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Abstract The current work involves both modeling and
optimization approaches to achieve minimum spring-back
in V-die bending process of heat treated CK67 sheets. Num-
ber of 36 experimental tests have been conducted with
various levels of sheet orientation, punch tip radius and
sheet thickness. Firstly, various predictive models based on
statistical analysis, back-propagation neural network
(BPNN), counter propagation neural network (CPNN) and
radial basis function network (RBFNN) have been devel-
oped using experimental observations. Then the accuracy of
the developed models has been compared based on values of
mean absolute error (MAE), and root mean square error
(RMSE). Secondly, the model with lowest values of MAE,
and RMSE has been applied as objective function for opti-
mization of process using imperialist competitive algorithm
(ICA). After selection of optimal bending parameters, a
confirmation test has been conducted to prove the optimal
solutions. Results indicated that the radial basis network
fulfills precise prediction of process rather than the other
developed models. Also, confirmation tests proved that both
RBFNN and ICA could predict and optimize the process
vigorously.
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Introduction

Sheet metal bending process is one of the most widely
applied sheet metal forming operations. In this process, lack

of dimension precision is a major concern due to the con-
siderable elastic recovery during unloading. This phenome-
non is called spring-back. Also, under certain conditions, the
final bending angle may be smaller than the original angle.
Such a bending angle is referred to as negative spring-back.
The amount of spring-back is influenced by various factors,
such as tool shape and dimension, contact friction condition,
material properties, sheet orientation, and sheet thickness
[1–4]. Figure 1 shows the spring-back and negative spring-
back with respect to original bending angle.

During the past two decades, a number of researchers
have investigated and attempted to obtain a basic under-
standing of spring-back behavior using numerical and ex-
perimental methods. Tekiner [5] examined the effect of
bending angle on spring-back of six types of materials with
different thicknesses in V-die bending. Moon et al. [6]
experimentally showed the effect of combined hot die and
cold punch on reduction of spring-back of aluminum sheets.
Li et al. [7] showed that the accuracy of spring-back simu-
lation is directly affected by the material-hardening model.
In addition, Cho et al. [8] have carried out numerical studies
on the effects of some parameters such as punch and die
corner radii, punch-die clearance, and coefficient of friction
on spring-back in U-die bending process. Gomes et al. [9]
simulated material models based on various anisotropic
models and compared their results with the experimental
outcomes to show the variation of spring-back with the
orientation of anisotropic sheet in U-die bending process.

The disadvantage of the previous simulation modeling is
that the modeling cannot be done without considering some
simplifying assumptions. Artificial neural networks as non-
linear modeling technique are suitable for model-based su-
pervision of uncertain systems. A neural network model can
be developed by using the experimental data without having
to make any simplifying assumption. Instead, it needs suf-
ficient input–output data.
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The neural networks have been widely used for map-
ping input and output parameters of the bending pro-
cesses. Bozdemir and Golsu [10] predicted the spring-
back angle when the input parameters were the sheet
material, bending angle, and the ratio of punch tip
radius to sheet thickness. Liu et al. [11] developed the
prediction model of spring-back in the typical U-shaped
bending by using the integrated neural network genetic
algorithm. Ruffini and Cao [12] developed a neural
network control system for spring-back reduction in a
channel section stamping process of aluminum. Pathak
et al. [13] proposed a model for prediction of the
responses of the sheet metal bending process using an
artificial neural network. The model was trained, based
on the results of 44 cases analyzed using the finite
element technique. Forcellese and Gabriella [14] inves-
tigated the effect of the training set size and the number
of input parameters on the predictive capability of a
neural-network-based control system for spring-back
compensation in air bending. Inamdar et al. [15] dis-
cussed the development of an artificial neural network
which was used to predict the spring-back in an air V-
bending process. Viswanathan et al. [16] used a neural
network control system along with a stepped binder
force trajectory, to control the spring-back angle in a
steel channel forming process. Cao et al. [17] demon-
strated the exceptional ability of a neural network along
with a stepped binder force trajectory to control spring-
back angle and maximum principal strain in a simulated
channel forming process. Kazan et al. [18] developed a
predictive model of spring-back by neural network,
based on data obtained from finite element analysis. In
the previous paper by the authors [19], finite element
method (FEM) was used to study the effects of sheet
thickness, sheet orientation and punch tip radius on
spring-back in V-die bending process of CK67 steel
sheet.

The imperialist competitive algorithm (ICA) is one of
the recent meta-heuristic optimization techniques. This
novel optimization method was developed based on a
socio-politically motivated strategy. The ICA is a multi-

agent algorithm in which each agent is a country and
can be either a colony or an imperialist. This algorithm
proposed by Atashpaz-Gargari et al. [20, 21]. Kaveh
and Talatahari [22, 23] improved the ICA by defining
two new movement steps and investigated the perfor-
mance of this algorithm to optimize the design of skel-
etal structures and engineering optimization problems.
Due to novelty of this algorithm, there is not certain
publication which used ICA in optimization of manu-
facturing processes.

Although neural network was used most commonly
in modeling of spring-back, but all the developed mod-
els were simple networks such as back-propagation net-
work. In present work, various predictive models
namely regression analysis, back-propagation network,
counter-propagation network and radial basis network
are developed to estimate spring-back of CK67 sheet.
Then, the accuracy of each model is compared with
others to find most accurate model which can predict
the bending process precisely. Afterward, the most ac-
curate model is associated with imperialist competitive
algorithm to minimize the spring-back in V bending
process. Due to novelty of ICA algorithm and genera-
tion of various neural models, this work can be intro-
duced as new approach for improvement of bending
process.

Principles of spring-back

Figure 1(a) illustrates the stress distribution on the sheet in
the bending process before the unloading stage which brings
about the spring-back phenomenon.

During the bending process of sheet metals, regard-
less of stiffness level of material, the regions far from
the neutral axis undergo plastic deformation, while it
always remains a band around the neutral axis which is
still in elastic zone. The material on the punch side is
under compressive stresses, whereas the material on the
die side is under tensile stresses. As a result of the
stress distribution, the material in the compressive zone

Fig. 1 Bending process, a before unloading the punch, b spring-back phenomenon, c negative spring-back phenomenon [4]
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tries to enlarge and the material in the tension zone
tries to shrink owing to the existence of elastic band
through the sheet thickness. Consequently, the material
in the bending area tries to spring-back and the bended
workpiece slightly opens as shown in Fig. 1(b) [4].

Under certain circumstances, however, the final bending
angle might be smaller than original one (die angle). Such a
phenomenon which is referred to as negative spring-
back (Fig. 1c) originates from another similar reason.
Thiprakmas and Rojananan [4] examined the occurrence
of reversed bending. They discussed material flow anal-
ysis and explained theoretical reasons of the occurrence
of the negative spring-back phenomenon. The reversed
bending phenomenon generated reversed stress distribu-
tion compared with the bend zone; therefore, the tensile
and compressive stresses were generated on the punch
and die side respectively. The difference of material
flow characteristics in various angular bending radii
caused the different stress distribution and also different
amounts of reversed stress in the sheet. Hence, when
the generated stresses in the bend zone suppressed the
generated stresses in the reversed bending zone, the
spring-back phenomenon occurred. In contrast, when
the generated stresses in the reversed bending zone
suppressed the generated stresses in the bend zone, the
negative spring-back phenomenon occurred.

Experimental procedure

To characterize the material properties and orientation,
different specimens of 25×100 mm CK67 steel sheets
were cut at different orientations to the rolling directions
(0°, 45°, 90°). Tensile specimens were used to deter-
mine the stress–strain curves and the sheet orientation
parameters, r-values [24]. Moreover, rectangular speci-
mens (40×120 mm) cut from the same sheets were used
in the die bending experiments.

During the bending tests, the sheets with thicknesses 0.5,
0.7, and 1 mm were examined. A universal Denison Mayes
Group (DMG) testing machine with a capacity of 600 kN was
used for the experiments.

The plastic properties of rolled sheets vary in the through-
thickness direction, normal orientation, and also vary with
orientation in the plane of the sheet, planar orientation. At a
given angle, θ, to the rolling direction, the sheet orientation is
defined by the plastic strain ratio, r-value [25], which is:

rθ ¼ "w
"t

ð1Þ

where εw and εt are the width and thickness strains of a
uniaxial tension specimen cut at an angle, θ, to the rolling

direction, respectively. It should be noted that for thin sheets, it
is difficult to measure the thickness strain. It is concluded from
the constancy of volume that:

rθ ¼ �"w
"1 þ "w

ð2Þ

where, ε10 ln (l/l0) and εw0 ln (w/w0). Thus:

rθ ¼ � ln w w0=ð Þ
ln w0l0 wl=ð Þ ð3Þ

Fig. 2 shows the schematic of the V-die set. It contains a
die and a punch with 60o bend angle. Alternative punches
with different tip radiuses 2, 3, 4, and 5 mm were used to
investigate the effect of the punch tip radius. The die set was
made of St-52 steel. To install the die set on the machine, a
shoe set with 130 mm guide pillars was used. The tests were
performed at a constant velocity. After placing the blank on
the die, the upper shoe, which was attached to the ram of the
machine, moved against the lower shoe.

The bending process was divided into two stages. In
the loading stage the punch moved down until its stroke
reached to a specific value, 34.6 mm. In the unloading
stage, the punch moved up. The number of 36 experi-
ments was repeated for various bending parameters. An
optical profile projector, Baty R14, was used to measure
the bend angles. Experimental results are listed in
Table 1.

Intelligent predictive models

This section is allocated to definition of predictive
models which have been used for prediction of
spring-back. As mentioned above, intelligent predictive
models are back-propagation neural network, counter-
propagation neural network and radial basis function
network.

Fig. 2 V-die bending set
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Back-propagation neural network (BPNN)

Using of neural network is fashionable in telecommunication,
signal processing, pattern recognition, prediction, automated
control and economical analysis. BPNN has been adopted in
literatures due to its accuracy and fast response. The BP
structure consists of an input layer, some hidden layers and
an output layer. In this structure neurons are connected to each
other by some weighted links. The information from input

layer is mapped to output layer through one or more hidden
layers. The relationship between input–output of a single node
can be written as follow [26]:

ak ¼ f Wkipi þ bkð Þ ð4Þ

where ak is the value of node output, Wki is the weight
connection between inputs and nodes, pi is the output of
pervious nodes in their hidden layer, bk is the bias value of
current layer, and f is transfer function. Generally the transfer
functions selected for hidden layers are log-sigmoid, Eq. 5, or
hyperbolic tan-sigmoid, Eq. 6. And also for the output layer
the linear function is recommended [26].

f ðnÞ ¼ 1

1þ e�n
ð5Þ

f ðnÞ ¼ en � e�n

en þ e�n
ð6Þ

A feed forward back-Propagation neural network
(BPNN) includes two main stage namely feed forward stage
and back-propagation stage. In the first stage (feed forward
stage) the network is trained by using of inputs and some
weighted links, then outputs are calculated. Hereafter the
network’s outputs are compared with real outputs and the
errors are evaluated. The second stage (back-propagation
stage) inspects the value of mean square error (MSE),
Eq. 7. At this stage, if the value of MSE is acceptable,
training is stopped and the network reaches to its desired
weight vectors. Otherwise, if the MSE is not acceptable, the
back-propagation algorithm updates pervious weight matri-
ces and generates new ones until it achieves to eligible
MSE.

MSE ¼ 1

N

XN
k¼1

tk � akð Þ2 ð7Þ

where N is the whole number of training samples, tk is the
real target value, and ak is the output value of the network. A
learning rate is an important factor which controls the train-
ing schedule to reach in global minimum of MSE consider
to the lowest training time.

Counter-propagation neural network (CPNN)

The counter-propagation neural network developed by
Nielsen [27] is a combination of a portion of the Kohonen
self-organizing map and the output layer. The architecture of
the CPNN is the same as that of the BP network. The net
consists of three layers: input layer, cluster layer (Kohonen

Table 1 Experimental results

No Inputs Output

Sheet
thickness (mm)

Sheet
orientation (deg.)

Punch tip
radius (mm)

Spring-back
(deg.)

1 0.5 0 2 −4.8

2 0.5 0 3 −1

3 0.5 0 4 +0.8

4 0.5 0 5 +2.8

5 0.5 45 2 −7

6 0.5 45 3 −0.5

7 0.5 45 4 +1.5

8 0.5 45 5 +3.2

9 0.5 90 2 −7.2

10 0.5 90 3 −0.8

11 0.5 90 4 +1.5

12 0.5 90 5 +3.5

13 0.7 0 2 −5.5

14 0.7 0 3 −2.5

15 0.7 0 4 0

16 0.7 0 5 +1.1

17 0.7 45 2 −6

18 0.7 45 3 −3.5

19 0.7 45 4 +1

20 0.7 45 5 +2

21 0.7 90 2 −6

22 0.7 90 3 −3.5

23 0.7 90 4 +1.4

24 0.7 90 5 +2.5

25 1 0 2 −2.5

26 1 0 3 0

27 1 0 4 +0.3

28 1 0 5 +0.6

29 1 45 2 −2.5

30 1 45 3 +0.2

31 1 45 4 +0.7

32 1 45 5 +1.2

33 1 90 2 −2

34 1 90 3 +0.8

35 1 90 4 +1.2

36 1 90 5 +1.7
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layer) and output layer (Grossberg layer). The training pro-
cedure for the CPNN comprises two steps. First, an input
vector is presented to the input node. The nodes in the
cluster layer then compete (winner-take-all) for the right to
learn the input vector. The weights of the network are
adjusted automatically during the learning process. Unsu-
pervised learning is used in this step to cluster the input
vector as separate distinct clusters of input data. Second, the
weight vectors between the cluster and output layers are
adjusted using supervised learning to reduce the errors be-
tween the CPNN outputs and the corresponding desired
target outputs [28].

During the first step, the Euclidean distance between the
input and weight vectors is calculated. The winner node is
selected based on comparing the input vectorX=(x1, x2, . . ., xn)

T

and the weight vectors vij=(v1j,v2j, . . ., vnj)
T . The winning node

zJ has the weight vector wJk=(wJ1,wJ2, . . ., wJp)
T, winner-take-

all operation that permits cluster node J to be the most similar to
the input vector. The weights of the cluster node J are adjusted.
The weight vector of the winner is updated according to the
following equation:

vnewiJ ¼ voldiJ þ a xi � voldiJ
� � ð8Þ

where α denotes the learning rate and xi represents the ith node
of input layer.

After training the weights from the input layer to the
cluster layer, the weights from the cluster layer to output
layer are trained. Each training pattern inputs the input layer,
and the associated target vector is presented to the output
layer. The competitive signal is a binary variable, assuming
a value of 1 for the winning node and a value of 0 for other
nodes of the cluster layer. Each output node k has a calcu-
lated input signal wJk and target output yk. The weights
between the winning cluster node and the output layer nodes
are updated as follows:

wnew
Jk ¼ wold

Jk þ b yk � wold
Jk

� � ð9Þ

where wJk denotes the weights from the cluster layer to
output layer, and β represents the learning rate. The com-
petitive signal of cluster layer zj is computed by:

zj ¼ 1 if j ¼ J
0 otherwise

�
ð10Þ

where J is winning node.
And the kth output of CPNN is given by:

byk ¼ Xm
j¼1

wjkzj ð11Þ

where m is the number of neurons in hidden layer.

Termination criterion may either be the number of cycles,
or mean square error (MSE) which is defined as:

MSE ¼ 1

2pG

XG
t¼1

Xp
k¼1

ðŷk � ykÞ2t ð12Þ

where G represents the number of training examples or
patterns. The CPNN classifies the input vector to most
similar cluster nodes, and then outputs the prediction result.
The learning speed of CPNN is fast as compared to other
neural networks. The CPNN can compress the input patterns
to p clusters. The adaptive p cluster nodes determine the
accuracy of the network output.

Radial basis function neural network (RBFNN)

RBFNN is alternative supervised learning network architec-
ture to the multilayered perceptrons (MLP). The topology of
the RBFNN is similar to the MLP but the characteristics of
the hidden neurons are quite different. The RBFNN consists
of an input layer, an output layer and a hidden layer. The
input layer is made up of source neurons with a linear
function that simply feeds the input signals to the hidden
layer. The neurons calculate the Euclidean distance between
the center and the network input vector, and then pass the
result through a non-linear function (Gaussian function/mul-
tiquadric/thin plate spline, etc.). It produces a localized
response to determine the positions of centers of the radial
hidden elements in the input space. The output layer, which
supplies the response of the network, is a set of linear
combiners which is given by [29]:

f ðxÞ ¼
XN
i¼1

wijG x� cik k:bð Þ ð12Þ

where N is the number of data points available for training,
wij is the weight associated with each hidden neuron, x is the
input variable, ci is the center points, and b is the bias. The
localized response from the hidden element using Gaussian
function is given by:

G x� cik k:bð Þ ¼ exp � 1

2σ2
i

x� cik k:bð Þ2
� �

ð13Þ

where σi is the spread of Gaussian function. It represents the
range of ||x−ci|| in the input space to which the RBF neuron
should respond.

Imperialist competitive algorithm (ICA)

The optimization algorithms mainly are inspired from nature
procedures or life of animals. In these algorithms, socio-
political and cultural concepts are not considered. Recently,
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a new optimization methodology namely imperialist
competitive algorithm originates the socio-political evo-
lution. ICA has been modeled mathematically by
Atashpaz-gargary et al. [21] which is utilizing this his-
torical phenomenon as powerful tool for solving the
optimization problems. This algorithm has recently
attracted the attention of many researchers for tackling
of optimization problems. Briefly, ICA starts with initial
solutions which are called initial countries that are sim-
ilar to chromosome in genetic algorithm and particle in
particle swarm optimization algorithm. These countries
are divided into two groups. First group is made of
imperialist countries and second group is formed with
membership of colonies countries. Imperialist countries
try to decrease the gaps between colonies and them
through applying assimilation strategy. Imperialistic
competition beside the assimilation and revolution form
the main core of ICA to make it possible to reach the
reliable and efficient solutions. Stages of ICA algorithm
shown in Fig. 3 are explained as follows:

First step: Generating initial empires
In ICA each solution is shown by an array

and each array composes the amounts of varia-
bles to be optimized. These values are defined
with characteristics of each specific problem. In
ICA terminology, this array is called “country”.
In an N dimensional optimization problem, a
country is a 1×N array which is defined by:

country ¼ v1; v2; . . . ; vN½ � ð14Þ
where vN is the variable to be optimized. Each
variable in a country denotes a socio-political
characteristic in that country such as culture,
language, business, economical policy and etc.
At first, the algorithm generates initial countries
randomly in number of population size. Then,
the most powerful countries are selected in
number of Nimp. Remaining countries will form
imperialists based on imperialist’s power. For
calculating the power of imperialists, first, the
normalized cost of an imperialist is applied
based on the following equation:

Cn ¼ max ci � cn i ¼ 1; 2; . . . ;Nimp ð15Þ
where, cn is the cost of nth imperialist and Cn is
its normalized cost which is equal to the devia-
tion of the maximum total completion time
from the nth imperialist cost. Then, the power
of each imperialist is calculated according to the
following equation:

Pn ¼ CnPNimp
i¼1

ci

��������

��������;
PNimp

i¼1
Pi ¼ 1 ð16Þ

By attention to imperialist’s power, the colo-
nies are distributed among the imperialist. In
addition, the initial number of colonies of an
imperialist is calculated as follows:

NCn ¼ round Pn � Ncolð Þ ð17Þ
where, NCn is the initial number of colonies of
nth empire and Ncol is the number of all colonies.

Second step: Assimilation
Imperialists try to improve all of their

colonies. The aim of the assimilation proce-
dure is to assimilate the colonies’ character-
istic toward their imperialist such as culture,
social structure, language and etc. Each col-
ony moves toward the imperialist by x units.
x is a random number with uniform

Yes 

No

Yes 

No

No

Yes 

Assimilate colonies

Revolve some colonies

Is there a colony in an empire which has 
lower cost than that of the imperialist?

Compute the total cost of 
all empires

Exchange the positions of that 
imperialist and the colony

Imperialistic competition

Stop condition satisfied?

Unite similar empires

Eliminate the empire

Is there an empire with no 
colony?

Initialize the empires

End

Start

Fig. 3 The flow chart of ICA algorithm
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distribution. x∼U (0, β×d), β>1 where β is a
number greater than 1 and d is distance
among colony and imperialist which is the
vector of movement for colony toward impe-
rialist. The parameter β causes the colony to
get closer to imperialist from both sides. To
intensify property of this method and to
search wider area around current solution
the random amount of deviation θ was added
to the direction of movement. θ is a number
with uniform distribution. θ∼U (−γ, +γ)
where γ is a parameter that adjusts the devi-
ation from the original path.

Third step: Revolution
Thismechanism is similar tomutation process

in genetic algorithm for creating diversification
in solutions. In each iteration, for every colony a
random number which is varying between 0 and
1 is generated, and then this value is compared
with probability of revolution (i.e. PR). If ran-
dom number is lower than PR, the procedure of
revolution is performed. For conducting the rev-
olution procedure, at first, the number of varia-
bles which should be changed is determined
based on revolution ratio (RR). In other words,
RR multiplies in number of jobs. After determin-
ing the number of elements for revolution, these
elements are selected randomly. Then, values of
selected elements are changed randomly. The
new colony will replace with the previous colony
while its cost is improved.

Fourth step: Exchanging positions of the imperialists of
colony

After assimilation for all colonies and rev-
olution for a percentage of them, the best
colony in each empire is compared with its
imperialist. If the best colony is better than its
imperialist, then the positions of best colony
and imperialist are exchanged.

Fifth step: Total power of an empire
The total power of an empire is calculated to

be used in the imperialistic competition section.
It is clear that the power of an empire includes
the imperialist power and their colonies. More-
over, obviously the power of imperialist has
main effect on total power of an empire while
colonies power has lower impact. Hence, the
equation of the total cost is defined as follows:

TCn ¼ cost imperialistnð Þ
þ x:mean costðcolonies of empiren½ Þ�

ð18Þ

where TCn is the total cost of the nth empire and ξ
is a positive number which is considered to be less
than 1. The total power of the empire will be
determined by just the imperialist when the value
of ξ is small. The role of the colonies, which
determines the total power of an empire, becomes
more important as the value of ξ increases.

Sixth step: Imperialistic competition
Imperialists try to increase their power by

possessing and control the colonies of other
empires. To apply this concept in our proposed
algorithm, at first the weakest colony of the
weakest empire is determined in each iteration.
Then, this colony is given to the other empires
which depend on their total power. For this
purpose we should calculate the possession
probability of each empire, first the normalized
total cost is calculated as follows:

NTCn ¼ max TCi � TCnð Þ i ¼ 1; 2; . . . ;Nimp

ð19Þ
where NTCn is the normalized total cost of nth
empire and TCn is the total cost of nth empire.
By having the normalized total cost, the pos-
session probability of each empire is calculated
as below:

Pemp ¼ NTCnPNimp

i¼1
NTCi

���������

���������
ð20Þ

The roulette wheel method for assigning the
mentioned colony has been selected for men-
tioned colony to empires.

Seventh step: Elimination of powerless empires
When an empire loses all of colonies this

empire will collapse and is considered as a
colony and is assigned to other empires.

Eighth step: Stopping condition
The stop condition is based on the problem

nature, such as number of decreases as
iterations.

Results and discussion

Results of modeling approach

In this work, the modeling of spring-back consists of two
stages. In the first stage, the models are developed based on
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regression analysis, BPNN, CPNN and RBFNN. Then their
accuracy will be compared using comparison tools.

Development of mathematical model

In order to create a mathematical model that can fore-
cast the spring-back in V-die bending process, a second
order multiple regression model has been employed.
The proposed regression model for prediction of
spring-back in terms of process parameters can be given
by the following equation:

Y ¼ b0 þ
Xk
i¼1

bixiu þ
Xk
i¼1

biix
2
iu þ

Xk
i¼1

bijxiuxju ð21Þ

where Y is the response (spring-back); b0, bi, bii and bij are
the coefficients; xiu is the variable (t, θ, and r); u is the
experiment number (1–36); k is the factor number (1–3); x2iu
is the higher order term of variable and xiuxju are the interac-
tion terms. The MINITAB statistical package has been used to
analyze the experimental data and response parameters. The
significant terms in the model were found by analysis of
variances. Among 36 experimental data, 32 of them have been
contributed in developing a regression model, and then its
adequacy has been checked with 4 remaining data sets. The
obtained model to predict the spring-back using regression
analysis has been presented by the following equation:

a ¼ �24:7þ 13:3t � 0:0437θþ 9:19r þ 0:0215tθ� 4:06tr

þ0:0073rθþ0:941t2 þ 0:000064θ2 � 0:607r2

ð22Þ
The analysis of variances (ANOVA) has been carried

out to evaluate the adequacy of developed mathematical
model. The F ratio of predictive model was calculated
and compared with the standard tabulated value of the F
ratio for a specific confidence interval. Table 2 demon-
strates the results of ANOVA for the developed second
order model in Eq. 22.

According to Table 2, it can be inferred that the
above model qualify the adequacy test as the F value
of the model is larger as compared to the tabulated F

value at 95 % confidence level. Also, according to the
values of R2 and R2

adj obtained from ANOVA results, it

can be inferred that there is good correlation between
process inputs and main outputs. But, the obtained
models are complicated as it contains too many terms.
So the following models have been modified by
neglecting the terms that have an insignificant effect
on the spring-back. The terms having P-values more
than 0.05 were eliminated, and the model is reanalyzed
for the adequacy. The ANOVA results for clarification
of significant factors in prediction of spring-back are
presented in Table 3.

According to the above explanation, the modified math-
ematical model for estimation of spring-back is described
by:

a ¼ �24:7þ 13:3t þ 9:19r � 4:06tr þ 0:0073rθ

þ 0:941t2 � 0:607r2 ð23Þ

In order to check the accuracy of the mathematical
model, the model has been examined with 4 experi-
mental observations. Table 4 shows the comparison
between measured and modeled values which were
obtained by experiments and mathematical model,
respectively.

Table 2 ANOVA results for spring-back

Source DF SS MS F P

Regression 9 289.80 32.210 38.14 0.000

Residual error 26 21.958 0.845

Total 35 311.848

R2093 % R2
adj ¼ 90:5%

Table 3 Significant
factors based on
ANOVA contributed in
modeling of spring-back

Predictor P-value State

Constant 0.000 Significant

t 0.000 Significant

θ 0.094 Insignificant

r 0.000 Significant

t×θ 0.299 Insignificant

t×r 0.000 Significant

r×θ 0.060 Insignificant

t2 0.000 Insignificant

θ2 0.703 Insignificant

r2 0.001 Significant

Table 4 Comparison between measured values with mathematical
modeled values

No t (mm) θ (deg) r (mm) Measured spring-
back (deg)

Modeled spring-
back (deg)

1 0.5 0 5 2.8 2.8123

2 0.5 45 3 −0.6 −0.7122

3 0.7 90 2 −6 −5.7469

4 1 45 5 1.2 1.3585
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Development of BPNN model

As mentioned above, in present work, feed forward back-
propagation neural network has been used as one of the esti-
mators to forecast spring-back in bending process. Here, MAT-
LAB 7.1 Neural Network Toolbox was used to develop BPNN
model. So a model with three inputs and one output has been
considered. In all 36 obtained data, the values of 30 data were
selected stochastically to train the network, and then the trained
network was tested with 6 remaining data sets. In order to find
the best model mean absolute error is defined as follows:

MAE ¼ 1

T

XT
i¼1

ti � aij j ð24Þ

where T is the number of test data, ti is the target value and ai is
BPNN modeled value.

Since the size of hidden layer(s) is one of the most important
factors for generation of accurate model, various architectures
based on hidden layers and their neurons have been practiced. In
other words in order to find a precise model that gives much
more acceptable results, architectures based on one and two
hidden layers with various hidden nodes were trained separately.
Then, their accuracywere checked based on their values ofMAE
for test data. It means that a network with lowest MAE
predicts the process precisely. Also, the various types of transfer
function of log-sigmoid and tan-sigmoid were checked on the
model accuracy. For training of the network, the gradient descent
method with variable learning rate has been trained and the
momentum factor was set 0.5 and the error goal value was 0.01.

By training and testing various topographies with differ-
ent types of transfer functions, finally a model by 3-12-1
topography with “tansig” transfer functions was selected as
the most accurate BPNN estimator. It means that networks
with different topographies have been trained and tested and
their MAEs were calculated. Then, by comparison of MAE
values between practiced networks, results showed that the
3-12-1 network has the lowest value (e.g. 0.2275). Figure 4
indicates an agreement between measured and BPNN pre-
dicted values according to test data.

Development of CPNN model

As mentioned above, like a BP network, development of CP
model consists of training and testing. So, among 36 data,
number of 30 data used for training and 6 remaining data
discarded for testing. In order to develop CPNN model the
process inputs are normalized properly before training. For a
given MSE (e.g. 0.05) several CPNN trials were practiced.
Finally, a network with 3-10-1 structure is considered as a
reliable architecture due to its lowest value of MAE (e.g.
0.2311). Numbers of twenty training sets of CPNN model
with various structures, various learning rates, and various
transfer function have been examined and their MAE value
calculated. Finally, a network with 3-10-1 architecture with
learning rate (e.g. β00.4) and momentum factor (e.g. α0
0.7) respond to lowest value of MAE. Figure 5 demonstrates
an agreement between measured and CPNN predicted val-
ues according to test data.

Development of RBFNN model

0.2295). Figure 6 shows an agreement between measured
values and RBF predicted values according to test data.
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Fig. 5 Comparison between measured values and CPNN predicted
values of test data

Int J Mater Form (2014) 7:167–178 175

Such as BP and CP models, finding an accurate RBF model
includes testing and training. But, unlike BP and CP models,
in RBF model instead of changing neurons of hidden layer
(s) or varying of transfer functions, the spread of Gaussian
function are changed to achieve acceptable value of MAE.
Thirty data sets among 36 existing experimental data were
used for training and then the performance of the trained
network was checked by the other remaining 6 data sets.
The value of MSE for this network was set 0.05, and the
spread of the Gaussian function was set equal to 0.6. This
value was not selected stochastically; various values of the
spread were selected for training of RBF network and then
the performance of the network was evaluated by the value
of MAE. Results indicated that a RBF network with 15
hidden neurons and spread value of 0.6 can predict the
spring-back so accurate due to lowest value of MAE (e.g.



Comparison of developed models

In order to find the most accurate model to serve as objec-
tive function in optimization, comparisons have been ful-
filled based on mean absolute error (MAE), and root mean
square error (RMSE) as comparison tools. As discussed
above, developed models are mathematical model, 3-12-1
BPNN model, 3-10-1 CPNN model, and 3-15-1 RBFNN
model. To obtain best estimator, the above developed mod-
els have been applied to all 36 experimental data and their
MAE and RMSE were calculated. Finally, a model with
lowest values of MAE and RMSE is introduced as a most
accurate model which can be applied as objective function
in optimization of spring-back.

The following equation describes the formulation of RMSE.
Moreover the formulation of MAE was expressed in Eq. 24.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
z¼1

Sz � Yzð Þ2
vuut ð25Þ

where M is the number of all data (in this work M036) Sz is
the real value of a given output obtained by experiments and
Yz is the value of modeled output by developed models.

Table 5 demonstrates the values of MAE and RMSE for the
developed models. It can be inferred from Table 5 that the
models which were developed based on artificial intelligence
techniques (e.g. BPNN, CPNN, and RBFNN) could predict the
process more accurately than the model based on the regression
analysis. Also, the intelligent model based on radial basis net-
work has the lowest value ofMAE andRMSE. This is due to the

fact that, the performance of radial basis network is very pow-
erful in the case of problems with small number of experimental
data. Another outperformance of RBFNN compared to other
models is its fast performance to modeling of the process. It
means that using of RBFmodel accelerates the speed of network
about 50 times faster than models based on BP and CP. So,
among the developedmodels the RBF one is served as objective
function to optimize the spring-back in bending process.

Results of optimization approach

In this work, imperialist competitive algorithm has been
used to optimize the spring-back in bending process. After
selection of optimum parameters in the case of minimal
spring-back, further renewed experiments have been con-
ducted to verify the optimal solutions. The following steps
define the procedure of optimization of spring-back in bend-
ing process:

Definition of constraints and objective function

According to the results of modeling approach in the previ-
ous section, the radial basis network (RBFNN) was selected
as objective function due to its accuracy and faster perfor-
mance compared to other developed models. The objective
of this study is to identify the optimal bending conditions to
minimize the spring-back. Thus, the objective function H
can be expressed as:

H ¼ aj j ð26Þ
where α is spring-back and the absolute of α should be
minimize due to spring-back or negative spring-back. Also,
according to the experimental investigation in this study, theTable 5 Values ofMAE and RMSE for the developed models according

to all data sets

Developed model MAE RMSE

Multiple regression 2.2331 1.7865

3-12-1 BPNN 0.2132 0.1989

3-10-1 CPNN 0.2087 0.1864

3-15-1 RBFNN 0.1985 0.1639

Fig. 7 Rastrigin function
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values of test data

Table 6 Solutions which minimize the Rastrigin function using ICA
code

z1 z2 f(z1,z2)

Results of ICA 0.00021 0.0001 1.74×10e-5

Rastrigin function minima 0 0 0
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limits on the input variables of punch tip radius (r),
sheet orientation (θ) and sheet thickness (t) are:
2 < r < 5ð Þ; 0 < θ < 90ð Þ and 0:5 < t < 1ð Þ:

Optimization of bending process using ICA

A MATLAB code was developed during this study accord-
ing to flowchart shown in Fig. 3. Before applying to the
present problem, the code was tested on rastrigin optimiza-
tion function. The formulation of this function for a problem
with two variables is expressed as follow:

f z1; z2ð Þ ¼ 20þ z21 þ z22 � 10 cos 2pz1ð Þ � 10 cos 2pz2ð Þ
ð27Þ

As shown in Fig. 7, a Rastrigin function has a lot of
local minima due to existing of cosine in it. But it has
the global minimum in z10z200 and value of function
in this point is zero. Table 6 demonstrates the compar-
isons between real minima of Rastrigin function and the
minimum solutions obtained by developed ICA code. It
is evidence that ICA algorithm can minimize the Ras-
trigin function as well.

Such as other evolutionary optimization algorithms, the
ICA needs some setup parameters for implementation.

These parameters can help the algorithm to find optimal
solutions accurately. Table 7 presents the setup parameters
which are needed for implementation of ICA.

Table 8 demonstrates the optimal solutions which were
obtained through optimization of process using ICA. The
ICA algorithm warrants finding better answers according to
increasing in run times. So, in this work, the algorithm was
run 4 times, and it can be inferred from Table 8 that the ICA
algorithm developed the answers to lower spring-back when
run times increases.

As discussed above the ICA algorithm warrants finding
better when increasing the number of runs. So, the results of
4th run are better than results of previous runs. Therefore,
the best result for minimal spring-back is the result of fourth
run in Table 8.

Verification of optimal results

In order to verify the obtained optimal solutions of fourth
run as the best result for optimization of process, a renewed
experimental test has been conducted. In this test optimal
solutions of fourth run which were obtained by ICA have
been rounded and used as parameters of bending process.
Then, the value of spring-back for this test has been mea-
sured. The result of confirmation test is visible in Table 9.
According to this table, it can be inferred that both radial
basis network and ICA algorithm are appropriate tools for
prediction and optimization of process due to equality of
measured value of spring-back in confirmation test with
predicted value of spring-back using RBFNN-ICA.

Conclusion

In this research, in order to predict the spring-back in V-
bending process the models based on regression analysis,
back-propagation neural network, counter-propagation neu-
ral network and radial basis network were developed by
using experimental observations. The process inputs were
sheet thickness, sheet orientation and punch tip radius and
main output was spring-back. The required training and val-
idation data have been obtained from experimental observa-
tion. After development of predictive models, their
performances were checked using mean absolute error
(MAE) and root mean square error (RMSE). Among the

Table 7 Setup parameters for implementation of ICA

Parameter Value/function Remark

X0 [0 0 0] Initial point

H(X) abs(sim(X,net) Objective function which uses “sim” to
simulate RBFNN

Ncount 200 Number of Country

Nimp 10 Number of imperialists

ζ 0.3 Revolution rate

β 2 Assimilation coefficient

γ 0.5 Assimilation angle coefficient

ξ 0.02 A coefficient used to calculate total
cost of empire

k 2000 Number of decades as stop condition

Table 8 Optimal solutions obtained by ICA in the case of minimum
spring-back

Run Sheet
thickness
(mm)

Sheet
orientation
(deg)

Punch tip
radius (mm)

Spring-back using
RBFNN (deg)

1 0.745 26.32 4 0.0089

2 0.745 24.21 4 0.0057

3 0.936 0.535 4.257 0.0012

4 0.815 74.971 3.88 0.000201

Table 9 Result of confirmation test to verify obtained optimal solution
using RBF/ICA

Sheet
thickness
(mm)

Sheet
ordination
(deg)

Punch
tip radius
(mm)

Obtained spring-
back by RBFNN-
ICA (deg)

Verified spring-
back by experi-
ment (deg)

0.8 75 4 0.000201 0
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developed models, finally a 3-15-1 radial basis network was
selected as the most accurate model, due to its lower values of
MAE and RMSE. Also, the speed performance of this model
was much higher compared to those of the other models.
Thus, the RBF model was served as objective function in
minimization of spring-back. Then, a constrained optimiza-
tion methodology was presented using imperialist competitive
algorithm. Through the application of ICA, optimal solutions
were obtained in the case of minimal spring-back. Then,
confirmation test was carried out to prove optimal results
obtained by integration of RBFNN-ICA.

The ability of the prediction and optimization can be
extended to consider an increased number of parameters
and experimental results. Also, the variability of the exper-
imental results affects the prediction and optimization
performances.
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