE analyses of the problem (see, for exam-
ple [4, 23]). The plastic zones obtained from conventional
plasticity have been shown in Fig. 3a and b at two depths.
Note that these solutions are independent of w. Plasticity
initiates and is the most severe at the sharp corners of the
punch. Till the bands of plasticity reaches the symmetry
line X2 = 0, the plastic zone develops in a non self-
similar manner. Only after attaining the situation shown in
Fig. 3b (pertaining to h/w = 0.5) does it start moving
downwards with the punch in a self similar manner. The
triangular shaped ‘dead zone’ at smaller values of depth is
reminiscent of the classical slip line field solutions of the
problem (see e.g., [4, 24]). The plastic zones in the case of
the strain gradient material depend strongly on the punch
width. For the narrow punch (Fig. 3c), the plastic strain con-
centration at the corner is very weak. On the other hand, for
w/l∗ = 20, the plastic zone closely resembles the conven-
tional case. In other words, the narrower punch has a more
uniform distribution of εp beneath the punch compared to
the wider punch, for the same h/w.

This is further illustrated in Fig. 4 which shows the varia-
tion of εp with X2/w (at X1/w = 0) for the two punches at
an early stage of the deformation. For comparison, the same
variation obtained from classical size-independent plastic-
ity analysis is also shown in the figure. Expectedly, the
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Fig. 3 Contour plots of εp for conventional plastic material (a, b) and
for gradient plastic material (c, d). The value of h/w = 0.1 for (a, c,
d) whereas h/w = 0.5 for (b). In case of the gradient plastic materials
w/l∗ = 5 and 20 for (c, d) respectively
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Fig. 4 Distribution of εp with X2/w at h/w = 0.1

distribution of εp(X2/w) for the classical case is indepen-
dent of the punch width. Moreover, it is uniform over the
punch face except near the sharp corner, where it rises
steeply.

In case of the wider punch with w = 20l∗, the distribu-
tion of plastic strain over its face shows a variation similar
to the classical case except for the fact that the sharp rise at
the corner X2/w = 1 is less severe. This is because strain
gradient plasticity acts to smear out sharp variations in plas-
tic strain and to some extent, mitigates the severe strain
concentration at the corner. The effect is more dramatic for
the punch with w = 5l∗ where the plastic strain is almost
uniform over the whole face of the punch and the concen-
tration at the corner is completely smeared out. This is also
evident in the contours of εp in Fig. 3c.

The difference in the shapes of the plastic zones beneath
a narrow and a wide punch is central to understanding the
w dependence of H . This is further delineated by Figs. 5a
through b. In Fig. 5, the contours of an effective measure of
strain gradient (or the density of GNDs) has been shown for
two punch widths. We use the quantity

||∇εp||=
[(

ε
p

,1

)2 +
(
ε
p

,2

)2
]1/2

, (55)

in these plots. For the narrower punch, very high effective
strain gradients are concentrated at the edge of the punch
while the concentration is weaker for the wider punch. In
fact, the uniformity in the distribution of εp is achieved at
the cost of generating the high gradients of strain which,
in turn, suggest a situation like that shown in Fig. 6—the
indentation with the flat punch is accomodated by the gen-
eration of GNDs consisting of a wall of edge dislocations at
the corner.

Indirect confirmation of the above observation is found
in the experiments of Chen et al. [1]. Transmission Electron
Microscopy of their molded sample shows the formation of
nano-scale grains around the corner of the molded trench in
the originally single crystal Al substrate. Moreover, the tilt
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Fig. 5 Contours of ‖∇εp‖ for h/w = 0.1 and for a w/l∗ = 5 and b
w/l∗ = 15

boundary between these nano-scale grains were found to be
very small, typically less than 15◦. Low angle boundaries
can be assumed to be represented by collection of disloca-
tions. This indirectly indicates that high dislocation density
exists close to the edges in samples molded with narrow
punches. Moreover, Chen et al. [1] found that the disloca-
tion density within the specimen was relatively low, lending
credence to the numerical observations of the previous
paragraph.

Finally the contact stress σt , defined as σt = −σ11 at
X1 = 0, is plotted in Fig. 7 as a function of X2/w. It should
be noted that this stress does not represent the hardness of
the substrate material. For comparison, the contact stress

Fig. 6 Schematic of geometrically necessary dislocations under flat
punch
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Fig. 7 Variation of σt /σ0 with X2/w at X1 = 0 for h/w = 0.1

expected from a conventional plasticity solution is also pro-
vided in this figure by solid line. The contact stress remains
constant over the punch face in classical plasticity as well
as for the case with the wider punch. However, for the nar-
row punch, high strain gradient at the corner of the punch
leads to extremely high value of σt . While over most part of
the punch the value of contact stress is almost constant and
close to that predicted by classical plasticity, the dramatic
rise in σt at the corner of the narrow punch leads to the high
value of the molding pressure H experienced by the punch
when its width is small. As w increases the severity of the
gradient as well as of σt diminishes leading to lower H .

Conclusions

Chen et al. [1] have conducted experiments on flat punch
molding of Al substrates and shown that the characteristic
pressure H beneath the punch is much higher for narrower
punches. We have conducted numerical simulations based
on a higher order strain gradient theory to show that the
dependence of H on the punch width w can be effectively
captured. Moreover, we have demonstrated that the plastic
zone beneath a very narrow punch is significantly differ-
ent from that beneath a wide one. This difference holds the
key to explaining why a narrow punch experiences a higher
molding pressure.

In case of a punch with small width, high gradients of
plastic strain are generated at the sharp corners leading,
unlike in wider punches, to a uniform distribution of plastic
strain. However, the high plastic strain gradients (which in
turn implies the formation of a wall of edge dislocations at
the edge) also lead to large values of contact stress near the
corners and a high molding pressure H .
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