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Abstract Roll bending process is an important metal form-
ing process used to produce cylindrical and conical shells
and sections for various applications. 3-roller conical bend-
ing is one such process. For this process it is important to
evaluate the maximum force acting on the rollers during the
rolling process for designing the rolling machine as well as
for evaluating the coefficient of friction at roller-plate inter-
face. It is observed that maximum force is acting on the
roller during the static bending in roll bending process
[Gandhi et al. 2008]. In the present study mathematical
model for force prediction on the rollers have been devel-
oped. Effects of various material properties and geometrical
parameters have been studied. It has been concluded that the
proposed model can be effectively used to get the roller
bending force for given geometrical parameters and material
properties. It can also be used to get roller plate interface
friction, if the experimental value of roll bending force is
available.

Nomenclatures
B1, B2 Bearings for top roller
B3,B4,B5,
B6

Bearings for bottom rollers

w width of the blank in mm
t thickness of the plate in mm
M bending moment in N-m

P Vertical load at the top roller and bending plate
interface in N

a horizontal distance of the bottom roller centers
in mm

x half the horizontal distance of the bottom roller
centers in mm

Q Normal force exerted by the plate on the bot-
tom roller at roller plate interface in N

θ Angle between frictional force and horizontal
plane at the roller plate interface in radians

U Vertical distance travelled by the top roller for
first stage of static bending in mm

E Young’s modulus in N/mm2

K strength coefficient in N/mm2

n strain hardening exponent
r1 radius of bottom roller in mm
R radius of curvature of the bent plate in mm
y distance of fiber from neutral plane in mm
I Second moment of area (For plate it is equal to

bt3/12) mm4

μ coefficient of friction at roller plate interface
ε strain
σ stress in N/mm2

υ Poisson’s ratio
yep distance of the fiber upto which elasticity E is

constant in mm
χ curvature of the bend plate between bottom

rollers mm−1

ε* strain at yield point
E* the ratio of modulus of elasticity to σs

te thickness of elastic layer in mm
ε0 strain of the strip mid-line
" effective strain
σ effective stress
β bottom roller inclination
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AF, AR Center distance between bottom rollers at front
and rear end respectively

α top roller inclination in the present case it is zero
φ cone angle
RF, RR Bending radius at the front end and rear end

respectively

Introduction

Metal forming can be defined as process in which the
desired size and shapes are obtained through the plastic
deformation of a material. The stresses induced during the
process are greater than the yield strength, but less than the
fracture strength of the material. Using metal forming pro-
cess; desired shape, size and finish can be obtained without
any significant loss of material. Moreover, strength of the
product is improved through improved stress flow lines.
Bending is a metal forming process in which straight length
is transformed into a curved length. Roller forming is a
continuous bending operation in which a long strip of metal
(typically coiled steel) is passed through consecutive sets of
rollers or roller stands, each performing only an incremental
part of the bend, until the desired cross sectional profile is
obtained. Roller forming is an ideal process for producing
longer parts in large quantities.

The roller bending process usually produces higher dimen-
sional accuracy of the finished products [1]. Although there
are many types of roller benders available for the plate and
sheet bending industry, the normal practice of plate roller
bending still heavily depends upon the experience and the
skill of the operator. Working to templates, or by trial and
error, yet remains a common practice in industry [2].

Whole process of 3-roller conical bending, have four
stages namely (i) static bending, (ii) Forward rolling, (iii)
Backward rolling and (iv) unloading. First stage of static
bending is performed by loading the blank between top
roller and bottom rollers as shown in Fig. 1 and then press-
ing the top roller downwards. This process is similar to air
bending process but is performed by the rollers instead of
punch & die. In the subsequent stages bottom rollers are
given rotation in forward and reverse direction to perform
the rolling. After the rolling is completed the rolled plate is
unloaded during which the plate undergoes springback.

Cone frustum bending mechanics is complex to under-
stand as compared to cylindrical shell bending. Knowledge
of the machine configuration for continuous bending of
cone frustums on roller bending machine, will be important
to original equipment manufacturer and small to large scale
fabricators. Utilizing such knowledge they can achieve
economy, quality and competency in their products. It is
also beneficial to simulate the forces acting on rollers, to get
the friction coefficient, during the rolling process. Researchers

have already worked on machine setting parameters for re-
quired geometry consideration [3]. In this paper, work related
to development of analytical model for the prediction of
bending load and estimate the value of coefficient of friction
at roller plate interface for 3-roller conical bending process
have been discussed.

A lot of work has been reported by researchers in the area
of analytical modeling of bending process and its implica-
tion in FEA models. Mathematical models for plane-strain
sheet bending have been established by Wang et. al., to
predict springback[4]. They incorporated the true (non-lin-
ear) strain distribution across the sheet thickness. They
showed that the bending moment is greater for materials
with higher strength, strain hardening and normal anisotropy.

Hua et. al. have proposed a mathematical model for
determining the plate internal bending resistance at the
top roll contact for multi-pass four-roll thin-plate bending
operations [5].

An analytical model for continuous single-pass four-roll
thin plate bending was proposed by Baines et al. considering
the equilibrium of the internal and external bending moment
at and about the plate-top roll contact[6]. Hua and Lin had
given a mathematical model to simulate the mechanics in a
steady continuous bending mode for four-roll thin plate
bending process considering varying radius of curvature of
the plate between the rollers [1].

Hua and Lin also investigated Influence of material strain
hardening on the mechanics of steady continuous roll and
edge-bending mode in the four-roll plate bending process [8].

Moreira and Ferron had investigated the influence of the
plasticity model adopted in sheet metal forming simulations
by means of a numerical study of experimental tests [9].
They concluded that the isotropic hardening assumption
provides a good fit of experiments for the tests where the
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Fig. 1 Schematic arrangement of 3-roller conical bending setup
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sheet is submitted to relatively linear loading paths. Firat
had employed two rate-independent anisotropic plasticity
models in the deformation modeling of a stamping part
[10]. Kim et. al. have developed an analytical model to
predict springback and bend allowance simultaneously in
air bending, and prepared computer program [11].

Gandhi et. al. had reported the formulation of springback
and machine setting parameters for continuous multi-pass
bending of cone frustum on 3-roller bending machines with
non-compatible (cylindrical) rollers [2, 3, 12]. They ana-
lyzed the effect of change of flexural modulus during the
deformation on springback prediction.

Sanchez presented an elastic–plastic mathematical model
for plane strain flow of sheet metal subjected to strain rate
effects during cyclic bending under tension [13]. He also
included Bauschinger factors in the model for stress reversal.

Majority of the work done by the researchers is for
cylindrical bending processes. Some preliminary investiga-
tion related to conical bending as far as bending force is
concerned is done by A. H. Gandhi et. al. [2, 3, 12], but
none have addressed the problem of bending force predic-
tion in this area to the best of the knowledge of the authors.
So here is an attempt made to develop force prediction
model for 3-roller conical bending process which will be
useful to the researchers to understand the complex mechan-
ics of the process.

Mathematical formulation

It is observed that maximum force is acting on the roller
during the static bending in roll bending process [2]. So
mathematical model is developed for the static bending case
only.

Hua et al. commented that it is difficult to achieve a
single mathematical model that takes into account all the
complexities of the bending process [5]. Similarly the pro-
cess of 3-roller conical bending process is also complex. A
realistic simplification is thus necessary.

So for formulation of the relations for force prediction
and coefficient of friction, following simplifying assump-
tions have been made:

Assumptions

& Plate is always having line contact with the roller, along
the full length of the roller, which is parallel to roller axis
during entire process.

& The plate to be bend is having some weight but the
weight of the plate quite less as compared to the forces
that are acting on the plate during the bending. So it can
be neglected.

& The system of forces acting on the roller and at the
roller-plate interface is symmetrical about the vertical
plane at the midpoint of the line joining the centers of
the bottom roller and perpendicular to that line, which
can be observed in the Fig. 2.

& There is no shift of the neutral plane in the bent plate.
& Frictional force is always tangent to the roller surface.
& When the bending takes place considerable portion of

the plate is left overhanging at the inlet side of the plate
as you can see in Fig. 1. Similarly some portion of the
blank is left overhanging on the exit side of the plate.
The effect on the bend radius of curvature of the plate, in
the deformation zone, due to the counter-bending mo-
ment produced by the weight of the overhanging plate,
before the inlet side roll and after the exit from the roll,
is neglected.

& The deflection of the rolls, during the bending operation,
is neglected, i.e. roller is assumed to be rigid.

& Material is with stable microstructure throughout the
deformation process.

& Deformation occurs under isothermal conditions.
& Modulus of Elasticity ‘E’ remains constant during the

process.
& Blanks for the cone frustum bending are selected such

that ((w/t)>8) and hence plane strain conditions prevail
[4, 7], as cone angle considered being small.

& While bending conical section along with the bending
stress there will be torsional shear stresses along the
cross section of the plate. As the cone angle is small
and bottom roller inclination will be almost half the cone
angle [12], axial forces along the roller axis will be very
small. Hence the torsional shear stresses in the plate will
also be smaller and they are neglected for the present
analysis.

& Plane section remains plane, before and after the
bending.

Fig. 2 Schematic of blank and roller arrangement for pre-bending
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& Baushinger effect is neglected.
& Blank is having uniform/constant radius of curvature

for the supported length between two bottom rollers.
& Thickness of the blank (t) remains constant during and

after the bending.
& Further simplifying assumptions have been made as and

when required in the formulation.

Model of bending moment M and top roller load P

Continuing above assumptions, model for the bending force
has been derived considering change of span and friction at
bottom roller blank interface as below:

First stage of the process is static bending as stated
earlier. In this stage bottom rollers are inclined at required
angle, the blank is kept between top and bottom rollers and
the top roller is give vertically downward movement. This
stage is shown in Fig. 2. Cross section at some radius of
blank R is shown. Top roller is not shown in the figure but
the vertical reaction at the top roller and plate interface, P is
shown. As the cross section along the width of the blank at
which the bending radius is R is considered, bottom roller
inclination angle cannot be seen. For particular bottom roller
inclination, bending radius at front end and rear end will
have certain values. Thus bottom roller inclination will
affect the value of R along the width of the blank. In figure
reaction at the top roller i.e. bending load P at the top roller
is shown. Top roller is given the displacement U. Normal
reaction on the bottom roller by the plate is Q and the
frictional resistance to the movement of the blank on the
roller will be μQ, tangent to the roller surface as shown in
Fig. 2. Other geometrical parameters are also shown in the
Fig. 2. For the pre-bending of the blank as shown in Fig. 2,
bending moment at point A (i.e. point at an intersection of
the line of action of the concentrated load & outer fiber of
the blank) can be given by [12, 14]

Mext ¼ Q g ð1Þ
For the reaction on both the rollers, taking moments at

point H,

Px0 � J 0a0 ¼ 0 ð2Þ

Where,

P ¼ Q 0 þ J 0 ð3Þ
From Eqs. 2 & 3, reaction Q0 can be derived to the form,

Q 0 ¼ Pð1� x0

a0
Þ ð4Þ

From Fig. 2. Q 0 ¼ Q cos θþ μ Q sin θ

ÓQ 0 ¼ Q ðcos θþ μ sin θÞ

ÓQ ¼ Q 0

ðcos θþ μ sin θÞ ¼
P

cos θþ μ sin θð Þ ð1�
x0

a0
Þ ð5Þ

From Fig. 2,

c ¼ x0

cos g
;U 0 ¼ x0 tan g; h ¼ c siny ; g ¼ c cosy ¼ x0

cosy
cos g

ð6Þ

siny ¼ sinðθ� gÞ ¼ sin θ cos g � cos θ sin gÞ
¼ cos g sin θ� sin θ tan gð Þ ð7Þ

Replacing Eqs. 5 & 6 in Eq. 1 & simplifying;

Mext ¼ Pð1� x0=a0Þð1=1þ μ tan θÞðx0 þ U 0 tan θÞ ð8Þ

In Eq. 8, replacing

a0 � a� r1 sin θ;U
0 � U � r1 1� cos θð Þ; x0 � x� r1 sin θ

From Fig. 2 [12],

Mext ¼ Pð1� x� r1 sin θÞð1=1þ μ tan θÞðx� tan θðr1 � UÞÞ
ð9Þ

External bending moment due to friction

From Fig. 2, bending moment due to friction (Mfriction) at
point A (i.e. point at an intersection of the line of action of
the concentrated load & outer fiber of the blank) as
explained by [12];

Mfriction ¼ μQh ð10Þ

Replacing Eqs. 5 and 7 into Eq. 10 & simplifying;

Mfriction ¼ μPð1� x0=a0Þð1=ð1þ μ tan θÞðx0 tan θ� U 0Þ ð11Þ
In Eq. 11, replacing

a0 � a� r1 sin θ;U 0 � U � r1 1� cos θð Þ; x0 � x� r1 sin θ;
Mfriction ¼ μPð1� x�r1 sin θ

a�r1 sin θ
Þ ð 1

1þμ tan θÞ ðx � tan θ� r1
sin θ � tan θþ cos θ� 1ð Þ � UÞ

ð12Þ
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Bending moment considering friction & varying contact

If the effects of friction & varying contact are considered
than the total bending moment can be presented by [12];

Mtotal ¼ Mext þMfriction ¼ Qg þ μQh ð13Þ

As the system of forces is symmetrical about the central
vertical axis passing through the top roller the left hand side
of the above equation will be multiplied by 2.

2Mtotal ¼ Mext þMfriction ¼ Qg þ μQh ð13AÞ
Replacing Eq. 9 and 12 in Eq. 13A & simplifying;

Mtotal ¼ P=2 1� x� r1 sin θ
a� r1 sin θ

� �
1

1þ μ tan θ

� �
x� tan θ r1 � Uð Þ þ μ x tan θ� r1 sin θ tan θþ cos θ� 1ð Þ � Uf g½ � ð14Þ

Internal bending moment

To calculate internal bending moment developed in the
material due to deformation, consider an element of the plate
along the length of the plate. The stress state in the element
can be shown by the Fig. 3.

Here the plate deformation through the plate thick-
ness, caused by internal bending moment, at the top roll
contact, can be divided into regions of a fully elastic
zone, sandwiched between two elastoplastic zones as
shown in Fig. 3a. This region is shown in Fig. 3b as
‘abc’ and ‘dfe’ are two elastoplastic zones [5]. The
region ‘bf’ undergoes elastic deformation. This condi-
tion can be simplified by considering elastic region
sandwiched between two plastic regions as shown in
Fig. 3c. The figure shows stress variation along the
thickness of the plate. yep is the thickness of the elastic
region from the midplane along the thickness of the
plate as shown in Fig. 3c.

For the static bending of the plate the Power law material
behaviour is assumed in the plastic region. The bending
moment can be split into an elastic contribution and plastic
contribution and can be calculated from:

Mtotal ¼ Melastic þMelastoplastic

¼ 2
R

elasticσxy dyþ 2
R

elastoplasticσxy dy
ð15Þ

As the torsion shear is neglected, the present case can be
considered as plane strain deformation. Hill’s non-quadratic
yield criteria [15] for plane strain deformation in plastic
region for isotropic material is,

σx ¼ ð2=
ffiffiffi
3

p
Þσ and " ¼ ð2=

ffiffiffi
3

p
Þ"x;

Also,
From this, σx ¼ ð2= ffiffiffi

3
p Þnþ1K "nx [12]

(Where, σ is effective stress and " is effective strain)
For elastic region σx ¼ "x � E; Considering plane strain

bending, E is replaced by E′ and

E0 ¼ E
ð1�u2Þ ; inserting the values of σx and E′ in Eq. 15,

we get,

Mtotal ¼ 2

Z
yep
0 E0"xy dyþ 2

Z
t=2
yep
ð2=

ffiffiffi
3

p
Þnþ1

K "nxy dy ð16Þ

Fig. 3 Stress state for elastic–plastic bending of plate
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For the present case to evaluate " in terms of y, pure
bending of beam is considered. For the case of pure bending
of beams M

I ¼ E
R ¼ σ

y

Where M0bending moment, I0moment of intertia
From this it can be derived that "x ¼ σ

E ¼ y
R ; inserting the

value in Eq. 16 we get,

Melastic ¼ 2
R yep

0 E0 y=Rð Þy dy
Melastic ¼ 2 E0=R½ �½ y3=3�yep0

¼ 2
3 E0=R½ � y3ep ð17Þ

Melastoplastic ¼ 2
R

t=2
yep
ð2= ffiffiffi

3
p Þnþ1

K "nxy dy

¼ 2 ð2= ffiffiffi
3

p Þnþ1
K
R

t=2
yep
ðy=RÞny dy

¼ 2 ð2= ffiffiffi
3

p Þnþ1
K 1=Rð Þn ynþ2=nþ 2½ �t=2yep

¼ 2ð2= ffiffiffi
3

p Þnþ1K 1=Rð Þn 1=nþ 2½ � t=2ð Þnþ2 � ynþ2
ep

h i

ð18Þ

MTotal ¼ 2
3

E0
R y3ep þ ð2= ffiffiffi

3
p Þnþ1K½1R�n 1

nþ2

h i
tnþ2

2nþ1

� 2ð2= ffiffiffi
3

p Þnþ1K ½1R�n 1
nþ2

h i
ynþ2
ep

ð19Þ

MTotal ¼ 2

3

E0

R
y3ep þ ð 2ffiffiffi

3
p Þnþ1K½1

R
�n 1

nþ 2

� �
tnþ2

2nþ1

� 2ð 2ffiffiffi
3

p Þnþ1K½1
R
�n 1

nþ 2

� �
ynþ2
ep ð20Þ

The strain ε along the axis passing through the mid-plane
of the sheet along the length is determined by the relation
given by Nepershin [16],

" ¼ "0 þ c y ð21Þ
Where, ε0 is the strain of the strip mid-line & χ is curvature
of the bend plate between the bottom rollers.

For an elsatoplastic model of the strip with stress σ less
than the yield strength σs, the dependence of σ on ε is
determined by the Hooke’s law

σ ¼ E "; "j j < 1

E� ¼ "�; ð22Þ

where ε* is strain at yield point and E* is the ratio of
modulus of elasticity to σs.

From above Eqs. 21 and 22, elastoplatic boundaries y1
and y2 in the extension and compression regions can be
found out for " ¼ �" � & the thickness te ¼ y1 � y2 of the
elastic layer;

y1 ¼ 1
c ð 1

E� � "0Þ; y2 ¼ 1
c

1
E� þ "0
� �

; te ¼ 2
E�c

yep ¼ te=2 ¼ 1=E�c
; ð23Þ

Expression for bending load P

Equating Eqs. 14 & 20, and rearranging,

MTotal ¼ 2

3

E0

R
y3ep þ ð2=

ffiffiffi
3

p
Þnþ1

K ½1
R
�
n 1

nþ 2

� �
tnþ2

2nþ1
� 2ð2=

ffiffiffi
3

p
Þnþ1

K ½1
R
�
n 1

nþ 2

� �
ynþ2
ep

¼ P=2 1� x� r1 sin θ
a� r1 sin θ

� �
1

1þ μ tan θ

� �
x� tan θ r1 � Uð Þ þ μ x tan θ� r1 sin θ tan θþ cos θ� 1ð Þ � Uf g½ �

P ¼
4
3

E0
R y3ep þ Fnþ1K 1=R½ �n 1=nþ 2½ � tnþ2

2 � 4Fnþ1K 1=R½ �n 1=nþ 2½ �ynþ2
ep

1� x�r1 sin θ
a�r1 sin θ

	 

1

1þμ tan θ

	 

x� tan θ r1 � Uð Þ þ μ x tan θ� r1 sin θ tan θþ cos θ� 1ð Þ � Uf g½ �

ð24Þ

Assuming constant radius of curvature, χ01/R and
Substituting yep ¼ 1

E�c ¼ R
E� from Eq. 23, in Eq. 24,

P ¼
4
3

E0
R ½ RE� �3 þ ð2= ffiffiffi

3
p Þnþ1

K 1=R½ �n 1=nþ 2½ � tnþ2

2n � 4ð2= ffiffiffi
3

p Þnþ1
K 1=R½ �n 1=nþ 2½ �½ RE� �nþ2

1� x�r1 sin θ
a�r1 sin θ

	 

1

cos θþμ sin θ

	 

ðx� tanθ r1 � Uð Þ þ μðx � tanθ� r1 sinθ � tanθþ cosθ� 1ð Þ � UÞÞ

P ¼
4
3

E0
E�3 R

2 þ ð2= ffiffiffi
3

p Þnþ1
K 1=R½ �n 1=nþ 2½ � tnþ2

2n � 4ð2= ffiffiffi
3

p Þnþ1
K R2

nþ2ð ÞE�nþ2

1� x�r1 sin θ
a�r1 sin θ

	 

1

cos θþμ sin θ

	 

ðx� tanθ r1 � Uð Þ þ μðx � tanθ� r1 sinθ � tanθþ cosθ� 1ð Þ � UÞÞ
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Substitute value of E*

P ¼
4
3

R2

E2ð1�u2Þ σ
3
y þ ð2= ffiffiffi

3
p Þnþ1

K 1=R½ �n 1=nþ 2½ � tnþ2

2n � 4ð2= ffiffiffi
3

p Þnþ1
K R2

nþ2ð ÞEnþ2 σnþ2
y

1� x�r1 sin θ
a�r1 sin θ

	 

1

cos θþμ sin θ

	 

ðx� tanθ r1 � Uð Þ þ μðx � tanθ� r1 sinθ � tanθþ cosθ� 1ð Þ � UÞÞ

ð25Þ

In Eq. 25, there is no term which directly represents the
bottom roller inclination. But bottom roller inclination is
indirectly incorporated as bottom roller inclination can be
considered by bending radius at front end and rear end.
When bottom rollers are inclined in the horizontal plane
bending radius at front end will be smaller while it will have
higher value at rear end as can be seen in Fig. 1. So from the
value of bottom roller inclination bending radius at front end
and rear end can be calculated and vice versa. The relation
between rolling radius and bottom roller inclination is given
in Equation 26 [12]. If bottom roller inclination is zero than
both the radius will be same, with no top roller inclination,
this condition can be called as cylindrical bending.

b ¼ tan�1 AR � AF

2

� �
1

cos a

� �
sinϕ=2
RR � RF

� �� �
ð26Þ

Where,

β bottom roller inclination
AF,
AR

Center distance between bottom rollers at front and
rear end respectively

α top roller inclination, in the present case it is zero
φ Cone angle
RF,
RR

Bending radius at the front end and rear end
respectively

To get the value of P i.e. top roller load, from the above
equation 25 along with the material properties and geomet-
rical parameters of the machine setting, the value of coeffi-
cient of friction μ at roller plate interface is required. Value
of angle θ can be calculated from the geometrical config-
urations of the machine setting.

To study the effect of various parameters, variation of
bending load P has been plotted for different parameters,
keeping all other parameters constant.

Analytical results

Based on the Eq. 25, derived earlier, study of effect of
various parameters on bending load has been carried out.
The ranges of the parameters taken are as follows:

Range of n00.1 to 1 in steps of 0.1 (Typical range for
any metal plates)

Range of variation of μ00.05 to 2 in steps of 0.05 (Typical
range for any roller-blank material combinations)
Plate thickness t06, 8, 10, 12, 14. (Based on the avail-
ability of the plates in the market)
Range of variation of σy0200 to 1,200 in steps of 10
(Typical range for any metal plates)
Range of variation of K0500 to 1,500 in steps of 10
(Typical range for any metal plates)

To get the values of P for different bottom roller inclina-
tions, values of bending radius at various bottom roller
inclinations are taken. For designation of radius of curvature
following nomenclatures have been adopted:

C1R Case 1 when cylindrical bending is being done at
radius 696 mm.

C2RL Case 2 when conical bending is being done and the
radius at larger end is 780 mm.

C3RL Case 3 when conical bending is being done and the
radius at larger end is 869 mm.

C4RL Case 4 when conical bending is being done and the
radius at larger end is 963 mm.

C5RL Case 5 when conical bending is being done and the
radius at larger end is 1,060 mm.

Here the radius at larger end is considered. It can also be
done using radius at smaller end.

The values of radius of curvature have been selected from
previously published literature, (A. H. Gandhi, 2010)

Top roller inclination is zero.
β is bottom roller inclination.

Effect of plate thickness on bending force

To study the effect of plate thickness on bending load for
different values of coefficient of friction, graphs for varia-
tion of bending load with respect to (w.r.t.) coefficient of
friction for different thickness, taking bending radius as
constant are plotted as shown in Fig. 4.

From the Fig. 4 above it can be observed that:
Bending force increases as the thickness increases which

is very common observation.
The rate of increase of bending load w.r.t. μ, increases as

the thickness increases for the same radius of curvature. It
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indicates that for the same radius of curvature the bending
load is more sensitive to the coefficient of friction μ.

Effect of coefficient of friction on bending load

To study the effect of variation of friction coefficient of
friction on the bending force, plot for variation of bending
load w.r.t. coefficient of friction μ for each thickness as
shown below:

From Fig. 5 above it can be observed that:
As thickness increases bending force required increases

as can be seen from the above graphs. As bend radius R
increases, i.e. as we move from front end to rear end in
Fig. 1, bending moment required will be less. Hence the
bending force required will also reduce as the bend radius
increase. The same can be observed in the graphs in Fig. 5.
As the radius of curvature R increases from 696 mm to
1,060 mm for all the thicknesses, the bending load
decreases.

As μ increases for the same thickness plate, rate of
increase of bending force increases with increase in bending
radius. Again it indicates that for the same thickness plate
bending force is more sensitive to the coefficient of friction
μ. It is because as the friction between the roller and plate is
increased the roller will hold the plate firmly which will
increase the required bending force.

Effect of dimensionless ratio, yield stress by strength
coefficient (σy/K)

To study the effect of limiting yield stress σy and the
strength coefficient K on the bending force, dimension less
ratio σy/K is taken as a parameter. First plot of bending load
v/s σy with the ratio σy/K as one parameter is plotted as
shown in figure:

From the Fig. 6 following observations can be made:
It can be observed that for the same plate thickness as the

ratio of σy/K increases from 0.4 to 0.8 the slope of the
bending load curve with respect to σy, decreases. Also the
curvature of the bending load curve increases as the ratio
increases for the same thickness of plate as can be observed
in the figure.

For σy/K00.4, bending load varies linearly w.r.t. σy,

irrespective of the plate thickness. It indicates that bending
load is directly proportional to σy, if the ratio σy/K is kept
0.4.

As the thickness increases the curvature of the bending
load curve w.r.t. σy increases for the values of σy/K more
than 0.4. It indicates that as the ratio σy/K increases from 0.4
bending force non-linearly varies w.r.t. σy.

To study the effect of strength coefficient K on the
bending load, plot of bending load v/s K is plotted with
σy/K as one parameter as shown in figure:

Fig. 4 Variation of Bending load P, w.r.t. μ, for different thickness, at
same radius of curvature
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Fig. 5 Variation of Bending load P, w.r.t. to μ, for different radius of
curvature for the same thickness

Fig. 6 Variation of Bending load P, w.r.t. σy, for different values of
dimensionless ratio σy/K for same thickness
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From the Fig. 7 following observations can be made:
For the same thickness as the ratio σy/K increases, the

curvature of the bending load curve w.r.t. K increases. For
the values of σy/K00.8 it almost becomes linear. It indicates
that for the higher values of the ratio σy/K, the non-linearity
in bending force variation w.r.t. K decreases.

For lesser value of K, bending force is same irrespective
of the ratio σy/K, for the same thickness. It indicates that for
lesser values of K, the ratio σy/K do not affect the bending
force for the same thickness.

As the thickness increases the bending ratio curves w.r.t.
K, comes closer. The slope of the linear curve at the ratio
σy/K00.8 increases, as the thickness of the plate increases.
It indicates that for higher plate thickness the bending force
is more sensitive to the strength coefficient K, for higher
values of the ratio σy/K.

Effect of bottom roller inclination β on bending load

Bottom roller inclination can be varied be varying the center
distance between the roller bearings as explained earlier. As
the bottom roller inclination β is increased the difference
between bend radius at smaller end and larger end increases.
In order to study the effect of β on bending load, variation
of bending load has been plotted for different values of β as
below for thickness t014 mm:

Fig. 7 Variation of Bending load P, w.r.t. K, for different values of
dimensionless ratio σy/K for same thickness. Bottom roller inclination
β01.860. Bottom roller inclination β05.560

Fig. 8 Variation of Bending load P, w.r.t. to μ, for different bottom
roller inclination and constant thickness
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It can be observed from the Fig. 8 that as the bottom
roller inclination increases the difference in the bending load
at smaller end and larger end of the rollers increases.

If bottom roller inclination β is smaller there will be less
difference in the radii at the roller ends, which in turn
suggest that there will be less difference in the reaction
forces on the roller. If β is larger there will be large differ-
ence in the radii at the roller ends and the force at the smaller
end will be much larger that the force at the larger end as can
be seen from Fig. 8.

Conclusions

Analytical model for prediction of bending force have been
developed by equating external bending moment and plate
internal bending moment. Plots for variation of bending
forces have been plotted using various parameters involved
in the bending process and their effects on the bending
forces have been studied. Following conclusions can be
made from the observations:

The bending force increases as the thickness increases
which is obvious fact that it will require higher force for
bending the thicker plate. Also the sensitivity of the bending
force to coefficient of friction, increases as the radius of the
bend increases, as it has been observed in Figs. 4 & 5.

For the same thickness, bending force is linearly propor-
tional to μ for the same bending radius as shown in Fig. 5. It
is also observed that as the bend radius increases, required
bending force decreases for same value of coefficient of
friction. It suggests that bend with larger radius can be
produced with less efforts.

For a particular combination of the material and other
geometrical parameters the roller-plate interface friction co-
efficient can be evaluated if the experimental value of the
required bending force is available for that combination
from the developed analytical model.

For lower values of the dimensionless ratio σy/K, bend-
ing force is linearly proportional to σy. But as this dimen-
sionless ratio increases the bending force varies non-linearly
with respect to σy.

It is also observed that for the higher values of the ratio
σy/K, the non-linearity in bending force variation w.r.t. K
decreases. It is also observed that for higher plate thickness
the bending force is more sensitive to the strength coeffi-
cient K, for higher values of the ratio σy/K.

If bottom roller inclination β is smaller there will be less
difference in the radii at the roller ends, which in turn
suggest that there will be less difference in the reaction
forces on the roller. If β is larger there will be large differ-
ence in the radii at the roller ends and the force at the smaller
end will be much larger that the force at the larger end as can
be seen from Fig. 8.

In the present analysis shear forces were neglected while
deriving the internal bending moment considering plane
strain bending. Shear forces can be included by using proper
material and bending model to increase the accuracy of the
bending load prediction.

It was assumed during the external moment calculation
that the bend radius of the plate is constant throughout the
length of the plate. In actual practice it is not the case. The
curvature of the plate varies along the length. So there are
scopes of further modifications of the developed model by
considering different functions for the varying radius of
curvature.

In the present case instantaneous radius of the bent plate
is considered to avoid the complexity of the transient anal-
ysis of the problem. Only static case is considered in the
derivation of the prediction model. The prediction model
can be further enhanced by doing the transient analysis
through FEM and/or any other theoretical method as sug-
gested by the reviewer.
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