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Abstract Composite materials and their related manufactur-
ing processes involve many modeling and simulation issues,
mainly related to their multi-physics and multi-scale nature, to
the strong couplings and the complex geometries. In our former
works we developed a new paradigm for addressing the solu-
tion of such complex models, the so-called Proper Generalized
Decomposition based model order reduction. In this work we
are summarizing the most outstanding capabilities of such
methodology and then all these capabilities will be put together
for addressing efficiently the simulation of a challenging com-
posites manufacturing process, the automated tape placement.
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Introduction

The production of large pieces made of thermoplastic compo-
sites is a challenging issue for today’s industry. Thermoplastic
composites still represents a niche market because of the

difficulties associated to their processing. Several reliable
manufacturing processes are now available for building-up
thermoplastic laminated structures. Among them, the auto-
mated tape placement (ATP) appears to be an appealing pro-
cess. In this process a tape is placed and progressively welded
on the substrate consisting in the tapes previously placed. By
laying additional layers in different directions, a part with
desired properties and geometry can be produced. However,
the welding of two thermoplastic layers requires specific
physical conditions: a permanent contact, also called intimate
contact, and a temperature that has to be high enough during a
time large enough to ensure the diffusion of macromolecules,
without significant material degradation. Due to the low ther-
mal conductivity of thermoplastics, a high temperature at the
interface can be reached with a local heating. ATP uses a laser
(or sometimes hot gas torches) and a cylindrical consolidation
roller to ensure both conditions required for the proper weld-
ing, as depicted on Fig. 1.

The numerical simulation of such a process is the subject
on an intensive research work. Indeed, because of the succes-
sive heating and cooling of the structure during the addition of
new tapes, residual stresses appear in the formed part. The
evaluation of these residual stresses is crucial because they
have a significant impact on both the mechanical properties
and the geometry of the manufactured plate or shell due to the
springback. They can in particular lead to a distortion of the
part, inter-ply delamination or matrix cracking. High-levels of
stress may arise because of two reasons. First, the large differ-
ences in the thermal expansion coefficients of the matrix and
the fibers lead to an important deformation at the matrix/fiber
interface. Stresses also appear when two consecutive plies do
not have the same reinforcement orientations. In that case, the
different thermal expansion coefficients induce again stresses
at the plies interfaces.

Experimentally, it is quite difficult to measure residual
stresses. Destructive methods use the release of stress and its
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associated strain when performing a cutting of the structure.
Non-destructive methods like X-ray diffraction or neutron
diffraction are more accurate but still very expensive. The
numerical simulation turns out therefore to be one of the
cheapest and most promising alternative to model and opti-
mize such processes but several issues related to the process
itself make the task quite complicated as we are going to
expose throughout this work.

Several models were proposed since the early 90’s. We can
mention in particular the numerical analysis made by Sonnez et
al. [1] and the work by Pitchumani et al. [2] interested in the
study of interfacial bonding. In the latter, the domain consid-
ered is only 2D and strong assumptions were introduced in the
thermal model, in particular concerning the boundary condi-
tions. Moreover, in order to simplify the geometry of the
domain, an incoming tow was assumed instantaneously laid
down all along the substrate, which is far from being the case in
the real process. Finally, the thermal/mechanical contact was
assumed to be perfect at the inter-ply interfaces, which again
seems to be also a crude assumption. First attempts of the
modeling and simulations of this process can be found in [3, 4].

In what follows the domain we consider is 3D and the
material, the carbon reinforced PolyEther Ether Ketone
(PEEK), is anisotropic. The thermal and mechanical prop-
erties of this material are detailed in Tables 1 and 2. In these
tables, the index 1 refers to the longitudinal or fiber direc-
tion, the index 2 corresponds to the transverse direction and
the index 3 stands for the ''through the thickness'' direction.

In this work we propose some improvements to existing
models. First of all, the domain we consider is 3D and the
material anisotropic. In order to take into account the imperfect
adhesion at the inter-ply interface, thermal contact resistances
are introduced. Regarding the mechanical problem, the incom-
ing tow is progressively laid down on the substrate and is
subjected to a tension force in order to reproduce the pre-

tension applied in the real process. But actually, beyond the
model itself, the numerical method employed for the solution
of the thermal and mechanical problems associated to the ATP
process is novel. This work represents a first step towards a
global thermo-mechanical process modeling using robust and
efficient numerical tools. The numerical strategy we propose is
based on the Proper Generalized Decomposition (PGD) [5, 6].
This method uses a separated representation of the unknown
field, in that case temperature or displacements, and results in a
tremendous reduction of the computational complexity of the
model solution. Moreover, it entails the ability to introduce any
type of parameters (geometrical, material …) as extra-
coordinates into the model, to obtain by solving only once
the resulting multidimensional model the whole envelope con-
taining all possible solutions [7, 8], a sort of numerical virtual
chart or metamodel, that can be then exploited on-line even on
light computing platforms like smartphones of tablets [9, 10].

Building-up parametric solution

In what follows we are illustrating the construction of the
Proper Generalized Decomposition by considering a quite
simple problem, the parametric heat transfer equation gov-
erning the evolution of u(x, t, k):

@u

@t
� kΔu� f ¼ 0 ð1Þ

where ðx; t; kÞ 2 Ω � I �= and for the sake of simplicity the
source term is assumed constant, i.e. f0cst. Because we are
interested in knowing the temperature field u(x, t) for any
value of the thermal conductivity k∊ℑ, the conductivity will
be assumed as a new coordinate, like space x or time t. Thus,

Fig. 1 Sketch of automated tape placement

Table 1 Thermal properties of carbon reinforced PEEK (AS4/APC2)

Thermal diffusivity (10-6m2/s) K1101.89 K2200.189 K3300.189

Thermal expansion (10-6/°K) α1100.2 α22060 α33060

Table 2 Mechanical properties of carbon reinforced PEEK (AS4/
APC2)

Young modulus (GPa) E110137 E2209.4 E3309.1

Poisson ratio ν1200.33 ν1300.32 ν2300.40

Shear modulus (GPa) G1205.1 G1304.7 G2303.2
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instead of solving the thermal model for different values of
the conductivity parameter we prefer introducing it as a new
coordinate looking directly for u(x, t, k). The price to be paid is
the increase of the model dimensionality; however, as the
complexity of the PGD scales linearly with the space dimen-
sion the introduction of the conductivity as a new coordinate
allows for faster and cheaper solutions.

Within the PGD framework the solution of Eq. (1) is
searched under the separated form:

u x; t; kð Þ �
Xi¼N

i¼1

Xi xð Þ � TiðtÞ � KiðkÞ ð2Þ

In what follows we are assuming that the approximation
at iteration n is already known:

un x; t; kð Þ ¼
Xi¼n

i¼1

Xi xð Þ � TiðtÞ � KiðkÞ ð3Þ

and at present iteration we look for the next functional
product Xn+1(x) ⋅ Tn+1(t) ⋅ Kn+1(k) that for alleviating the
notation will be denoted by R(x) ⋅ S(t) ⋅ W(k). In order to
solve the resulting non-linear problem, some linearization
strategy is compulsory. The simplest choice consists in using
an alternating directions fixed-point algorithm. It proceeds by
assuming S(t) and W(k) given at the previous iteration of the
non-linear solver and then computing R(x). From the just
updated R(x) and W(k) we can update S(t), and finally from
the just computed R(x) and S(t) we compute W(k). The pro-
cedure continues until reaching convergence. The converged
functions R(x), S(t) and W(k) allow defining the searched
functions: Xn+1(x) 0 R(x), Tn+1(t) 0 S(t) and Kn+1(k) 0 W(k)
and then we can move to the next enrichment. The interested
reader can refer to [9, 10] and the references therein for
additional details on the PGD constructor.

ATP thermal model

Our objective is to obtain the steady state temperature in a
coordinate system attached to the placement head, which is
assumed to move with a constant velocity. For a given number
of plies, this temperature field can be used to reconstruct the
thermal history in any material point far enough from the
edges, as will be illustrated later. In these conditions each
material point experiences the same thermal history during
the process. It is progressively heated when approaching the
laser, it reaches its maximum temperature when the laser
applies directly on it and it cools down relatively fast when
getting far from the heat source, reaching the ambient temper-
ature before the laser comes back again when placing the next
layer. Therefore, instead of considering a problem where the
domain is fixed and the boundary conditions are time depen-
dent, we can explicitly introduce the line speed v0(v, 0, 0)
(when the heating device moves in the x-direction) in the heat
transfer equation by adding a convection term. In other words,
the laser and the roller are kept fixed and the material is
assumed moving with a speed v in the opposite direction to
the one in which laser and roller move, as shown on Fig. 2. In
this figure we have emphasized the fact that after applying the
heat source the incoming layer adheres to the substrate (con-
tinuous line), being this adhesion more or less perfect depend-
ing on the molecular diffusion as discussed later. On the other
hand, before experiencing the bonding the interface between
the incoming layer and the substrate, represented by a broken
line in Fig. 2, is assumed adiabatic, that is, the incoming layer
and the substrate cannot exchange heat trough it.

Hence the equation to be solved writes

ρ � Cp � v � rT ¼ r � K � rTð Þ ð4Þ
where ρ is the density, Cp is the specific heat and K is the
conductivity tensor. In this reference frame, the boundary

Fig. 2 Thermal model
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conditions are not time dependent anymore. The solution of
Eq. (4) corresponds to the steady state temperature field in
the coordinate system attached to the roller and the laser.
The material domain, consisting of the substrate (plies al-
ready placed) and the incoming layer, in which Eq. (4) is
solved is noted by Ω ¼ 0; Lx½ � � 0; Ly

� �� 0; Lz½ �.
The incoming ply and the substrate are assumed having

the ambient temperature. Thus, on the upstream boundary
the ambient temperature will be enforced and on the down-
stream boundary the heat flux is assumed vanishing. Con-
vection boundary conditions are enforced on the upper
surface, except in the regions in which the laser and the
roller apply and finally a conduction transmission condition
is enforced in the contact between the composite and the
work plane. All the transmission conditions (at the inter-
plies, at the roller-composite contact and on the composite-
work-plane interface) are affected by a contact thermal
resistance h accounting for the non-perfect contacts. These
resistances depend on the applied pressure and also on the
inter-plies bonding. Thus, the temperature field becomes
discontinuous at the plies interfaces and also on the
composite-work-plane and roller-composite contacts. On
the interface between the incoming ply and the substrate
that has not already experienced the molecular bonding
(broken line in Fig. 2) an infinite value of the contact
thermal resistance is assumed ensuring the absence of heat
transfer between the incoming ply and the substrate. As
soon as the bonding occurs (continuous line in Fig. 2) a
thermal resistance applies, whose value depends on the
quality of such bonding, vanishing when the adhesion can
be considered perfect. A parameter quantifying the quality
of the bonding will be introduced later.

As the different contact thermal resistances are unknown
“a priori” they should be identified from experiments by
solving the corresponding inverse problem, that is, looking
for the values of the different contact thermal resistances
allowing reproducing the experimental measurements. In
order to perform this identification we must define a cost
function to be minimized by assuming any optimization
strategy. The natural choice for such a cost function is the
gap between the computed temperatures at some locations
and the temperature measured at such positions. The main
drawback is that for each tentative choice of the different
thermal resistances Eq. (4) must be solved, the cost function
evaluated and if its value is not small enough, the value of
the thermal resistances must be updated trying to minimize
the cost function, that is the gaps, and then the thermal
model (4) must be solved again, and so on until reaching a
value of the cost function small enough allowing to fix the
value of the thermal resistances to be considered from now
on in the thermal model of the process.

In order to solve a single problem instead of one for each
choice of the thermal resistances, one could imagine introducing

the thermal resistances as extra-coordinates into the thermal
model. We distinguish three thermal resistances, the one
related to the contact between the roller and the laminate,
the one applying at the inter-plies interfaces and finally the
one existing between the laminate and the work-plane. The
inverse of three resistances will be denoted by h1, h2 and
h3. Thus, we could imagine that the best representation of
the temperature field in the roller-laser frame consists of T(x,
h1, h2, h3). Such a representation has as main drawback the
fact to be defined in a space of dimension 6, the three
space coordinates and the three extra-coordinates represent-
ing the contact resistances. The difficulties related to the
model’s multi-dimensionality can be circumvented thanks
to the separated representation involved by the PGD con-
structor that writes:

T x; h1; h2; h3ð Þ �
Xi¼N

i¼1

Xi xð Þ � H1
i h1ð Þ � H2

i h2ð Þ � H3
i h3ð Þ

¼
Xi¼N

i¼1

Xi xð Þ �
Yj¼3

j¼1

Hj
i hj
� �

ð5Þ

whose solution involves the solution of a sequence of 3D
problems (of the order of N) related to the computation of
functions Xi(x) and the same number multiplied by 3 of
one-dimensional problems for computing functions H1

i h1ð Þ,
H2

i h2ð Þ and H3
i h3ð Þ. Because the computing time for solving

the local one-dimensional problems can be neglected with
respect to the one needed for solving the 3D problems, we
can conclude that the complexity associated with the 6D
solution (5) scales with the one related to the solution of a
standard 3D steady state thermal problem.

Obviously, if the number of iterations required for mini-
mizing the gap in the inverse identification is of the same
order as N there is no apparent benefit in computing the
parametric solution (5). However, there is a noticeable ben-
efit that we are trying to highlight. As soon as the process
parameters change (laser power, line velocity or roller pres-
sure) the contact resistances will change, and they should be
identified again, by solving again many 3D problems for
attaining an acceptable value of the temperature gap at the
locations where the temperature is measured. Thus, each
choice of the process parameters will imply a new inverse
analysis and then the solution of many direct problems. One
could imagine that by computing the parametric solution (5)
a single calculation suffices, but this is not totally true. For
computing a general enough parametric solution encom-
passing any choice of the process parameters and the contact
thermal resistances, the process parameters should be also
included as extra-coordinates. If we denote by p the laser
power, by v, as previously used, the line velocity, and
neglecting in first approximation the influence of the roller
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contact pressure, the parametric temperature writes T(x, h1,
h2, h3, p, v). It can be searched under the separated form:

T x; h1; h2; h3; p; vð Þ �
Xi¼N

i¼1

Xi xð Þ � H1
i h1ð Þ � H2

i h2ð Þ

� H3
i h3ð Þ � PiðpÞ � ViðvÞ ð6Þ

with a moderate impact on the computational complexity
because the two new coordinates only involve the solution
of some local one-dimensional problems within the PGD
constructor methodology. It must be noticed that the solu-
tion (6) is calculated off-line, and then particularized on-line
in the process simulation or within the inverse identification
procedure.

Moreover, because the hexahedral geometry of the tape,
one could prefer performing a full space decomposition by
writing the approximation (7) instead of (6):

T x; y; z; h1; h2; h3; p; vð Þ �
� Pi¼N

i¼1
XiðxÞ � YiðyÞ � ZiðzÞ � H1

i h1ð Þ � H2
i h2ð Þ � H3

i h3ð Þ � PiðpÞ � ViðvÞ

ð7Þ
that only involves the solution of a sequence of one-
dimensional problems, some of them, the ones concerning
the space functions Xi(x), Yi(y) and Zi(z), defining standard
boundary value problems –BVP- and the ones related to all
the extra-coordinates defining local one-dimensional prob-
lems that do not need the solution of any linear system of
equations, allowing consequently very fast calculations.
Other intermediate alternatives exist. The one we will con-
sider later in this work consists of the in-plane-out-of-plane
separated representation in which the coordinates (x, y) are
separated from the one related to the laminate thickness (z)
in the approximation of functions of space.

The solution (7) is computed off-line for a given tape
geometry and the material thermal parameters ρ, Cp and the
components of the thermal conductivity K. All these param-
eters could be also included as extra-coordinates, but that in

the simulation below were not. Then the solution (7) is
particularized for obtaining the temperature field for any
choice of the process parameters T(x; h1, h2, h3, p, v).
This particularization can be performed on-line, in real
time and even on light computation platforms like
smartphones or tablets. Figure 3 depicts one application
on a tablet in which the process parameters (the three
contact resistances, the line velocity and the laser pow-
er) can be selected from the sliders, visualizing in real
time the resulting temperature field.

Obviously such a numerical tool has numerous interests.
First of all it allows identifying contact thermal resistances
such that the numerical solution fits at the best experimental
measurements. Moreover, as soon as the thermal history is
known we can evaluate both the inter-plies bonding and the
material degradation. The first can be calculated by defining
an indicator C taking into account the molecular reptation,
as was proposed in [11]:

CðM; tÞ ¼
Z t

0

dt
tr TðM; tÞð Þ ð8Þ

where M represents a material point located at the plies
interface and tr is the reptation time that depends on the
temperature and that represents the time required for a
molecule to escape from its initial tube (the one existing
before the beginning of the thermal process at time t00)
at a certain temperature. This time can be characterized
for each material experimentally and in general follows
an Arrhenius’s law. We can notice that C(M, t)≥1
implies a perfect bonding that ensures that the proper-
ties at the interface and the ones of the bulk are the
same when neglecting interface porosity.

The kinetics (8) is local and can therefore be calculated
on-line. The only tricky point is the relation between points
x in the thermal model (4), considered in the laser-roller
frame, and the material point M. We come back to this issue
later. Now, we are focusing in the other phenomenon, the
one related to the material degradation due to thermal

Fig. 3 Particularizing online on a tablet the general parametric thermal solution
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induced molecular breaking. Following again [11] we con-
sider the damage indicator D given by the kinetics:

DðM; tÞ ¼
Z t

0

d TðM; tÞð Þ � dt ð9Þ

where again the temperature dependent damage function d
(T(M, τ)) follows an Arrhenius’s law that can be for each
material easily identified experimentally.

We come back to the question concerning the relation
between T(x) coming from the solution of Eq. (4) and T(M,
τ). We consider the situation depicted in Fig. 4 (bottom sche-
ma). First of all, we are discussing the value of length of the
domain of study Lx. This value should be compatible with the
boundary conditions enforced on the boundaries x00 and x0
Lx: the ambient temperature at x0Lx, i.e. T(x0Lx)0Tamb and a
null heat flux at x00. Thus referring to Fig. 4 (bottom schema)
the length must ensure that the resulting heat flux at x0Lx
vanishes, i.e. @T

@x

��
x¼Lx

� 0 , and that at x00 the temperature

approach again the ambient temperature, i.e. T(x00)≈Tamb.
Now, with the dimensions of the representative domain de-
fined, we can notice by comparing the real process depicted in
the upper scheme of Fig. 4 with the steady state analysis
performed in the laser-roller frame (bottom schema), that:

ð10Þ

result that can be generalized as follows:

T M; tð Þ ¼ T x1 � v � tð Þ ð11Þ

Thus, from the solution of the steady state model (4) we
can easily determine the thermal history of any material

point, allowing the computation of the accumulated bonding
or damage.

However, the thermal model presented until now is
not fully satisfactory despite its richness because as
soon as the sequence of plies change, the thermal model
must be solved again because the thermal conductivities
are changing throughout the thickness. As it can be
noticed in Fig. 1 (right) the orientation of the reinforce-
ment could change from one ply to the subsequent.
Thus, if for example we are interested in pre-
computing all the possible stacking sequences, with 4
possible orientations and 10 plies the number of possi-
ble configurations reaches 410∼106, even when consid-
ering all the other process parameters (line velocity,
laser power and all the contact thermal resistances)
given and fixed. By considering that the solution of
the thermal model (4) for each configuration requires
one minute, the calculation of all possible laminates
(∼106) needs 2 years of computation. Moreover, after
computing this million of solutions they must be stored
in order to be used online when needed. It is obvious
that such a storage of information is a tricky point, and
some kind of data compression procedure seems com-
pulsory in order to obtain a useful virtual chart or
metamodel to be considered efficiently for online pur-
poses (identification, process control …).

In order to calculate a more general parametric solution the
orientation of the reinforcement of each ply through the thick-
ness should be added as new extra-coordinates [10]. Doing so,
we obtain a solution valid for any orientation sequencing. The
separated representation related to the PGD allows circum-
venting the resulting curse of dimensionality. If we denote by
θj the orientation of ply number j, the separated representation
of the temperature field including these new conformational
extra-coordinates θj reads:

T x; y; z; h1; h2; h3; p; v; θ1; :::; θNp

� � �
� Pi¼N

i¼1
XiðxÞ � YiðyÞ � ZiðzÞ � H1

i h1ð Þ � H2
i h2ð Þ � H3

i h3ð Þ � PiðpÞ

� ViðvÞ �
Qj¼Np

j¼1
Θ j

i θj
� � ð12Þ

where Np denotes the number of plies in the considered
laminate.

Now, after these developments regarding the thermal
aspects we can move one step forward in order to determine
the residual stresses induced distortions of the conformed part
due to springback. We start describing the solution procedure
of the mechanical problem defined in a plate-like domain,
before considering in the last section of the present paper the
calculations of the residual stresses installed in the part by
solving a more complex thermoelastic model.Fig. 4 Relation between moving and fixed frames
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Mechanical structural analysis

When computing elastic responses of plates, two dimension-
al plate theories are usually preferred to the numerically
expensive solution of the full three-dimensional elastic
problem. Going from a 3D elastic problem to a 2D plate
theory model usually involves some kinematical and me-
chanical hypotheses on the evolution of the solution through
the thickness of the plate.

Despite the quality of existing plate theories, their
solution close to the plate edges is usually wrong as
the displacement fields are truly 3D in those regions
and do not satisfy the kinematic hypothesis. Moreover,
kinematic hypothesis fail where Saint-Venant's principle
does not apply. It is well known that some heteroge-
neous complex plates do not verify the Saint Venant's
principle anywhere. In that case the solution of the
three-dimensional model is mandatory even if its com-
putational complexity could be out of nowadays calcu-
lation capabilities.

Most commercial codes for structural mechanics calcu-
lations propose different type of plate and shell finite ele-
ments, even in the case of multilayered composites plates or
shells. However, in composites manufacturing processes the
physics encountered in such multilayered plate or shell
domains is much richer, because it usually involves chem-
ical reactions, crystallization and strongly coupled non-
linear thermo-mechanical behaviors. The complexity of the
involved physics makes impossible the introduction of per-
tinent assumptions for reducing a priori the dimensionality
of the model from 3D to 2D. In that case a fully 3D
modeling is compulsory, and because of the richness of
the thickness description (many coupled physics and
many plies with different physical states and directions
of anisotropy) the approximation of the fields involved
in the models needs thousands of nodes distributed
along the thickness direction. Thus, fully 3D descrip-
tions may involve millions of degrees of freedom that
should be solved many times because of the history
dependent thermo-mechanical behavior. Moreover, when
we are considering optimization or inverse identifica-
tion, many direct problems have to be solved in order
to reach the minimum of a certain cost function.

Even if in what follows we are only addressing
thermo-elastic behaviors in quite simple configurations
whose behavior could be captured accurately by using
existing plate models, we prefer to address a new ap-
proach that having the same computational complexity
as plate models, calculates the real 3D fields. The main
ideas of this numerical technique that was described in
detail in [10], are here summarized and then applied to
calculate the residual stresses induced springback of
some ATP laminates.

When we consider the elastic behaviour defined in a
plate-like domain Ξ, it suffices considering an in-plane-
out-of-plane separated representation of each component
of the displacement vector:

u x; y; zð Þ ¼
u x; y; zð Þ
v x; y; zð Þ
w x; y; zð Þ

0
@

1
A �

Xi¼N

i¼1

uixy x; yð Þ � uizðzÞ
vixy x; yð Þ � vizðzÞ
wi
xy x; yð Þ � wi

zðzÞ

0
B@

1
CA

ð13Þ

where (x, y) ∊ Ω ⊂ ℜ2 and z ∊ I ⊂ ℜ.
In order to highlight the interest of such a decomposi-

tion we are comparing the complexity of PGD-based
solvers with respect to the standard finite element method.
For the sake of simplicity we will consider a hexahedral
domain discretized using a regular structured grid with Nx,
Ny and Nz nodes in the x, y and z directions respectively.
Even if the domain thickness is much lower than the other
characteristic in-plane dimensions, the physics in the
thickness direction could be quite rich, mainly when we
consider composites plates composed of hundreds of an-
isotropic plies in which the complex physics involved
requires fully 3D descriptions. In that case thousands of
nodes in the thickness direction could be required to
represent accurately the solution behaviour in that direc-
tion. In usual mesh-based discretization strategies this fact
induces a challenging issue because the number of nodes
involved in the model scales with Nx×Ny×Nz, however, if
one applies a PGD based discretization, and the separated
representation of the solution involves N modes (terms in
the finite sum decomposition), one should solve N 2D
problems related to the functions involving the in-plane
coordinates and N 1D problems related to the functions
involving the thickness coordinate. The computing time
related to the solution of the one-dimensional problems
can be neglected with respect to the one required for
solving the two-dimensional ones. Thus, the PGD com-
plexity scales as N×Nx×Ny, N being the number of terms
in the decomposition and Nx×Ny the number of nodes for
describing each function involving the in-plane coordi-
nates (x,y). The amount of information in the PGD solu-
tion is N×(Nx×Ny+Nz), taking into account both the
representation of 2D functions defined in Ω and 1D func-
tions defined in I, with Ξ 0 Ω × I.

By comparing both complexities, Nx×Ny×Nz and N×
Nx×Ny, we can notice that as soon as Nz≫N the use of
PGD-based discretization leads to impressive computing
time savings, making possible the solution of models never
until now solved, even using low performance computing
platforms. In our numerical experiments we realized that N
is in general of the order of few tens.
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Making a step forward, we could also consider the rein-
forcement of each ply as an extra-coordinate of the model
according to

u x; y; z; θ1; :::; θNp

� � ¼
u x; y; z; θ1; :::; θNp

� �
v x; y; z; θ1; :::; θNp

� �
w x; y; z; θ1; :::; θNp

� �
0
@

1
A �

� Pi¼N

i¼1

uixy x; yð Þ � uizðzÞ �
QNp

j¼1
Θ i;j

u θj
� �

vixy x; yð Þ � vizðzÞ �
QNp

j¼1
Θ i;j

v θj
� �

wi
xy x; yð Þ � wi

zðzÞ �
QNp

j¼1
Θ i;j

w θj
� �

0
BBBBBBBB@

1
CCCCCCCCA

ð14Þ

The only constraint to the effectiveness of such a sepa-
rated representation is the possibility of expressing each
component of the fourth order elasticity tensor Cijkl in a
similar separated form. For laminates it is quite straightfor-
ward as proven in [10].

An additional advantage of expression (14) is the
storage simplicity because this expression represents a
kind of metamodel where the compressed data were
obtained on-the-fly, i.e. during the separated representa-
tion construction. Thus, its storage is quite simple and
cheap, and then, it can be post-processed on line, in real
time, even using very light computing platforms, like
smartphones or tablets. Figure 5 illustrates a thermo-
elastic application on a smartphone, where the displace-
ment field is depicted at different z-coordinates (selected
from the horizontal slider) and for different orientations
of two plies of the laminate, the ones located at the top
and at the bottom, whose reinforcement orientation is
selected from the two vertical sliders.

Obviously when the laminate is equilibrated there is no
noticeable deformations and the plate remains plane, but as
soon as we simulate an unbalanced laminate by acting on
both vertical sliders, the plate deforms. Figure 6 shows the

envelope of all possible plate deformation for any combina-
tion of these two plies orientations.

Until now we have described a new numerical pro-
cedure able to address complex laminates considering
only thermo-elastic behaviors, but that could be gener-
alized for addressing more complex behaviors. In this
case classical plate theories fail, and the PGD separated
representation is an appealing alternative for solving
such complex models in the degenerated domains in
which they are defined (plate or shell-like domains),
where 3D solutions or enriched ones when parameters
are added as extra-coordinates, can be computed with a
complexity that scales with the one of 2D models char-
acteristic of standard plate or shell models.

Thus, as soon as a loading is applied on a laminate
(mechanical, thermal or the one associated with a resid-
ual stress field) we can compute very fast the deforma-
tion of the part; building-up in many cases a sort of
metamodel by introducing the desired parameters as
extra-coordinates.

In the ATP manufacturing process the conformed parts
deform because of the residual stresses that were installed in
the part due to thermoelastic loads applied during the tape
placement (laser heating, roller pressure and the tension
applied on the incoming tape), as sketched in Fig. 7.

Fig. 5 Post-processing the thermo-elastic parametric solution on a
smartphone

Fig. 6 Deformation envelope generated by all combinations of the
reinforcement orientations of the top and bottom plies

Fig. 7 Sketch of the thermo-mechanical loading during the ATP
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Evaluating the residual stresses generated by the ATP
process

Even if the thermo-mechanical problem could be formulated
in the laser-roller frame, as it was the case in the thermal
model previously considered, in what follows we consider
the frame related to the substrate that is assumed at rest.
Thus, we can apply directly the PGD-based solver proposed
in [10] and summarized in the previous section, but because
of the time dependence on the temperature field in that
frame we must solve the thermo-elastic problem at different
instants that correspond to different positions of the couple
laser-roller, as illustrated in Fig. 8.

As previously described, the temperature field is accessible
for any position of the thermal source. However, the mechan-
ical model deserves more comments. First of all, it is impor-
tant to notice that the geometry is changing with the interface
welding after acting the laser-roller as illustrated in Fig. 9.

In Fig. 9 we can notice that the interface tip at time t is
located at position r(t)0v ⋅ t. We perform a sequence of PGD
solutions of the thermo-elastic problem in the different
geometries associated with different time instants uniformly

distributed in the interval t 2 0; Lxv
� �

, with a time step Δt.
In order to compute the accumulated stresses at a certain

cross-section, representative in first approximation of the
ones installed at any location in the plate, we are computing

the stresses at the central section Lx
2 when the couple laser-

roller moves from x00 to x0Lx. When it reaches the right
border x0Lx the stress state at the central cross-section

x ¼ Lx
2 is frozen and it will be applied everywhere on the

substrate when the next tape will be placed, in order to
determine the accumulated residual stresses induced by the
whole process that involve the placement of the Np plies
composing the laminate.

The thermo-elastic problem to be solved at time t during
the placement of ply number n is defined in the domain Ω 0

[0, Lx] × [0, Ly] × [0, Lx] where Lz0n ⋅e0(n−1) ⋅e+e, being e
the tape thickness and (n−1) ⋅ e the substrate thickness
consisting of the n−1 tapes already placed. An interface
Γ(t) of length Lx−v ⋅ t, located at z0(n−1) ⋅ e and whose
tip is located at r(t)0v ⋅ t guarantees the possible disconti-
nuity of the displacement field across it. The geometry and
that interface are represented in Fig. 10.

When placing the n ply, we perform at the first configu-
ration (the one at t00 with the thermal source located on the

left border of the representative volume and the interface
Γ(t 0 0) crossing all the domain length because its tip is
located at x00) the small transformations linear thermo-
elastic calculation:

r � σ ¼ 0
σ ¼ C : "� a � T M; t ¼ 0ð Þ � Tref

� �� �þ σ0ðMÞ
" ¼ ruþ ruð ÞT

2

8<
: ð15Þ

where σ is the Cauchy’s stress tensor, ε the linearized
deformation tensor, α the thermal expansion tensor, Tref a
reference temperature that in what follows will be assumed
to be the ambient temperature Tamb, C the fourth order
elasticity tensor, u the displacement field and σ0(M) the
accumulated residual stress field installed in the substrate
because of the previous tape placements. The temperature at
each position M ∊ Ω and time t can be obtained as previ-
ously described from the steady state temperature field
obtained in the laser-roller frame.

As shown in Fig. 7 the substrate and the incoming tape are
assumed clamped on its left border as well as in the bottom
one in contact with the work-plane. In the remaining part of
the domain boundary tractions are assumed known, being null
everywhere except at the right border of the incoming tape, as
Fig. 10 illustrates, where a traction F applies.

Then, at the subsequents configurations, as the interme-
diate one depicted in Fig. 10, the stresses evolve because of

Fig. 8 Incremental thermo-mechanical coupling strategy

Fig. 9 Evolution of the geometry during the interface welding

Fig. 10 Placement of tape number n
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the heating combined with the interface welding that pre-
vents a stress-free cooling process. The stress evolution is
calculated from the solution of

r � Δσð Þ ¼ 0
Δσ ¼ C : Δ"� a � T M; tð Þ � T M; t �Δtð Þð Þð Þ

Δ" ¼ r Δuð Þþ r Δuð Þð ÞT
2

8<
: ð16Þ

where Δ(•) refers to the variation of the variable (•) between
two consecutive time steps: t − Δt and t.

In the previous thermo-mechanical problems (15–16), as
it was also the case when the thermal model was addressed,
the effects related to the changes of phase (solidification,
crystallization …) are in first approximation neglected, as
well as their associated inelastic behaviors (viscoelasticity,
plasticity …).

The solution of those models was performed by applying
a PGD strategy based on an in-plane-out-of-plane separated
representation of the displacement field:

Fig. 11 Residual stress σxx along the laminate thickness: (left) the reinforcement orientation of both plies is the same; (right) both orientations are
orthogonal

Fig. 12 Residual shear stress σxz along the laminate thickness: (left) the reinforcement orientation of both plies is the same; (right) both orientations
are orthogonal
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Moreover, to ensure the eventual discontinuity of the
displacement field across the interface Γ(t), we defined the
functions χ(x, y) and ξ(z), expressed by:

c x; yð Þ ¼ 0 if x � rðtÞ
x� rðtÞ if x > rðtÞ

�
ð18Þ

and

xðzÞ ¼ 0 if z � ðn� 1Þ � e
1 if z > ðn� 1Þ � e

�
ð19Þ

from which we can rewrite the separated representation (16) as:
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that ensures the displacement discontinuity across the interface
Γ(t) and the required continuity elsewhere. This kind of dis-
continuous enrichment constitutes the so-called dPGD, where
“d” refers to its discontinuous character.

When applying this procedure (thermal calculation –
discussed in section 3 - and the associated induced stresses
just described) we can obtain the final stress distribution

along a representative cross-section of a laminate, as shown
in Fig. 11 that compares the residual stresses σxx along the
laminate thickness for a laminate composed of two plies
(where for the sake of simplicity we considered the place-
ment of the upper ply on a stress-free substrate composed of
a single ply) both having the same reinforcement orienta-
tions (left figure) or being perpendicular orientations (right
figure). Figure 12 shows similar results for the shear com-
ponent of the residual stress σxz.

As it can be noticed in Figs. 11 and 12 the first config-
uration, equal reinforcement orientations does not imply
significant residual stresses so the distortion of the part will
be inappreciable. However, in the case of an unbalanced
laminate the residual stresses become more significant and a
noticeable springback is obtained after demoulding as
shown in Fig. 13.

Conclusions

The evaluation of residual stresses induced by the automated
tape placement process requires three distinct steps. The tem-
perature field in the laminate has to be first calculated. Several
approaches are conceivable. Here, we solve the thermal prob-
lem in the coordinate system attached to the heating device.
The line speed is therefore explicitly introduced in the formu-
lation of the problem by adding a convection term. The Proper
Generalized Decomposition proceeds by decoupling the space
coordinates by performing an in-plane/out-of-plane decompo-
sition that allows solving the 3D problem with the computa-
tional complexity characteristic of 2D solutions. Moreover,
the fiber orientation of each ply can be introduced as an extra-

Fig. 13 Springback induced by
the ATP residual stresses
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coordinate of the model and a parametric solution valid for a
large range of laminates (sequencing of plies) can then be
computed. Other extra-coordinates can be also introduced
allowing efficient material and process identification and/or
optimization.

The mechanical problem is solved incrementally in a
representative volume. The laser moves progressively along
the placement direction. For a given position, a thermo-
mechanical problem is solved, making use of the tempera-
ture field already computed. The residual stress is obtained
by considering the evolution of the stress on the central
cross-section of the representative volume.

Finally, with the residual stresses just obtained, the part
can be demoulded and the induced distortion can be calcu-
lated by solving the associated elastic problem at the struc-
ture level again by invoking the in-plane-out-of-plane PGD
decomposition of the associated elastic problem.

Nevertheless, very simple configurations were analyzed and
this work has still to be validated with more complex simula-
tions and experiments that constitute a work in progress.
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