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Abstract The conventional forming limit curve (FLC) is
significantly strain path-dependent and therefore is not valid
for formability evaluation of sheet metal parts that undergo
nonlinear loading paths during the forming process. The
stress-based forming limit curve (SFLC) is path-
independent for all but very large prestrains and is a prom-
ising tool for formability evaluation. The SFLC is an ideal
failure criterion for virtual forming simulations but it cannot
be easily used on the shop floor as there is no straightfor-
ward experimental method to measure stresses in stamped
parts. This paper presents a theoretical basis for predicting
the effective limit strain curve (ELSC) using the Marciniak
and Kuczynski (MK) analysis (Int J Mech Sci 9:609–620,
1967, Int J Mech Sci 15:789–805, 1973). Since the in-plane
strain components are sufficient to calculate the effective
strain, the ELSC can easily be determined from strains
measured in the stamping plant, and therefore it is a better
alternative to the SFLC for formability evaluation. This
model was validated using experimental data for AISI-
1012 steel (Molaei 1999) and AA-2008-T4 aluminum alloys
Graf and Hosford (Metall Trans 24A:2503–2512, 1993).
Predicted results showed that, similar to SFLC, the ELSC
remains practically unchanged for a significant range of
prestrain values under various bilinear loading paths, but
some strain-path dependence can be observed for significant
magnitudes of the effective prestrain (εe≥0.37 for AISI-
1012 steel and εe≥0.25 for AA-2008-T4 aluminum).
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Introduction

The formability of sheet metal is limited by the occurrence
of localized necking, i.e. non-uniform strains within a small
region in the plane of the sheet. The forming limits, given in
terms of limiting principal strains and determined from
observations of localized necking under different loading
conditions, are often represented on the so-called forming
limit curve (FLC).

The concept of a forming limit curve (FLC) was first
reported by Keeler and Backhofen [13] for drawn sheet
metal specimens. They concluded that localized necking in
sheet metals occurs for critical combinations of the major
and minor strains in the plane of the sheet. Subsequently this
concept was extended by Goodwin [4] to sheet specimens
stretched in biaxial tension, thereby completing the range of
loading paths between uniaxial tension on the left of the
FLC and balanced biaxial tension on the right. The FLC was
defined such that any combination of principal in-plane
strains which lies beneath the curve is safe, whereas combi-
nations of strains that lie above the FLC lead to a risk of
localized necking and rupture.

The FLC can be determined experimentally or theoreti-
cally. The experimental determination of FLC is relatively
costly as it requires specialized equipment, tooling and
experienced personnel. It is also time-consuming to conduct
formability tests, measure the principal strains and establish
where in strain space the onset of necking actually occurs.
The experimental determination of FLC requires great care
and consistency because it is used to establish the quality of
large volumes of production parts. The somewhat subjective

M. Nurcheshmeh (*) :D. E. Green
Department of Mechanical, Automotive and Materials
Engineering, University of Windsor,
401 Sunset Avenue,
Windsor, Ontario, Canada N9B 3P4
e-mail: nurches@uwindsor.ca

Int J Mater Form (2014) 7:1–18
DOI 10.1007/s12289-012-1104-9



determination of experimental FLC leads to variability in
FLC data and underscores the need for an objective ap-
proach to determine FLC. Consequently, researchers have
developed different theoretical models to predict the FLC of
sheet metals.

Hill [10] introduced the first criterion for localized neck-
ing in sheet metals under plane stress conditions using the
bifurcation flow theory. Hill assumed that the onset of
failure occurred once a discontinuity appears in the
Cauchy stress and the strain rate. Hill then formulated the
restrictions on the flow stress and the rate of work hardening
in the growth of the localized neck. He developed a method
that shows that at the onset of instability the magnitude of
plastic work decreases below the minimum value required
for uniform deformation along the zero-extension direction.

The MK method, developed by Marciniak and
Kuczynski in [16], was the first realistic mathematical mod-
el for FLC prediction, and has been the most common
theoretical approach for calculating the FLC of sheet mate-
rials. The MK method was extended by Hutchinson and
Neale [12] using J2 deformation theory. As a result of their
work, the entire FLC can be calculated using the MK
approach. In recent years it was employed by several
researchers, such as Yoshida et al. [29]; Butuc et al. [3];
Nurcheshmeh and Green [20–22] and many others.

It is well known that sheet deformation in many industrial
metal forming processes is characterized by nonlinear strain
paths and it has been observed by several researchers [1, 3,
5, 7, 14, 15, 24]) that the as-received FLC can translate and
distort significantly in strain space due to a nonlinear load-
ing path. This signifies that the as-received FLC is not
reliable for assessing the forming severity of parts that were
deformed in multi-stage forming operations. Furthermore,
since each material point in such a component may follow a
different (nonlinear) loading path, each location in the part
potentially has a different FLC. It is obviously not possible
to experimentally determine the FLC for every nonlinear
strain path in a given part, and even if it was, it would be
practically unmanageable to accurately carry out an analysis
of forming severity. So although 80 % of stamped parts can
be reliably evaluated with the as-received FLC, there are
nevertheless a number of complex stamped parts and parts
formed in multi-stage forming processes where the as-
received FLC is not adequate to carry out formability
analyses.

Researchers have also proposed that the forming limits of
sheet materials are more likely dependent on locally reach-
ing a critical state of stress rather than a critical state of
strain. Therefore an increasing number of researchers and
engineers have adopted the stress-based forming limit curve
(SFLC) to evaluate the forming severity of metal forming
operations. Kleemola and Pelkkikangas [14] discussed the
limitations of the FLC in the case of copper, brass and steel

sheets formed in a deep-drawing operation followed by a
flanging operation. They observed significant variability of
the FLC after this two-stage forming process and the result-
ing nonlinear strain paths, and recommended the use of a
stress-based forming limit curve (SFLC) as an alternative to
the FLC. They also provided experimental data that showed
the path independence of the stress-based forming limit
curves for these alloys.

Arrieux et al. [1] also pointed out the non-uniqueness of
the FLC after nonlinear loading cases and again proposed
the use of a stress-based forming limit curve in applications
where there is more than one loading stage.

Some researchers [24, 25, 27, 32, 33] showed that the
SFLC is path-independent and these investigations indicated
that forming severity can be accurately evaluated using the
SFLC in combination with a finite element simulation, not
only for proportional loading but also in cases where the
material has a complex strain history. Although it is difficult
to experimentally determine the SFLC, Stoughton showed
that it can be easily determined from the as-received FLC,
and therefore it is essential to be able to determine the FLC.

In 2005, Yoshida et al. [28] performed biaxial tension
tests on aluminum tubes utilizing a tension–internal pressure
testing machine to verify the path-independence of stress
forming limits. They confirmed that the stress forming limit
curve is path-independent. Yoshida et al. [29] subsequently
calculated the stress forming limits for a variety of two-stage
combined stress paths using the Marciniak and Kuczynski
(MK) model [16, 17] based on a phenomenological plastic-
ity theory. In this work they confirmed the experimental
observations of Yoshida et al. [28] and concluded that if
the path-independence of the SFLC holds, the equivalent
plastic strains at the onset of localized necking for a given
stress ratio must be identical, irrespective of the strain path.
Furthermore, Yoshida et al. also showed that the SFLC will
show path-dependence at very high prestrain magnitudes.
Nurcheshmeh and Green [20] also reported that the SFLC
will remain path-independent up to a large prestrain at
different loading paths and the SFLC will show some
path-dependence in the vicinity of the plane strain region
for very large prestrain magnitudes. In other research,
Yoshida and Suzuki [30] showed that the path-dependence
of SFLC may be due to the variations in the material’s
stress–strain behaviour in different loading stages.

The main obstacle to the widespread implementation of
the SFLC is the prohibitive cost and inaccessibility of ex-
perimental stress measurements in the metal forming indus-
try. In order to take advantage of the path-independence of
the SFLC in a prototype shop or a manufacturing plant,
Green [6]) proposed a simple methodology to predict the
FLC from the SFLC once the strain path in a given location
of a part is known. However press shops continue to mea-
sure the strains in stamped parts and to evaluate the
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measured strains against the conventional as-received FLC
[24, 26].

Zeng et al. [31] proposed an effective strain versus ma-
terial flow direction curve to assess localized necking in
sheet metals. They believed that this curve combines the
advantages of stress-based FLC for its path-independence
and the FLC for its ease of interpretation.

In the present work, a modified MK model was used to
predict history-dependent forming limit curves (FLC) and
effective limit strain curves (ELSC) for sheets that have
undergone various sequences of plane stress loading.
Predicted FLC and ELSC were compared with experimental
data obtained for AISI-1012 steel and AA-2008-T4 sheets
under the same loading conditions [5, 19]. Finally, the path-
dependence of ELSCs was evaluated based on different
non-proportional loading histories.

Theoretical model

The MK approach assumes that the sheet material has an
initial inhomogeneity which can be due to, for instance, a
non-uniform distribution of micro-voids or the roughness at
the surface of the sheet. Marciniak and Kuczynski [16]
modeled this inhomogeneity in a sheet specimen as a geo-
metric defect in the form of a narrow band with a reduced
thickness. Figure 1 shows a schematic of the MK model in
which the imperfection band is designated as region (b), and
region (a) is the area outside the band.

The initial imperfection factor of the groove,f0, is defined
as the thickness ratio between the two regions as follows:

f0 ¼ tb0
ta0

ð1Þ

where, subscript ‘0’ denotes the initial state. The definition of
the thickness ratio between these two regions has a significant
effect on the predicted limit strains. In many analyses this
factor is used as an adjusting parameter to correlate theoretical
results with experimental data. However in this work the
initial thickness ratio between regions (a) and (b) was consid-
ered more realistically as a function of the surface roughness
of the sheet metal as follows:

tb ¼ ta � 2RZ ð2Þ
where, RZ is the surface roughness of the sheet metal.

Stachowicz [23] experimentally showed that the surface
roughness of sheet metals changes during plastic deforma-
tion as follows:

RZ ¼ RZ0 þ Cd0:50 "be ð3Þ
where d0 is the initial grain size of the as-received sheet, εe
is the effective plastic strain, and C is a material constant. By

taking Stachowicz’s assumption into account the imperfec-
tion factor becomes:

f0 ¼
ta0 � 2 RZ0 þ Cd0:50 "be

� �
ta0

ð4aÞ

f ¼ ta0 � 2 RZ0 þ Cd0:50 "be
� �

ta0
exp "b3 � "a3

� � ð4bÞ

where "a3 and "b3 are the third principal strain increments in
areas (a) and (b), respectively.

As shown in Fig. 1, the orientation of the imperfection
band is considered randomly on the sheet surface and the
angle between the groove axis and the second principal
stress is defined as θ. The groove orientation will change
as plastic deformation proceeds, and this may affect the
limit strains. For better FLC prediction, groove rotation
during deformation can be considered in plasticity calcu-
lations and its value should be updated at every increment
of deformation. Barata et al. [2]) proposed an empirical
formula to specify the rotation of the imperfection band,
as follows:

tan θþ dθð Þ ¼ tan θð Þ 1þ d"a1
1þ d"a2

ð5Þ

where dε1
a and dε2

a are the major and minor principal
strains in the nominal area of the sheet, respectively.

A constitutive equation was derived in which the yield
function can be expressed in the following general form for
isotropic hardening:

f ¼ 3

2
Sij : N : Sij

� �1=2

� σe ð6Þ

where, S is the deviatoric stress tensor and N is a tensor that
describes the anisotropy of the sheet material in terms of the
anisotropic constants in Hill’s 1948 yield function [8].

The plastic potential function was implemented in the
MK analysis for plane stress conditions as follows:

2h ¼ Gþ Hð Þσx
2 þ F þ Hð Þσy

2 � 2Hσxσy þ 2Nσxy ¼ f 2 ð7Þ

where F, G, H and N are anisotropic coefficients. These
coefficients can be determined as a function of uniaxial
yield stresses [9]:

2G ¼ 1

σY
x

� �2 � 1

σY
y

� 	2 þ
1

σY
Bð Þ2

ð8aÞ

Int J Mater Form (2014) 7:1–18 3



2F ¼ 1

σY
y

� 	2 �
1

σY
x

� �2 þ 1

σY
Bð Þ2

ð8bÞ

2H ¼ 1

σY
x

� �2 þ 1

σY
y

� 	2 �
1

σY
Bð Þ2

ð8cÞ

2N ¼ 1

tYxy

� 	2 ð8dÞ

where σx
Y, σy

Y are the yield stresses in the x and y directions,
respectively, σb

Y is the yield stress in equibiaxial tension and
tYxy is the yield stress in simple shear in the xy plane.

The work-equivalent effective strain derived from in
Hill’s 1948 yield criterion can be written as follows:

"e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

H

r0r90
1þ r0 þ r90

1þ r90
r90

"2x þ
1þ r0
r0

"2y þ 2"x"y

� �� �s

ð9aÞ

where r0 and r90 are the plastic anisotropy (Lankford) coef-
ficients in the rolling and transverse directions, respectively.

Strain hardening was described by a power law and
includes strain rate sensitivity effect as follows:

σe ¼ k "
�
e

� 	m
"e þ "0ð Þn ð9bÞ

where ε0 is a prior uniform prestrain applied to the sheet, m
is the strain-rate sensitivity coefficient, n is the strain-
hardening coefficient, σe and εe are the effective stress and
strain, respectively.

The power law used for the second loading stage was
then modified according to the prestrain level. The different
power law functions in the nominal and weak areas of the

sheet for the second loading stage are represented by the
following equations, respectively:

σa
e ¼ k "e

� a� 	m
"ð1Þae þ "ð2Þae þ "0

� 	n
ð10aÞ

σb
e ¼ k "e

� b� 	m

"ð1Þbe þ "ð2Þbe þ "0

� 	n
ð10bÞ

where εe
(1)a and εe

(1)b are the effective plastic strains
reached after the prestrain in areas (a) and (b), respectively.

The associated flow rule was employed to calculate the
plastic strain increments as follows:

d"ij ¼ dl� gradðhÞ ¼ dl� @h

@σij
ð11Þ

where d1 is the plastic multiplier and h is the plastic poten-
tial function.

In order to predict the onset of necking, a uniform and
proportional biaxial stress was applied to the sheet in the MK
model. As plastic deformation proceeds, the major strain in
the thinner band becomes increasingly greater than in the rest
of the sheet. Consequently, the thickness ratio (tb/ta) decreases
until, eventually, a localized neck is formed. Throughout the
deformation it was assumed that the strain component in the
neck direction in the imperfection band is always the same as
the corresponding strain outside the groove:

d"att ¼ d"btt ð12Þ
Furthermore, the equilibrium of the normal and shearing

forces across the imperfection are also maintained through-
out the deformation, i.e.:

Fa
nn ¼ Fb

nn ð13aÞ

Fa
nt ¼ Fb

nt ð13bÞ

Fig. 1 Schematic of the MK
model with a thickness
imperfection in the sheet
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where subscripts n and t denote the normal and tangential
directions of the groove, respectively, and F is the force per
unit width, i.e.:

Fa
nn ¼ σa

nnt
a ð14aÞ

Fb
nn ¼ σb

nnt
b ð14bÞ

Fa
nt ¼ σa

ntt
a ð14cÞ

Fb
nt ¼ σb

ntt
b ð14dÞ

By combining Eqs. (1), (9b) and (14a, 14b) the following
relation was obtained:

σa
nn

σa
e

� �
σb
nn

σb
e

� �
¼ f "0 þ "be

� �n�"be

� m� �
"0 þ "ae
� �n�"ae

� m� �
ð15aÞ

Since the strain rate is defined as "e
� ¼ dee=dt, it follows

that:

σa
nn

σa
e

� �
σb
nn

σb
e

� �
¼ f "0 þ "be

� �
= "0 þ "ae
� �� �n � d"be=d"

a
e

� �m
ð15bÞ

The stress transformation rule leads to the expressions:

σa
nn ¼ σa

xcos
2 θð Þ þ σa

ysin
2 θð Þ ð16aÞ

σa
nt ¼ � σa

x � σa
y

� 	
sin θð Þ cos θð Þ ¼ σa

x a � 1ð Þ sin θð Þ cos θð Þ½ �
ð16bÞ

where α is the ratio of the second true principal stress to the
first true principal stress in the nominal area (a ¼ σa

2 σa
1

�
)

and indicates the stress path.
Considering the yield criterion and associated flow rule,

the strain path ρ can be written as:

ρ ¼ d"2
d"1

¼ F þ Hð Þa � H

1� Ha
ð17Þ

Expressions similar to Eqs. (16a) and (16b) can be writ-
ten for region (b), and using Eqs. (12), (13a, 13b), and (15a,
15b) we obtain:

σb
nt

σb
nn

¼ σa
nt

σa
nn

¼ a � 1ð Þ sin θð Þ cos θð Þ
cos2 θð Þ þ asin2 θð Þ ð18Þ

With consideration of the consistency condition, the plas-
tic potential function and the strain transformation rule we
have:

d"ae
σa
e

F þ Hð Þ � aa � H½ �σa
xcos

2θþ 1� Haað Þσa
xsin

2θ
� � ¼

σb
x

d"be
σb
e

F þ Hð Þ � ab � H
� �

cos2θþ 1� Hab
� �

sin2θ
� �

ð19Þ
By combining Eqs. (15a, 15b), (18), and (19), the final

governing equation was analytically determined as a func-
tion of the ratio of the effective plastic strain inside and
outside the imperfection band (η0εbe/ε

a
e). This final differ-

ential equation indicates the evolution of the effective plas-
tic strain ratio η as the sheet is deformed.

When the material inhomogeneity is thus modeled as a
geometrical thickness variation, the physical problem is
thereby simplified to a single dimension. Because of the
plane stress assumption, the stress and strain increments
inside the neck can be solved directly in terms of the strain
increments prescribed outside the neck. Although the strain
ratio (dρ0dε2/dε1) outside the groove remains constant dur-
ing any deformation stage, it actually decreases inside the
groove until it eventually approaches plane strain deforma-
tion (d"b2 d"b1

� ¼ 0). When this occurs, the principal strains
outside the groove are identified as the limit strains for this
material under the corresponding deformation mode. The
analysis can be repeated for different initial orientations (ϕo)
of the groove in the range between 0o and 45o and the
forming limit can be obtained after minimizing the "a1 vs.
ϕo curve. While the minimum in-plane limit strain is deter-
mined for any specific loading path, the corresponding
effective strain in region (a) will denote the effective limit
strain for the current loading path. By changing the strain
path between ρ0−0.5 and ρ01.0 the entire forming limit
curve and the corresponding effective limit strain curve can
be obtained.

Validation of the MK model

The validation of the proposed MK model was carried out
by comparing predicted FLC with the experimental data
obtained with two different sheet materials: AISI-1012 low
carbon steel [19] and AA-2008-T4 aluminum alloy [5].
Table 1 shows material data including thickness, strain
hardening constants, anisotropy coefficients, and surface
roughness data for the AISI-1012 steel sheet and Table 2
shows the same data for the AA-2008-T4 aluminum sheet.

The parameters in Stachowicz’s surface roughness equa-
tion (C, d0, RZ0) were not available for the AA-2008-T4
aluminum sheet that was used in Graf and Hosford’s
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investigation [5]. These parameters were therefore calibrat-
ed by fitting the theoretical FLC to the experimental as-
received FLC. The parameters were optimized one at a time
by a series of FLC predictions in which one parameter was
varied successively while the other two were held constant.
For each case, the value of the variable parameter that gave
the best overall fit of the predicted FLC with the experimen-
tal as-received FLC was selected as the calibrated value for
this parameter. This procedure was repeated for all three
parameters and the material constants thus obtained are
C00.70, d008.00 μm and RZ002.5 μm.

Equation (4a) was used to calculate the value of the initial
imperfection factor in the MK analysis. It was found that f00
0.995 for AISI-1012 steel and f000.997 for AA-2008-T4
aluminum.

The experimental FLC work was described by Molaei
[19] and Graf and Hosford [5]. As-received FLC were
determined by stretching sheet specimens over a hemispher-
ical dome until the onset of necking and by measuring the
strains in the necked region. Other FLCs were also obtained
by prestraining large sheet specimens, either in uniaxial
tension or in equibiaxial tension, and then forming these
prestrained specimens over hemispherical domes up to the
onset of necking. The reader can refer to the original pub-
lications by Molaei [19] and Graf & Hosford [5] for further
details on the experimental work.

The FLCs of AISI-1012 steel and AA-2008-T4 aluminum
sheets were calculated and compared with the corresponding
experimental data [5, 19] determined for both as-received
sheets and for samples deformed along nonlinear loading
paths. Comparison of the theoretical and experimental FLC
for as-received AISI-1012 steel is shown in Fig. 2. This figure
shows that the theoretical model predicts the as-received
forming limit of this steel with an acceptable level of accuracy.

The FLCs were also predicted for steel specimens de-
formed along two types of bilinear loading paths: in the first
case, the sheet metal was subjected to 0.08 equibiaxial pre-
strain, and in the second case to 0.1 uniaxial prestrain. The
FLCs of AISI-1012 steel for these two nonlinear loading paths
are plotted in Figs. 3 and 4 with the corresponding

experimental FLCs. In the case of 0.08 equibiaxial prestrain
shown in Fig. 3, experimental data is only available for the left
side of the shifted FLC. Figures 3 and 4 indicate that the
proposed MK model is capable of predicting the FLCs of this
steel sheet subject to non-proportional loading with good
accuracy.

The developed MK model was further validated by com-
paring theoretical FLCs of AA-2008-T4 aluminum sheet with
the corresponding experimental data [5]. Figures 5, 6, 7 com-
pare the predicted and experimental FLCs for AA-2008-T4
aluminum sheet metal. As mentioned previously, some of the
material constants (C, d0, RZ0) used to calculate the initial
imperfection factor (Eq. 4a) of AA-2008-T4 aluminum alloy
were not provided by Graf and Hosford [5], therefore these
constants were adjusted so that the predicted FLC would be
calibrated to the experimental as-received FLC (Fig. 5).

Figure 6 shows the predicted and experimental FLCs of
AA-2008-T4 aluminum sheets after 0.04 and 0.12 equibiaxial
prestrain. The comparison between predicted and experimen-
tal FLCs after preloading to 0.05 and 0.12 in uniaxial tension
is shown in Fig. 7. Both Figs. 6 and 7 show that, even when in
Hill’s 1948 quadratic yield function is used, this MK model
still predicts the FLCs of this aluminum alloy with an accept-
able accuracy. It is expected that the calculation of the FLC
using a non-quadratic yield criterion would lead to more
accurate predictions for this aluminum sheet.

Effective limit strain curves

Determination of the effective limit strain curve

As seen in the previous section, the FLC is a dynamic curve
that can vary significantly due to changes in loading path.
However, Yoshida et al. [29] and Zeng et al. [31] showed that,
for a given stress ratio, the equivalent plastic strain at the onset
of localized necking remains constant irrespective of the strain
path. Therefore the present authors propose to employ the
effective limit strain curve (ELSC) rather than the convention-
al FLC to evaluate the severity of industrial forming

Table 1 Material properties of AISI-1012 low carbon steel [19]

r0 r45 r90 F G H K (MPa) n m d0 (μ) RZ0 (μm) C t0 (mm)

1.4 1.05 1.35 0.432 0.417 0.583 238 0.30 0.01 25 6.5 0.104 2.5

Table 2 Average mechanical properties of AA-2008-T4 [5]

r0 r45 r90 F G H K (MPa) n m d0 (μ) RZ0 (μm) C t0 (mm)

0.58 0.48 0.78 0.246 0.633 0.367 535 0.27 −0.003 8* 2.5* 0.70* 1.7

*Data determined by calibration
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processes. The ELSC is defined in terms of the effective strain
at the onset of necking versus the final strain path just prior to
necking. The ELSC can be easily determined from an exper-
imental (or predicted) as-received FLC which consists of a set
of in-plane principal strains (ε1, ε2) that define the forming
limit. The effective strain is a function of the principal strains
and is calculated assuming a suitable yield function. For
instance the effective strain for in Hill’s 1948 yield criterion
can be defined using Eq. (9a). The strain path is defined in Eq.
(17) as the ratio of the two in-plane principal strains in the final
stage of a forming process.

Utilization of the effective limit strain curve

A typical theoretical ELSC is shown in Fig. 8, and similar to
the conventional FLC, effective strain data that lie below the

ELSC would lead to a safe part and effective strain data that
lie on or above this curve would indicate a risk of necking.
In order to illustrate how the ELSC can be used, Fig. 8
shows a diagram with an ELSC and three different theoret-
ical loading paths that lead to the same effective limit strain.
Path 1 and Path 2 represent two different bilinear loading
paths in principal strain space and Path 3 represents a linear
loading path in a sheet metal component. Path 1 indicates
that a material point in the formed part was first strained in
equibiaxial tension (ρ01.0) up to an effective plastic strain
of 0.23 and then in biaxial tension with a strain ratio ρ00.65
up to the onset of necking. Each linear portion of this
bilinear strain path is represented in Fig. 8 by a vertical line
(i.e. a constant strain ratio), and the horizontal line that links
the two vertical segments merely represents a momentary
transition between these two linear strain paths. Similarly,

Fig. 2 Comparison of
theoretical and experimental
FLC of as-received AISI-1012
steel sheet

Fig. 3 Theoretical and
experimental FLC of AISI-
1012 with 0.08 equibiaxial
prestrain
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loading path 2 describes the strain history at a different
location in the part and shows that the sheet material was
prestrained first in uniaxial tension (ρ0−0.5) up to an effec-
tive strain of εe00.12 and secondly in biaxial tension with a
strain ratio of ρ00.65 up to the onset of necking. Once
again, the horizontal line that links the two vertical segments
does not represent a deformation, per se, but is simply a
convenient way to create a visual link between the two
linear strain paths. Loading path 3 represents the strain
history of a material point that maintained a constant strain
ratio of ρ00.65 up to the onset of necking.

The three loading paths in Fig. 8 begin very differently
but they reach the same strain ratio in the final stage of the
hypothetical forming process. According to the observations
of Yoshida et al. [29] and Zeng et al. [31] the onset of plastic
instability should occur for the same value of the effective
strain for all three strain paths. This signifies that regardless

of the previous strain history, the onset of necking only
depends on the final strain ratio.

The conceptual effective strain vs. strain ratio diagram
shown in Fig. 8 suggests that any arbitrary nonlinear strain
path can be represented by a finite series of linear strain
paths, each having a different strain ratio. It is thought that
in the majority of cases, the actual strain path at a particular
location could easily be approximated by a manageable
number of linear segments.

Assuming for the moment that the ELSC is invariable,
the ELSC appears to be a very user-friendly criterion to
evaluate the forming severity of stamped parts. Once the
ELSC is established for a given sheet material it can be used
to evaluate any forming process with either linear or non-
linear loading paths. This failure criterion can be adopted to
assess part quality in the press shop by measuring the
principal surface strains in areas of concern, as it has been

Fig. 4 Theoretical and
experimental FLC of AISI-
1012 with 0.10 uniaxial
prestrain

Fig. 5 Comparison of
calibrated and experimental
FLCs of as-received AA-2008-
T4 aluminum sheets
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done for decades. Once the principal strains are recorded,
simple software on a laptop computer would suffice to
calculate the strain ratios and the effective strains at given
locations. For parts that exhibit non-proportional strain his-
tories, it would be necessary to produce parts at different
intermediary stages throughout the forming process. After
measuring the strains in the same material location at each
successive stage, it would be possible to construct the multi-
linear strain path for that location. By comparing the mea-
sured effective strain data with the ELSC, it can be easily
verified if the process is safe and robust.

Moreover, this ELSC could be very easily implemented
into finite element software to evaluate the results of virtual
forming simulations. Indeed, finite element software incre-
mentally computes the strains in each element of a virtual
part and therefore the strain ratio and the effective plastic
strain in each element can be deduced at every increment of

deformation. Consequently, the entire strain path of each
element can be tracked and the forming severity of the part
can be evaluated by comparing the effective strain vs. strain
ratio data for the final strain increment with the ELSC.

The effective limit strain curves of AISI-1012 steel
corresponding to all the predicted and experimental FLCs
in Figs. 2, 3, and 4 for both as-received and nonlinear
loading paths are shown in Fig. 9. It can be seen in this
figure that the theoretical ELSCs of this grade of steel lie on
a single curve regardless of the type of prestrain. Also, the
experimental data for the different loading paths vary within
a narrow band around the theoretical ELSCs. The discrep-
ancies between predicted and experimental data may be due
to inaccuracies in strain measurements, but are perhaps more
likely due to inaccurate estimations of the experimental
strain paths. Indeed, it would have been difficult for
Molaei [19] to maintain exactly constant strain ratios during

Fig. 6 Theoretical and
experimental FLCs of AA-
2008-T4 with 0.04 and 0.12
equibiaxial prestrain after
calibrating the MK model to
the as-received FLC

Fig. 7 Theoretical and
experimental FLCs of AA-2008-
T4 with 0.05 and 0.12 uniaxial
prestrain after calibrating theMK
model to the as-received FLC
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each stage of the two-stage loading process. In fact the
various strain paths that are typically generated in hemi-
spherical dome tests remain essentially linear throughout
most of the test, however, prior to the onset of necking they
tend to rotate toward plane strain. Therefore the bilinear
strain paths that were assumed in the predictions shown in
Fig. 9 are not likely to be exactly the same as those that were
followed during Molaei’s experimental work [19].

The predicted and experimental ELSCs of the AA-2008-
T4 aluminum alloy in the as-received and prestrained con-
ditions are shown in Fig. 10. It can be seen that most of the
experimental data for this alloy lie within a narrow band
around, or close to, the theoretical ELSCs. The discrepan-
cies between the theoretical and experimental data may be
partly due to the assumption that the strain ratio was con-
stant during each stage of the two-stage loading history, and
partly due to the fact that in Hill’s 1948 yield criterion is not

adequate to describe the plastic behaviour of aluminum
alloys. For this reason, the effect of the anisotropic yield
criterion on the prediction of ELSC will be discussed in the
next section. It can also be seen from Fig. 10 that all the
predicted ELSCs for the AA-2008-T4 aluminum alloy
merge into a single curve except for the ELSC data obtained
after 0.12 prestrain in equibiaxial tension. This particular
prestrain corresponds to an effective prestrain εe00.23
which is greater than the plane-strain minimum of the as-
received ELSC (ELSC000.19 when ρ00). This observation
will be further discussed in section 4.4.

Influence of the yield criterion on the effective limit strain
curve

In order to observe the influence of the yield criterion on the
prediction of ELSC, three different yield criteria were

Fig. 8 Schematic illustration of
the ELSC following different
loading paths

Fig. 9 Theoretical and
experimental ELSCs of AISI-
1012 for different loading paths
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considered to predict the ELSC of both AISI-1012 steel and
AA-2008-T4 aluminum alloys: the von Mises [18] and Hill
1948 [8] quadratic yield criteria and Hosford’s 1979 [11]
non-quadratic yield criterion. The ELSCs of AISI-1012 steel
predicted with these three yield criteria are compared with
the corresponding experimental data in Fig. 11. As it can be
seen, all three criteria predict the ELSC of this grade of steel
with relatively good accuracy. It can also be seen that the
variability in the predicted ELSCs due to the yield criterion
is worse at the far left and right ends compared to the centre
of the ELSC, and this underscores the importance of using a
yield function that accurately describes the planar anisotro-
py of the sheet material.

The ELSC of AA-2008-T4 aluminum sheet was also
predicted with the same yield criteria and the comparison
of predicted and experimental ELSCs is shown in Fig. 12.

This figure shows that the two quadratic yield criteria un-
derestimate the ELSC of this AA-2008-T4 aluminum sheet
and that Hosford’s 1979 non-quadratic yield function pro-
vides a better prediction than the quadratic yield criteria.

Uniqueness of effective limit strain curves

In this section, the strain path-dependence of the ELSC is
investigated. The MK analysis was used to predict the
ELSCs of AISI-1012 steel and AA-2008-T4 aluminum
sheets after a theoretical prestrain along different loading
paths and with different magnitudes of prestrain. ELSCs
were predicted for the AISI-1012 steel sheet after prestrains
of εe00.10, 0.20 and 0.45 in uniaxial tension and also in
equibiaxial tension. The ELSCs of the AISI-1012 steel
obtained for prestrains in uniaxial tension are shown in

Fig. 10 Theoretical and
experimental ELSCs of AA-
2008-T4 for different loading
paths

Fig. 11 Comparison of the
ELSC of AISI-1012 steel
predicted with different yield
criteria
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Fig. 13, and it can be seen that for prestrains up to a certain
magnitude (εe≤0.20) the predicted ELSCs are all identical.
However, for a very high value of prestrain (e.g. εe00.45)
the ELSC shifts upward, especially in the vicinity of plane-
strain deformation.

Figure 14 shows the predicted ELSCs of the steel sheet
after effective prestrains of εe00.10, 0.20 and 0.45 in equi-
biaxial tension. Figure 14 indicates that the ELSC is invari-
able for prestrains in equibiaxial tension up to significant
magnitudes (εe≤0.20), however some variability appears for
an effective prestrain of εe00.45.

In order to determine the effect of the prestrain path on
the ELSC, the ELSCs for AISI-1012 steel sheet obtained
after an effective prestrain εe00.45 in uniaxial and in equi-
biaxial tension are shown together in Fig. 15. It is evident
from this figure that the ELSC is essentially the same for

both strain histories, and the greatest difference between the
ELSCs calculated for bilinear loading paths and the as-
received ELSC occurs in the mode of plane strain (ρ00).

In an attempt to quantify the variability of the ELSC, the
deviations between the ELSCs predicted for bilinear strain
paths and the as-received ELSC of AISI-1012 steel were cal-
culated. The percent deviations are shown in Fig. 16 and it can
be seen that for lower values of the effective prestrain (εe≤
0.20), the differences between the ELSCs are negligible across
the entire range of strain paths (−0.5≤ρ≤1.0). However when
the effective prestrain reaches εe00.45, the deviation between
the ELSCs increases to a maximum of 17 %. It is important to
notice that the greatest deviation occurs in the mode of plane
strain and this difference gradually decreases as the strain path
moves away from plane strain until it practically reaches zero at
each end of the curve (i.e. for ρ0−0.5 and for ρ01.0).

Fig. 12 Comparison of the
ELSC of AA-2008-T4 alumi-
num predicted with different
yield criteria

Fig. 13 Comparison of the
ELSCs after different levels of
prestrain in uniaxial tension
with the as-received ELSC of
AISI-1012 steel
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Since the maximum deviation of the ELSC occurs in
plane strain (i.e. for ELSC0), the deviation from the as-
received ELSC0 was plotted as a function of the magnitude
of the effective prestrain. Figure 17 shows the percent devi-
ation of ELSC0 from the as-received value as a function of
the effective prestrain, and it can be seen that for effective
prestrains less than εe00.30, the maximum deviation from
the as-received ELSC does not exceed 2 %, and for effective
prestrains up to εe00.41 (i.e. the as-received ELSC0) the
maximum deviation remains less than 10 %. If the maxi-
mum allowable deviation from the as-received ELSC0 is set
at 0.02 effective strain (i.e. approximately 5 % deviation
from the as-received ELSC0), which typically corresponds
to the experimental error in conventional FLC strain data,
then the ELSC of AISI-1012 steel can be considered

practically path-independent for effective prestrains up to
εe00.37 (see Fig. 17).

A similar analysis was carried out in order to investigate
the variability of the ELSC of AA-2008-T4 aluminum. Once
again, the MK model was used to predict the ELSCs of the
AA-2008-T4 aluminum sheet after bilinear loading paths
with prestrains of different magnitudes (εe00.10, 0.15,
0.20 and 0.25) in either uniaxial tension or equibiaxial
tension.

Figure 18 shows the ELSCs of the AA-2008-T4 alumi-
num that were predicted for different levels of prestrain in
uniaxial tension. For prestrain values up to εe00.20, the
ELSC of this aluminum alloy remains practically invariable.
However, for a prestrain of εe00.25, a significant variation
in the ELSC can be observed. Similarly, the ELSC was

Fig. 14 Comparison of the
ELSCs after different levels of
prestrain in equibiaxial tension
with the as-received ELSC of
AISI-1012 steel

Fig. 15 Comparison of the
ELSCs after an effective
prestrain εe00.45 in uniaxial
and equibiaxial tension
with the as-received ELSC of
AISI-1012 steel
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predicted for this aluminum alloy after prestrains of increas-
ing magnitude in equibiaxial tension and the predicted
ELSCs are plotted in Fig. 19. Again, no significant change
in the ELSC is observed for effective prestrain values up to
εe00.20.

The ELSC of the AA-2008-T4 aluminum sheet predicted
for different bilinear loading paths but with the same mag-
nitude of prestrain, εe00.25, are plotted in Fig. 20, and it can
be seen that the ELSCs for a prestrain in uniaxial and in
equibiaxial tension are identical.

The variability of the ELSC of AA-2008-T4 aluminum
alloy with the magnitude of the effective prestrain was also
evaluated and plotted in Fig. 21. When the sheet material is
prestrained up to an effective strain of εe00.15, the variation
in the ELSC remains less than 2 % across the entire range of
strain ratios (−0.5<ρ<1.0). Figure 21 also shows that the
deviation of the ELSC relative to the as-received ELSC can

reach over 40 % when the magnitude of the prestrain is εe0
0.25, and similar to the AISI-1012 steel, the greatest devia-
tion from the as-received ELSC of AA-2008-T4 occurs in
the region of plane-strain deformation. In order to visualize
the influence of the prestrain on the ELSC, the maximum
deviation from the as-received ELSC (i.e. the deviation of
ELSC0) was plotted as a function of the effective prestrain,
and Fig. 22 shows how the percent deviation of ELSC0

increases with the effective prestrain for this AA-2008-T4
aluminum alloy. Considering Figs. 21 and 22, it appears that
the ELSC of AA-2008-T4 is practically invariable until the
magnitude of the effective prestrain reaches εe00.19 (i.e. the
value of the as-received ELSC0); but beyond this value, the
variation of ELSC0 increases with the magnitude of the
prestrain.

Based on the predicted ELSCs for AISI-1012 steel in
Fig. 15 and the similar results for AA-2008-T4 aluminum

Fig. 16 Deviation in effective
limit strain between prestrained
and as-received ELSCs for dif-
ferent effective prestrain mag-
nitudes in AISI-1012 steel
sheets

Fig. 17 Maximum deviation of
the effective limit strain
between prestrained and as-
received ELSCs of AISI-1012
steel for different magnitudes of
effective prestrain
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sheets in Fig. 20, it appears that the magnitude of the
effective strain prior to the final forming stage has an influ-
ence on the variability of the ELSC whereas variations in
strain history do not. For both sheet materials, the ELSC
remains unchanged up to a certain level of effective strain,
but begins to shift upward in the vicinity of plane strain for
prestrains that exceed this threshold.

It is also important to observe in Figs. 18, 19 and 20 that
when the magnitude of the effective prestrain exceeds the
as-received ELSC0, the predicted ELSC becomes perfectly
flat in the vicinity of plane strain. Moreover, this flat, hor-
izontal portion of the ELSC lies at the very same level of
effective strain as that which was specified in the prior strain
history. Therefore, it would seem that the most significant
variations in the shape of the ELSC of this AA-2008-T4
aluminum are not so much due to strain path-dependence,

but rather to the fact that the effective limit strain can never
be less than that which was safely reached prior to the final
linear strain path. Therefore the path-dependence should
really be evaluated by the deviation from the as-received
ELSC outside the flat, horizontal section of the prestrained
ELSC. In the case of this AA-2008-T4 aluminum alloy the
maximum percent deviation outside the flat section of the
ELSC (i.e. for ρ<−0.27 and ρ>0.34 as seen in Figs. 18, 19,
20) is less than 10 % when an effective prestrain of εe00.25
is applied. This level of deviation from the as-received
ELSC corresponds in fact with a variation in effective strain
of about 0.02, which is typically equivalent to the experi-
mental error in conventional FLC data. Therefore the ELSC
of this AA-2008-T4 aluminum can be considered practically
path-independent for effective prestrains up to εe00.25. In
this work, plastic strains were computed assuming isotropic

Fig. 18 Comparison of the
ELSCs after different levels of
prestrain in uniaxial tension
with the as-received ELSC of
AA-2008-T4 aluminum

Fig. 19 Comparison of the
ELSCs after different levels of
prestrain in equibiaxial tension
with the as-received ELSC of
AA-2008-T4 aluminum
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hardening and therefore the conclusions in this paper are
based on this assumption. Some unreported work was car-
ried out in which the FLC and ELSC were computed using
the combined isotropic and nonlinear kinematic hardening
rule; it was found that the differences in FLC due to the
hardening rule were relatively small and the ELSC still
remained unchanged for a significant range of prestrains.
Nevertheless, there is a need for further research to more
fully understand the influence of anisotropic hardening on
the variability of ELSC when the sheet material is subject to
nonlinear loading paths using different alloys.

Finally, it is thought that the region near plane strain
between the as-received ELSC and the flat portion of an
ELSC obtained after a severe prestrain (Figs. 18, 19, 20)
corresponds approximately with the region in stress space
where the yield locus lies above the stress forming limit

curve (SFLC) after the yield locus has expanded due to
severe work hardening. When the effective strain reaches
this region of the effective limit strain diagram, the material
will remain in an elastic state until the stress reaches the
yield locus. But once the stress reaches the yield locus,
plastic deformation will immediately lead to strain localiza-
tion, and necking will take place because the SFLC has
already been exceeded.

Conclusions

In this research, forming limit curves and effective limit
strain curves of AISI-1012 steel and AA-2008-T4 aluminum
sheets were predicted for linear and bilinear loading paths
using a modified MK-based model. The developed MK

Fig. 20 Comparison of the
ELSCs after an effective
prestrain εe00.20 in uniaxial
and equibiaxial tension with the
as-received ELSC of AA-2008-
T4 aluminum

Fig. 21 Deviation in effective
limit strain between prestrained
and as-received ELSCs for dif-
ferent effective prestrain mag-
nitudes in AA-2008-T4
aluminum sheets
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analysis utilizes surface roughness and its evolution during
deformation to define a dynamic and realistic non-
uniformity factor in the sheet metal. Furthermore, the rota-
tion of the imperfection band was considered in plastic
calculations to minimize theoretical limit strains.

It was shown that it is advantageous to represent sheet
forming limits in terms of the effective limit strain versus the
principal strain ratio, because this failure criterion can easily
be used to assess the forming severity of parts that were
manufactured by a process that generates complex, multi-
linear strain histories. Furthermore, the ELSC can be easily
implemented in both process simulation software and in the
press shop where the quality of actual parts needs to be
closely monitored.

Predictions of the ELSC of AISI-1012 steel and of AA-
2008-T4 aluminum sheets using the MK model were com-
pared with calculations of the ELSC using experimental
forming limit data that was determined from specimens that
were formed along bilinear loading paths [5, 19]. The cor-
relation between predicted and experimental ELSC data was
quite good, and the discrepancies are thought to be due to
the fact that the actual strain paths generated during the
experimental work differed slightly from the bilinear strain
paths that were assumed in the calculations.

Furthermore, predictions of the ELSC obtained after a
prestrain in uniaxial and equibiaxial tension with a same
level of effective prestrain were found to be essentially
identical, therefore the ELSC appears to be insensitive to
the strain path but dependent on the magnitude of the
effective prestrain. Indeed, the ELSC remains invariable
until the magnitude of the effective prestrain exceeds a
certain threshold. When this threshold is exceeded, howev-
er, the ELSC starts to shift up in the vicinity of plane strain
deformation (ρ00). It was also shown that, when an effec-
tive prestrain is applied that is greater in magnitude than the

as-received ELSC0 and that also corresponds with a prior
strain history that terminates safely below the ELSC, the
minimum of the ELSC will shift up to this same effective
prestrain. This shifting of the ELSC in the region of plane
strain is primarily a consequence of the fact that the effective
limit strain can never be less than the effective prestrain that
was safely attained in a previous strain history (i.e. with a
different strain ratio).

The forming limit predictions carried out in this study
seem to indicate that the variability of the ELSC need only
to be considered in the event of very large values of pre-
strain (εe>0.37 for AISI-1012 steel, and εe>0.25 for AA-
2008-T4 aluminum) and therefore the ELSC should be
suitable for the analysis of forming severity in a majority
of metal forming operations. This signifies that the ELSC is
a better alternative to the stress-based forming limit curve
(SFLC), especially in press-shop applications. However,
further experimental work is required to demonstrate the
efficiency and reliability of the ELSC in the press shop.
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