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Abstract In this paper, we revisit the plane strain deep-
drawing process. We show that a detailed analysis of the
physical process may result in a dramatic reduction of
computing time when the problem is split into several
regions undergoing well-defined loading paths. The pro-
posed approach allows us to assess the springback of the
formed sheet in a quasi-instant time and is thus suitable
in the initial design phase and provides a fast and eco-
nomical way to determine the influence of the numerous
parameters involved in sheet metal forming. We present a
semi-analytical model that has been developed for sheet
metal forming mainly subjected to plane strain bending-
under-tension and involving large strains. The sheet is con-
sidered to be an assembly of regions where the loading is
considered homogeneous in the length direction. A hand-
ful of finite elements or even a single element is sufficient
to compute the loading path followed by each region. The
contact is circumvented by constraining the kinematics with
appropriate boundary conditions and the approach is valid
for any material behavior law. The semi-analytical model
is applied to standard test cases and then compared with
full-scale simulations.
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Introduction

Sheet metal forming is a class of manufacturing processes
aiming to permanently deform a sheet metal blank into
a desired shape. Deep drawing is one of the most fre-
quently used metal forming techniques. The desired shape is
typically achieved through one or more deep drawing oper-
ations. As shown in Fig. 1, the blank is placed between the
motionless die and the mobile punch. A blank-holder is gen-
erally used to clamp the sheet with a controlled force while
the punch moves into the die. This device is used in an
attempt to prevent tearing and wrinkling defects and helps
to control the material flow. In order to increase the ten-
sion in the blank during the operation, draw beads can also
be used. After the forming phase, additional deformations
appear when the loading is removed. This phenomenon,
called springback is amplified when using high strength
materials, i.e. with a high ratio of yield strength to Young’s
modulus. The design of tools required to obtain a desired
final shape of deep drawn parts requires a precise prediction
of springback effect.

Understanding the influence of the numerous parameters
involved in such a forming process, by means of experi-
mental trials, and their subsequent analysis, is very long
and expensive. Simulations using the finite element method
(FEM) can significantly decrease the number of experimen-
tal trials as shown by Da Silva Botelho et al. [9]. Such
models are often used in the optimization of deep draw-
ing processes. Breitkopf et al. [4] shown the accuracy of
moving last square approximation in sheet metal forming
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Fig. 1 Schematic example of deep drawing device

optimization. Sun et al. [19] decreased the computational
cost by combining two models with two different fidelity
levels to construct the surface response. However, per-
forming a series of simulations of deep drawing is still
time consuming, mainly due to the friction contact, need
for refined meshes, numerous incremental steps, and slow
convergence. Thus, some alternative numerical approaches
dedicated to sheet metal forming have been developed.
The Inverse Approach [16] is a general way to compute
an approximate solution in a single step but still uses a
full-scale modeling of the sheet. For 2D plan strain deep
drawing, reduced models provide a more economical alter-
native in the initial design phase. They are generally based
on analytical or semi-analytical approaches. For instance,
Asnafi [3] proposed an analytical model to predict spring-
back in v-die air bending. Buranathiti and Cao [7] developed
an other analytical model dedicated to a straight flanging
process. Zhang et al. [20] proposed an analytical model able
to approximate springback for a U-shaped sheet. All these
analytical approaches are limited to plane strain problems
and consider a simple bending-under-tension loading type
to approximate the springback geometry. Many analytical
models of plane strain pure bending have been devel-
oped in the literature surveyed. Hill [12] proposed the first
analytical model of pure bending assuming perfectly plas-
tic behavior. Bruhns et al. [6] proposed an elastic-plastic
model with combined isotropic and kinematic hardening
law. Zhu [21] developed an other model based on power-
law-hardening. Hwang [1] took into account the plastic
anisotropy behavior of the sheet in their pure bending ana-
lytic model. Other analytical methods have been extended
to plane strain bending-under-tension that could be used for
plane strain metal forming analytical approaches. Parsa and
Nasher Al Ahkami [17] considered an elastic-work hard-
ening material in their analytical model of bending-under-
tension. More recently, Alexandrov et al. [2] proposed an
analytical model of an isotropic incompressible sheet sub-
jected to large strains bending-under-tension considering

quite an arbitrary hardening law based on Tresca yield func-
tion. However, while time-saving, those analytical models
are also more restrictive and generally limited to condi-
tions of isotropic behavior, specific elastic-plastic hardening
law, Tresca yield function, small strain assumption, no
thickness thinning, linear through-thickness strain evolu-
tion, incompressible material, no multiple reverse bending
or Bauschinger effect, etc. Semi-analytical methods are gen-
erally less restrictive. The general semi-analytical approach
developed by Pourboghrat et al. [18] consists, in a first step,
to perform a finite element simulation with a membrane
model corrected analytically, in a second step, to super-
pose bending stretches. Lee et al. [14] used this approach to
predict springback in plan strain draw bend test.

In the present work, we focus on 2D plane strain forming
process with negligible shear stresses. Many forming pro-
cesses can be considered as being in plane strain state, such
as sheet metal folding, wiping, roll bending, etc. The over-
all idea of our proposed approach is to split the domain into
a set of subdomains subjected to different states of bending
and tension loadings. The analysis of an individual domain
requires a finite element representation of a single typical
section involving thus a column of 2D/3D solid elements,
or even a single beam or shell element, whose kinemat-
ics is constrained by properly defined boundary conditions.
We thus replace a 2D model by a set of uncoupled 1D
counterparts, resulting in significant saving of CPU time.
It must be noted that the boundaries of the subdomains do
not need to be known a priori. Only the number of zones
and their respective loading path must be defined by the
user. Finally, the deformed shape after springback is recon-
structed based on the deformations of the individual sec-
tions. We thus combine an analytical approach with the full
set of possibilities offered by modern finite-element codes
(material laws, kinematics) applied to a set of small-scale
problems, while avoiding time-consuming issues such as
dealing with a high number of finite elements and modeling
friction contact.

The main steps of the present approach are reported
in Algorithm 1. In the next section, we propose a
finite element model of plane strain bending-under-tension
(B-U-T) aimed at circumventing the limitations of the
usual analytical as well as numerical (FE) methods. The
numerical bending-under-tension model is used in section
“Analytical part: from the B-U-T model to the deep drawing
model” as a basis of a semi-analytical forming model for the
assessment of deep-drawn sheet, and more specifically for
springback prediction. Finally, in section “Application of
the proposed approach”, the presented approach is applied
to two classical test cases. The predicted shapes after
springback are compared to the reference results obtained
from a complete modeling of the two considered metal
forming cases.
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Numerical part: bending-under-tension
finite element model

We consider a flat sheet submitted to bending-under-tension
loading. We propose to establish a numerical solution of this
problem, for an arbitrary behavior law, considering large
plane strain. The model should be able to impose a given
tension combined with a given bending moment or with a
given bending radius.

Figure 2 shows the initial and loaded states of the consid-
ered sheet. The sheet width Ws has to be sufficiently wide
in order to respect the plane strain assumption. Material
properties are considered homogeneous in the length direc-
tion. Flat sections perpendicular to the initial mean surface
remain flat and perpendicular to it under loading since no
shear stress is involved. Even if large strains occur, the sheet
state under such a loading theoretically remains homoge-
neous in the length direction. Its shape can be characterized
at any time by the bending angle A, the lower side radius
ra and the upper side radius rb. The radius rm corresponds
to the mean radius, whereas rn corresponds to the neutral
surface one, that is:

rn = L0

A
(1)

x

y

z

y

L 0

h0

Ws

rn
rm ra

rb
A

p

TT MM

Fig. 2 Scheme of the initial and deformed states of a sheet under finite
plane strain bending and tension loading

Following convention, the parameters A, rn, rm, ra and rb

are considered positive when the axe of bending is located
in the lower side.

Due to the length homogeneity, it is sufficient to model
only a slice of initial length l0 � L0 (Fig. 3). Knowing the
state of this slice, it is possible to deduce the complete state
of the loaded sheet. The tension is imposed in terms of mean
effort T through the slice section. The bending is controlled
in terms of a given moment M or a bending radius such as
rn, rm, ra or rb. By analogy with Eq. 1, rn is also linked
to α by:

rn = l0

α
(2)

At this point the bending-under-tension problem is fully
defined and needs to be solved using a finite element code.
The choice of the code is left free to the user and in general
case will be guided by availability of constitutive model,
finite element formulation (volume/surface) and finally the
facility of implementation and switching between different
boundary conditions (these issues are discussed in detail in
following sections) during the loading/unloading phases.

To simplify the programming of such a combined load-
ing, the tension is maintained constant when the bending
loading varies and vice versa. The loading path to be fol-
lowed is split into a sequence of loading states. All the
loading states computed in our finite element model are

L 0

h 0 h 0
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A

p

TT MM

α

p

TT MM

Fig. 3 Scheme of the initial and deformed states of a given slice of
the complete sheet
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Table 1 Loading states compatible with the developed finite element
model

Loading state 1 2 3 4 5 6 7a 8 9

Varying loading rn rm ra rb M T T T T

Constant loading T T T T T rn rm ra rb

aOnly compatible with beam, plate or shell elements

summarized in Table 1. The developed program has to be
able to automatically switch from a given loading state to
any other one at every moment in order to respect the load-
ing sequence given by the user. This is done by updating the
boundary conditions depending on the type of elements and
the type of the next loading state. In addition, the final fields
of a given loading state are taken to be the initial fields for
the next loading state.

For the loading states 1 to 6 and a model using 1D
plane strain elements (plane strain breams), the considered
set of boundary conditions is shown in Fig. 4. The bound-
ary conditions noted B.C.a and B.C.d allow to impose a
given bending angle α. The boundary condition B.C.b cor-
responds to a distributed force equivalent to the contact
pressure that would occur when the sheet is bent in tension
around a cylinder. Finally, the boundary condition B.C.c
simply corresponds to horizontal component of the tensile
force T to impose. The detail of each boundary condition is
given in Table 2.

Considering Eq. 2, the bending angle α is directly linked
at any time to the neutral surface radius rn by:

α = l0

rn
(3)

Thus, if one needs to vary rn (loading state 1) or to keep
it constant (loading state 6), the corresponding angle α to be
imposed is determined from Eq. 3. If the bending loading
has to reach a given value of rm (loading state 2), the same
set of boundary conditions is used with a progressive mod-
ification of α until the desired value of rm is reached. The
same approach is used to reach a given value of M (loading
state 5) as well as for ra and rb (loading states 3 and 4).

When rm, ra or rb has to remain constant while T varies,
another set of boundary conditions is imposed as shown

x

α

l0

Fig. 4 Configuration of the boundary conditions for 1D plane strain
elements in the case of loading states 1 to 6

Table 2 Details of the boundary conditions for 1D plane strain
elements

B.C.a Fully fixed node in both x and y directions,

with a non zero angle of rotation about z set to α/2

B.C.b Nodal force field (considering n the number of nodes

and X(Ni) the initial horizontal position of node

Ni ):

Fx(Ni) = αT

n
sin

(
αX(Ni)

2l0

)
;

Fy(Ni) = αT

n
cos

(
αX(Ni)

2l0

)
.

B.C.c Horizontal tensile force corresponding to

Fx = T cos
(α

2

)
B.C.d Zero vertical displacement and constrained

rotation set to −α/2.

B.C.e Rotation of α/2 about z direction.

B.C.f Nodal displacement field ensuring the desired value

of rm:

Ux(Ni ) = rm

[
sin

(
αX(Ni)

l0
− α

2

)
+ sin

(α
2

)]
−X(Ni);

Uy(Ni ) = rm

[
cos

(
αX(Ni)

l0
− α

2

)
− cos

(α
2

)]
.

For the states 8 and 9, one can simply consider

rm = ra + h0

2
and rm = rb − h0

2
.

B.C.g Rotation of −α/2 about z direction.

in Fig. 5. This time, all displacement degrees-of-freedom
are controlled though B.C.f to ensure the desired bending
radius. Furthermore, B.C.e and B.C.f ensure the homo-
geneity of the bending moment on each side. The desired
value of tensile force is indirectly reached by progressively
changing the value of α.

The described boundary conditions are dedicated to 1D
plane strain model. If the slice is modeled with 2D plane
strain elements, the boundary conditions corresponding to
loading states 1 to 6 are given in Fig. 6 and detailed in
Table 3. The boundary condition B.C.a allows us to impose
the bending angle α through a linear relation on displace-
ments. To ensure the planarity of the other side, an equal-
ity of horizontal displacement condition B.C.b is imposed

Fig. 5 Configuration of the boundary conditions for 1D plane strain
elements in the case of loading states 7, 8 and 9
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Fig. 6 Configuration of the boundary conditions for 2D plane strain
elements in the case of loading states 1 to 6

between all the nodes of the face. In addition, the tensile
force is uniformly distributed on the same set of nodes
through B.C.c. Again, the force field B.C.e imposed on the
lower or upper side corresponds to normal contact reactions.
By default we select the lower surface if αT > 0 and vice
versa, which orients the force field toward the slice. Finally,
zero vertical displacement is prescribed on the lower right
corner node in order to avoid any rigid body movements,
especially when α is close or equal to 0.

When ra or rb has to remain constant, boundary condi-
tions are switched to the ones shown in Fig. 7. To maintain
ra (respectively rb) constant, the lower (upper) surface dis-
placements will be fully controlled through the boundary
condition B.C.g (B.C.i). The horizontal displacement da

(respectively db) imposed through B.C.f (B.C.h) to the right
side is directly linked to α and the radius ra (rb). The
desired value of the tensile force is indirectly reached by
progressively changing the value of α. Finally, the corrective
weighting δ used in boundary conditions B.C.h and B.C.i
aims to maintain Uy(N0) close to 0. It corresponds to the
thinning rb − ra − h0 measured at the end of the previ-
ous step. Thus, large vertical displacements will be avoided
while switching from the loading state reference 9 to an
other one.

If 3D solid or solid-shell elements are preferred, the same
type of boundary conditions as those given for 2D plan
strain elements can be used. Only additional fixed displace-
ments to respect the plane strain state are needed in direction
z on each node Ni belonging to the front and rear sides.
Likewise, boundary conditions established for 1D plane
strain elements can be used on a 2D plate or shell element
type with additional symmetry conditions on the front and
rear sides. So far, the slice width w0 was assumed to be the
same as the sheet width W0. If w0 �= W0, the tensile force
and bending moment applied to the slice must naturally be
reduced by a factor of W0/w0.

Table 3 Details of the boundary conditions for 2D plane strain
elements

B.C.a Linear relation between Ux and Uy:

Ux(Ni) =
[
h0

2
− Y(Ni)− Uy(Ni)

]
tanα

where Y(Ni) is the initial vertical position of node Ni .

B.C.b Horizontal displacement equality between all nodes

of the considered boundary: Ux(Ni ) = Ux(Nj ).

B.C.c Tensile forces T uniformly distributed:

Fx(Ni ) = T /n1

where n1 is the number of nodes on the left side.

B.C.d Vertical zero displacement on one single node N0

to avoid any rigid body movements.

B.C.e Nodal force field (considering n2 the number

of nodes on the bottom surface and X(Ni) the

initial horizontal position of node Ni ):

Fx(Ni ) = αT

n2
sin

(
αX(Ni)

l0

)
;

Fy(Ni ) = αT

n2
cos

(
αX(Ni)

l0

)
.

If needed, this force field can be imposed on

the upper surface instead of the lower one.

B.C.f Horizontal displacement da imposed on the left side:

Ux(Ni) = da =
(
ra + h0

2

)
tanα − l0.

B.C.g Nodal displacement field ensuring the desired value of ra:

Ux(Ni) = ra sin

(
αX(Ni)

l0

)
−X(Ni)+ da;

Uy(Ni) = ra

[
cos

(
αX(Ni)

l0

)
− 1

]
.

B.C.h Horizontal displacement db imposed on the left side:

Ux(Ni) = db =
(
rb − h0

2
− δ

)
tanα − l0

where δ corresponds to the thinning rb − ra − h0

measured at the end of the previous step.

B.C.i Nodal displacement field ensuring the desired value of rb:

Ux(Ni) = rb sin

(
αX(Ni)

l0

)
−X(Ni)+ db;

Uy(Ni) = rb

[
cos

(
αX(Ni)

l0

)
− 1

]
− δ.

Regardless of its type, a single element is sufficient in the
length direction x (as well as in width direction z if applica-
ble) by taking l0 � L0. Such a configuration may be seen
as a reduction of the dimensionality of the model, since the
3D/2D model is transformed into a 2D/1D model. In the y
direction, n solid elements are needed across the thickness
or even a single element if a beam, plate or shell is selected.
In all cases, the number of elements is greatly decreased.
Consequently, the computation time is significantly reduced
compared to a finely meshed complete model of length L0,
while the accuracy remains the same for a given type and
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Fig. 7 Configuration of the boundary conditions for 2D plane strain
elements in the case of loading states 8 and 9

size of elements due to homogeneity of local kinematics in
the length direction.

Analytical part: from the B-U-T model to the deep
drawing model

The model reduction approach is composed of three main
steps as described below. The first step consists of identi-
fying the number of regions constituting the formed sheet
where the loading can be assumed as homogeneous in the
length direction. We note that only the number of regions
has to be identified here and that their size is irrelevant at
this stage.

Then, the loading path associated to each region is estab-
lished at the second step. This loading paths are applied

Fig. 8 Geometrical parameters considered for the U-shaped sheet

thanks to the bending-under-tension model which oper-
ates at a single section at a time, as described in the
previous paragraph.

Finally, the whole model is integrated and the springback
shape is reconstructed at the last step of this approach.

To illustrate each step, a standard U-shaped sheet [15]
is taken as an example. Figure 8 shows the geometrical
parameters considered from this point on.

First step: identification of homogeneous regions

The first step consists of identifying on the expected profile,
the number of regions where loading path can be assumed
as homogeneous in the length direction. This type of reduc-
tion has already been used in other analytical approaches
(e.g. Zhang et al. [20]). For the U-shaped sheet, we consider
five regions as shown in Fig. 9. Due to symmetry, only one

+ + + +

l0

h 05×

Fig. 9 Schematic representation of the five homogeneous regions
considered for the U-shaped sheet, and the five corresponding slices.
Actual springback shape does not need to be known in advance, neither
the initial length of each considered region
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half of the profile is shown. Note that the actual shape of
the deformed sheet does not need to be known in advance.
The actual size and shape of each considered region will

Fig. 10 Loading states of each considered slice occurring during the
forming phase (from time t0 to time t3)

be determined later, in the reconstruction step of the
present approach.

Second step: loading path

The loading path prediction is of major importance since
it has a significant impact on the result. The loading states
occurring during the forming phase of the U-shaped exam-
ple are given in Fig. 10.

In many cases, the plastic strains occurring in the first
region (the one located under the blank-holder) can be
neglected. Then, its final shape is the same as the initial
one, regardless of the loading path. This assumption is made
for the U-shaped example, thus only slices 2 to 5 need to
be modeled. Table 4 summarizes the considered loading
sequence of each slice to model. The times t4 and t5 corre-
spond to the springback phase, that is a zero tensile force
and a zero bending moment. During the forming phase , all
slices to be modeled are submitted to non zero tensile forces,
T2 to T5, the values of which need to be determined.

The blank-holder acting on the first region will generate
the main part of the tensile loading transmitted to regions
2 to 5. Assuming a Coulomb friction, the tensile force gen-
erated in the sheet due to friction with the blank-holder
corresponds to:

T0 = μFb (4)

where μ is the friction coefficient and Fb the blank-holder
force.

Table 4 Loading sequences considered for the U-shaped sheet

Time t1 t2 t3 t4 t5

Loading sequence for the slice 2

Loading state 6 3 8 5

Varying loading T = T2 ra = rd T = 0 M = 0

Constant loading rn = ∞ T = T2 ra = rd T = 0

Loading sequence for the slice 3

Loading state 6 3 2 6 5

Varying loading T = T3 ra = rd rn = ∞ T = 0 M = 0

Constant loading rn = ∞ T = T3 T = T3 rn = ∞ T = 0

Loading sequence for the slice 4

Loading state 6 4 9 5

Varying loading T = T4 rb = −rp T = 0 M = 0

Constant loading rn = ∞ T = T4 rb = −rp T = 0

Loading sequence for the slice 5

Loading state 6 6

Varying loading T = T5 T = 0

Constant loading rn = ∞ rn = ∞



228 Int J Mater Form (2014) 7:221–232

The same tensile force is generated by friction between
the first region and the die. Thus, the total tensile force
induced by the blank-holder is given by:

T1 = 2T0 (5)

The region 2 is bent around the die radius rd. As intro-
duced in bending under tension tests by [10], exponential
friction occurs in this region and the tensile force reached in
region 3 is approximately given by:

T3 = T1 × eμπ/2 (6)

The tensile loading considered for region 2 will be simply
taken as the average of regions 1 and 3:

T2 = T1 + T3

2
(7)

In addition to the tension T3, the region 3 will be bent
with a curvature radius rd, then unbent along the die side-
wall. The region 4 will go through the same type of loading
as region 2 with the tension T4 = T3 and a negative bend-
ing radius corresponding to the punch radius rp. Finally the
bending of region 5 will be neglected and only the tension
will be considered that is T5 = T3.

Last step: reconstruction of the global shape
after springback

At first, the initial length L0 of each region has to be
determined from the state corresponding to the end of the
loading phase (time t1) just before the springback phase
(completed at t2). For curved regions at t1 of angle A(t1),
L0 corresponds to:

L0 = A(t1) · rn(t1) = A(t1)
l0

α(t1)
(8)

For the U-shaped example, only regions 2 and 4 are
curved at t1 with angles A(t1) = π

2 and A(t1) = −π
2 respec-

tively. For flat regions at t1 of elongation corresponding to
d(t1), the initial length is given by:

L0 = L(t1)
l0

l0 + d(t1)
(9)

For the concerned regions 3 and 5, the values of L(t1)
are taken as L(t1) = s − h0 − rp − rd and L(t1) = Wp

2 − rp

respectively.
Then the final angle A(t2) for curved regions after

springback and the final length L(t2) for flat ones can be
determined as:

A(t2) = L0
α(t2)

l0
(10)

L(t2) = L0
l0 + d(t2)

l0
(11)

Only region 5 of the U-shaped sheet is flat at t2 while
regions 2, 3 and 4 are curved. For these curved regions,
we finally need to extract rm(t2) in order to reconstruct

the whole springback profile. The remaining length of the
region 1 will be deduced from the other regions by subtract-
ing their initial lengths from the total initial sheet length
Ls (Fig. 8).

Application of the proposed approach

U-shaped sheet

As a first test case, we apply the proposed approach to
the example of the U-shaped sheet discussed above. The
bending-under-tension model was programmed using the
implicit finite element software Code Aster [8] with large
strain formulation. The mechanical behavior of the blank is
considered as simply isotropic elastic-plastic with a linear
kinematic hardening based on the von Mises criteria. The
material properties as well as the geometrical and loading
parameters are listed in Table 5. A friction coefficient of
0.15 was taken into account between the blank and the tools
considered as being rigid.

Each slice was modeled with a single shell element
(Discrete Kirchhoff Quadrangle formulation). Its dimen-
sions were set to l0 = 1 mm and w0 = 1 mm. In the
thickness direction, 10 integration points were used. In order
to assess the accuracy of the reduced model, a compari-
son was made with the result obtained from a complete
deep drawing simulation performed in dynamic explicit
mode by the finite element software LS-DYNA [11], using
Belytschko–Tsay shell element formulation and 10 through
thickness integration points with the same behavior law and
parameters (5). Both predicted shapes after springback are
reported on Fig. 11. A moderate shift is observed on the
reduced model shape compared to the complete modeling
taken as reference.

Table 5 U-shaped sheet geometrical parameters and material prop-
erties (for isotropic elastic-plastic material with a linear kinematic
hardening based on the von Mises criteria)

Geometry Material

Ls 300 mm E 70.5 GPa

h0 0.8 mm ν 0.342

Ws 1 m ρ 2700 kg/m3

Wp 60 mm σy 180 MPa

rp 10 mm H 1.5 GPa

Wd 62 mm

rd 10 mm

Loading Contact

Fb 300 kN μ 0.15

s 60 mm
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Fig. 11 Comparison of the predicted shape after springback for the
U-shaped sheet

Fig. 12 Detail of the springback parameters on a schematic U-channel
profile

Table 6 Springback parameters predicted by the proposed approach
compared to the reference result

Model θ1 ρ θ2

Reference model 98.88° 295.8 mm 90.71°

Reduced model 101.14° 232.8 mm 91.9°

Difference 2.28 % 21.3 % 1.31 %

x

y

rp

r
d1

rd2

h
0

L s / 2

s

0 x 27
27 x 40 .2
40 .2 x 60

Fig. 13 Finite element mesh and geometrical parameters of the
reference model of cylindrical bending

To quantify this difference, springback parameters were
measured as defined in Fig. 12. These measures are reported
in Table 6. The radius of curvature ρ presents the main dif-
ference, exceeding 20 %, which is not that obvious on the
graphic representation, especially because sidewall curl is
moderate in the present case. The two springback angles
θ1 and θ2 are relatively attained with a maximum error
of 2.28 %.

Unconstrained cylindrical bending

The second example consists of cylindrical bending with-
out any blank-holders. This deep drawing test was initially
proposed at Numisheet 2002, benchmark B problem [5].
Code Aster was used to compute both the reference and
the reduced model. This time, 8 node 2D plane strain

Table 7 Cylindrical bending geometrical parameters and material
properties

Geometry Material

Ls 120 mm E 70.5 GPa

h0 1 mm ν 0.342

rp 23.5 mm ρ 2700 kg/m3

rd1 4 mm σy 194 MPa

rd2 29 mm K 550.4 GPa

n 0.223

Loading Contact

s 28.5 mm μ 0.1342
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x

l0

h0

Fig. 14 Finite element mesh of a reduced model slice constituted of a
single column of 5 elements

Table 8 Loading sequence imposed to the slice of the reduced model

Time t1 t2

Loading state 3 5

Varying loading ra = −rp M = 0

Constant Loading T = 0 T = 0

θ/ 2

Fig. 15 Definition of the blank angle θ needed at t1 and t2
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Fig. 16 Comparison of the predicted shape after springback of the
bent sheet

Table 9 Springback parameters predicted by the proposed approach
compared to the reference result

Model θ(t2)

Reference model 54.28°

Reduced model 56.94°

Difference 4.9 %

quadratic elements were selected for each modeled slice.
The isotropic elastic-plastic blank, with Hollomon’s hard-
ening law based on the von Mises criteria, is the same as
in [13]. The mesh used for the reference model is shown in
Fig. 13. The corresponding data and geometric parameters
are listed in Table 7.

In the reduced model, only the region in contact with the
punch needs to be modeled. As for the reference model,
5 elements were used through the thickness with the same
length that is l0 = 0.54 mm (Fig. 14). The 2 extremities are
assumed to remain flat during the whole process while the
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At the end of the forming phase

After springback

Fig. 17 Reduced model stress evolutions through the thickness
expressed in the local basis and centered on the mean surface
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Fig. 18 Punch force versus
displacement and deformed
shape at the beginning of the
unloading phase
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center region is bent with a upper radius rb = −rp and then
unloaded that is M = 0. No any tensile force is taken into
account. The loading sequence is summarized in Table 8.

For the reconstruction step of the shape after spring-
back, one needs to know the bending angle A(t1) which
corresponds to:

A(t1) = θ(t1)− π (12)

where θ(t1) is the angle formed by the blank (Fig. 15) when
the punch reaches the depth s and can be approximated by:

θ(t1) = 2 ·
⎡
⎢⎣ arctan

(
rp + h0 + rd1 − s

rd1 + rd2

)

+ arccos

⎛
⎜⎝ rp + h0 + rd1√

(rp + h0 + rd1 − s)2 + (rd1 + rd2)2

⎞
⎟⎠

⎤
⎥⎦

(13)

By applying this relation to the present case, we find that
θ(t1) � 21.31°. Knowing A(t1) from θ(t1), the relations
(8) and (10) are successively used to finally determine the
springback shape and its characterizing angle:

θ(t2) = π + A(t2) (14)

The deformed shape predicted by the proposed semi-
analytical model as well as the one given by the reference
model are shown in Fig. 16. The angle θ(t2) formed by the
2 straight sides of the sheet after release is higher for the
reduced model than the reference one. The predicted val-
ues, varying by 4.9 % between the 2 versions, are reported
in Table 9.

Since the reduced model involves a negligible comput-
ing time, the number of elements across the thickness was
changed from 5 to 200 without falling into prohibitive CPU
time. The stress evolutions given by the reduced model with
200 elements are shown in Fig. 17, at the end of the forming
phase and after springback. The springback angle decreased

slightly to reach 56.89°. The same mesh refinement was not
applied to the reference model due to the prohibitive com-
puting time involved. But since the reduced model shows a
very low variation, one can make a reasonably assumption
that 5 elements in the thickness direction are sufficient in
both cases.

The analysis of the reference model indicates that a gap
appears at the beginning of the unloading phase, between
the punch and the blank as shown in Fig. 18. The load-
ing path becomes slightly different from the one assumed
for the reduced model. It can be shown that this is the
main source of error. Indeed, if the 2 first nodes in contact
between the punch and the blank are merged to avoid any
gap formation, then the springback angle increases to 56.64°
while the difference with the reduced model decreases to
0.5 %.

Conclusions and perspectives

The proposed numerical model of bending-under-tension
allows us to determine the mechanical state of a bent sheet
with a possibly additional tension assuming a plane strain
state. Due to the limited number of elements needed, the
simulations are completed in a short computation time.
Moreover, this numerical model presents some advantages
compared to analytical ones. Indeed, one can directly
use any material behavior laws already present in legacy
finite element codes, unlike analytical approaches that
are mainly based on simplified mechanical behavior with
assumption of incompressibility. Analytical approaches are
also frequently limited to small strains and to a sin-
gle bending-unbending cycle, while the proposed semi-
analytical approach allows us to perform several cycles
with large strains. This numerical bending-under-tension
model is also independent of the geometry of the considered
deep-drawn part.

The B-U-T model is able to automatically switch
between the appropriate boundary conditions in order to
respect the selected loading path. Hence, the semi-analytical
deep-drawing approach has the advantage that no any
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description of the boundary conditions has not to be re-
developed for each geometry. In the given test cases, a lim-
ited error is naturally observed in comparison with reference
models. This error is mainly explained by shear stresses
which are neglected as well as by loading paths which are
simplified and considered to be homogeneous in each region
constituting the formed sheet. Thus, in order to validate or
refine the results given by the reduced model approach, a
complete simulation should be performed. This approach
could also be used to optimize the deep drawing process
with various methods combined to the reduced model pro-
posed in this paper. As shown for the cylindrical bending
example, the model provides a simple alternative way to
determine the number of elements or through-thickness
integration points needed for a full-scale simulation.

The semi-analytical approach of plane strain deep draw-
ing based on the numerical B-U-T model constitutes an
attractive alternative tool to assess springback. It can also
be used in to assess the evolution of the various fields after
springback or during the whole operation versus the input
parameters, in a short computation time. For a typical plane
strain deep drawing, we have reduced the computation time
by two orders of magnitude. Thus, this approach opens the
way to perform stochastic analysis by Monte-Carlo type
approaches and this is the subject of the undergoing work.

Furthermore, if the width of the blank is small compared
to its thickness, a plane stress condition may occur. In such
a situation, the bending-under-tension model may still be
used with few modifications to switch from plane strain to
plane stress condition. Sections other than rectangular are
also possible, since the steps of the reduced model approach
remaining the same.

Finally, for future work, the proposed approach could
be used to develop a reduced model of draw-bead for
optimization purposes within limited design time. This
approach may also be used for flattener processes as well
as sheet metal folding, wiping, roll bending and other plane
strain forming cases, assuming a complex visco-elastic-
plastic behavior, with damage evolution and/or involving
anisotropic properties. Some improvements to take into
account a combined shear stress or a biaxial bending-under-
tension load will also permit us to extend the scope of
this approach and to decrease the error as compared to a
complete simulation.
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