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Abstract Leveling is a forming process used in the
aluminum industry in order to correct flatness defects
and minimize residual stresses in strips thanks to bend-
ing under tension. This paper introduces a 3D finite
element model to simulate the sheet threading in an
elementary part of a leveler called bridle rolls. It can
compute plastic strains and residual stresses through
width and thickness, but predict the deformed strip
after springback and potential buckling phenomena as
well. The influence of geometric and mechanical para-
meters (like friction or rolls profile) on final flatness are
also investigated. Finally initial defects are taken into
account and the model shows how they are modified.
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Nomenclature

x Coordinate in longitudinal direction
y Coordinate in transversal direction
z Coordinate in normal direction
R Radius of rolls (mm)
d Distance between rolls’ centers (mm)
t Thickness of aluminum strip (mm)
b Width of aluminum strip (mm)
E Young’s modulus of alumuminum (MPa)
ν Poisson’s ratio of aluminum
σ0 Yield stress of aluminum (MPa)
IUgeom Geometric flatness defect expressed in Inter-

national Units (IU)
�L Length difference between long and short

longitudinal fibers (mm)
L Mean length of fibers (mm)
A Amplitude of flatness defect considered as a

sine curve (mm)
IU pl Numerical flatness defect expressed in Inter-

national Units (IU)
ε

pl
xx Longitudinal plastic strain

〈ε pl
xx〉 Mean value of longitudinal plastic strain

along the strip width
σxx Longitudinal stress (MPa)
S4R Linear shell element in Abaqus
S8R Quadratic shell element in Abaqus
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Introduction

Aluminum strip is a product used in various domains
like packaging, automotive or aeronautics. Coils of thin
metal sheets are produced from a thick ingot by several
rolling passes. During this process, stresses involved
in the thickness reduction and bending deformation of
the work rolls [9] induce heterogeneous plastic strains
in the strip width and thickness. After applied tension
release or final size cutting, this heterogeneous distrib-
ution may lead to flatness defects. These can be of two
types:

– The fiber defects like long middle or long edge.
For instance, in a strip with a long middle defect,
the longitudinal fibers are longer in the central
area than near the edge. As all the longitudinal
fibers have the same length, there are compressive
stresses in the middle whereas edges are in tension.
Thus waves may appear in the compressive zone
due to buckling phenomenon (it is well known that
a compressive membrane stress induces buckling
[17]).

– The curvature defects like coil set or crossbow. This
kind of defect is due to a length difference through
the thickness between either the longitudinal fibers
for coil set or the transversal fibers for crossbow
(Fig. 1).

However customers have more and more stringent
flatness requirements. Therefore industrialists have to
add a leveling operation after rolling to satisfy their cri-
teria. Levelers are constituted by a connection of rolls

with different diameters which cancel the undesirable
flatness defects thanks to tension (stretcher), bending
(Alligator multi-roll leveler) or a combination of both
(tension leveler) (Fig. 2).

The leveling process consists of plastically elongating
the strip in order to bring all the longitudinal and
transversal fibers to the same length [16]. Consequently
the manifested flatness defects are corrected and the
residual stresses through width and thickness are
reduced.

Several papers studied the leveling process with
analytical or numerical approaches to understand the
different parameters influence on flatness and residual
stresses.

Doege et al. [5] carried out an analysis of the leveling
process based upon an analytical forming model. A
one-dimensional model has been developed and the
curved metal strip was considered as a beam. They used
the bending theory to find the optimal adjustments for
rolls to get no curvature and low residual stresses. Their
model could even be used in a control system because
of a very shorter calculation time than is possible with
the finite element method. Industrialists were also in-
terested in leveling understanding to build adjustment
tables up for their machines thanks to an analytical
model elaborated by Bourgon et al. [3] and Gevers
et al. [8]. Strip has been discretized through thickness
and width has been cut in a certain number of slices.
The authors computed the thickness plastification rate
at passing on the rolls, longitudinal and transversal
stresses through width and thickness, and also the resid-
ual curvatures. Morris et al. [13] conducted experiments

Fig. 1 Flatness defects

(a) Long middle (b) Long edge

(c) Coil set (d) Crossbow
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Fig. 2 Three types of levelers

to evaluate the importance of leveling parameters on
flatness. The wrap angle on the next to last roll was
found to be the most influent, then yield stress and
elongation. Yoshida and Urabe [19] performed a com-
puter aided process design for the tension leveling
with a finite element analysis taking into account cyclic
elasto-plasticity and Bauschinger effect in their own
code. They needed less computation time than conven-
tional codes because they did not have to search the
contact/detouch with many iterations. They were able
to study residual curvature according to roll intermesh.
Jamshidian et al. [11] made a theoretical analysis of
the process with an incremental theory of plasticity, a
combined hardening to evaluate the influence of work
curvature and tension. They found that both coil set
and crossbow could not be removed simultaneously
with the same adjustments. Moreover tension and strip
thickness had only a slight effect on residual curva-
tures compared to bending curvature. On the other
hand, Huh et al. [10] used a finite element method to
simulate tension leveling process in 2D and to choose
the design parameters like tension, roll intermesh, roll
pitch, number and diameter of rolls. In the same way
Trull [18] developed a 3D finite element model with a
strip discretization by linear shell elements. He could
obtain plastic strains and residual stresses distributions
through thickness and width and observed the influence
of profiled rolls or an initial flatness defect. Moreover
springback of the slitted metal strip was analyzed.

On the other hand some authors have studied the
link between a residual stresses distribution through the
strip width and the shape defects. Bush et al. [4] have
solved the plate stability equation assuming the sheet
deflection as a sine function with separated variables
and cutting the width in slices where stresses were
homogeneous. Rammerstorfer et al. [15] and Fischer
et al. [6] have also discussed this point minimizing the
buckling deformation energy with equally a sinusoidal
assumption for the strip deflection, or a polynomial

one. In particular, Fischer et al. [7] have considered
a strip in a pure tension leveler, between two bri-
dle rolls, where stretching buckling can be observed.
They have predicted the strip shape under tension
by solving eigenvalue problems with a Ritz approach.
Abdelkhalek et al. [2] have used an Asymptotic Nu-
merical Method to solve the problem equations. Both
have predicted the strip deformation according to the
residual stresses after rolling.

Thus, Trull [18] is the only reference found in the
open literature which treats about a three-dimensional
modeling of tension leveling with a flatness study. We
propose to focus on a different configuration in which
friction between strip and rolls is very important. The
aim of the present work is to establish a numerical mod-
eling of leveling in order to evaluate plastic strain and
residual stress distributions through the strip width and
thickness. Also prediction of the strip flatness at the end
of the process according to the different geometric and
mechanical parameters has been assessed. To fulfill this
purpose, a 3D finite element model has been developed
with the commercial software Abaqus [1] and tested on
a simple configuration with two rolls called bridle rolls
(Fig. 2).

Finite element model

Description

The bridle rolls configuration is composed of two cylin-
drical rolls of large diameters (Fig. 3). It allows an
increase or a decrease of the strip tension considering
contact with friction. So it can be used either in the
entrance or in the exit of the machine. The rolls were
supposed to be undeformable solids and consequently
were modeled as analytical rigid surfaces. Initially the
strip was considered as perfectly flat and free of resid-
ual stress resulting from a previous forming process. In
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Fig. 3 Bridle rolls configuration

a following section, an initial geometric defect will be
taken into account.

Due to the aspect ratio of the studied strip ( width
thickness >

8,000) and the aim to take into account buckling phe-
nomenon after springback, the thin aluminum strip was
discretized using shell elements. As well the Simpson
integration was adopted with a high number of inte-
gration points (15 points) so as to accurately describe
the stress and the strain distributions through thickness.
Moreover assuming there were no misalignment of the
rolls or any other asymmetry in geometry or loads, only
half-width of the strip was modeled.

Aluminum was considered with an elastic-plastic
behavior(E = 70,000 MPa, ν = 0.33, σy = 235 MPa).
Isotropic and non-linear kinematic hardening [12]
were compared and results were very close (relative
difference <5%) due to major elongation being per-
formed by tension. For a problem with many alternate
bendings, like in multi-roll leveling, a greater gap would
be noticed and non-linear kinematic hardening would
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Fig. 4 Hardening law described as a piecewise linear function

be appropriate. So isotropic hardening was chosen in
this study and the hardening law was computed with a
piecewise linear function deduced from a traction test
(see Fig. 4).

Because of large displacements and large rotations,
geometrical nonlinearities were taken into account.
The penalty method was used for modeling the normal
contact between the rolls and the strip whereas the
basic Coulomb friction model was introduced for the
tangential contact.

The analysis was performed using three main steps.
In the first step, a downstream tension was applied
(beyond the yield stress) which represents the ma-
chine tension, balanced by an upstream tension (from
strip conveying, some tens of MegaPascal) and friction,
while the rolls were locked in translation and rota-
tion. During the second step, the rotation of the rolls
was initiated to ensure the strip conveying (6,000 mm)
by friction. In the third and last step, the upstream
and downstream applied tensions were released to ob-
serve the deformed strip after springback and potential
buckling.

Some measurements of the flatness defects

At the end of the simulation, the distributions of the
longitudinal plastic strain through width and thickness
are plotted as well as the residual longitudinal stress.

Fig. 5 Flatness defect considered as a sine curve
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Fig. 6 Strain distribution
after bridle rolls,
Abaqus/Standard vs.
Abaqus/Explicit

(a) Plastic strain through strip width (b) Flatness in International Units

In metal industry, a measurement has been established
to quantify the strip flatness in International Units
according to the following formula 1:

IUgeom(y) = �L(y)

L(y)
× 105 (1)

where �L is the length difference between the long
and the short longitudinal fibers and L the mean length
of the fibers (the strip length). For industrial issues,
flatness inferior to a few of International Units is rec-
ommended (≤ 2 − 3IU for aluminum and ≤ 10IU for
steel).

As an illustration, if the flatness defect is considered
as a sine curve (Fig. 5), its measurement in Interna-
tional Units can be calculated with its amplitude A and
its wavelength L according to formula 3:

z(x; y) = A(y)

2
cos

(
2πx
L(y)

)
(2)

IUgeom(y) = π2

4

(
A(y)

L(y)

)2

× 105 (3)

In the following sections, predictions of the strip
flatness will be presented in International Units (IU)
in the sense of:

IU pl(y) = (
ε pl

xx(y) − 〈
ε pl

xx

〉) × 105 (4)

where 〈ε pl
xx〉 is the mean value of the longitudinal plastic

strain along the strip width (y direction).
Then

IU pl = max
y∈[0; b

2 ]
IU pl(y) (5)

because the long fibers especially cause flatness defect
by buckling and the focus is only put on the positive
value of IU pl(y).

Implicit formulation versus explicit formulation

A lot of forming processes are simulated with an ex-
plicit formulation because of the advantage of a rela-
tively small computation time. But the solution is not
sure to converge toward a real and physical solution,
contrary to an implicit formulation.

Abaqus offers the possibility to use either an im-
plicit formulation (Abaqus/Standard) or an explicit one
(Abaqus/Explicit) [1]. Our model is tested with these
two formulations. For the latter a process velocity has
to be defined and a conveying speed of 450 m.min−1

is elected (levelers speed is between 100 m.min−1 and
600 m.min−1). Only shell elements with linear interpo-
lation are available in Abaqus/Explicit.

With an explicit formulation, the two coarsest
meshes (8,800 elements—60 × 30 mm and 17,880

Table 1 Computation data,
Abaqus/Standard vs.
Abaqus/Explicit

Formulation Element Mesh size Increments Computation
type (mm) time (s)

Implicit Quadratic shell 90 × 112.5 759 13,074
Implicit Linear shell 60 × 30 677 9,822
Explicit Linear shell 60 × 30 162,661 4,551
Explicit Linear shell 30 × 30 168,277 8,306
Explicit Linear shell 15 × 30 323,542 50,566
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Table 2 Parallelization data with an implicit formulation

Processors CPU time (s) Computation time (s)

1 12,328 13,074
2 15,641 10,572
4 16,299 8,096
8 16,985 6,166

elements—30 × 30 mm) bring some disrupted results
for flatness, with a lot of oscillations from one element
to an other. The finest mesh (35,640 elements—15 ×
30 mm) provides more stabilized results (Fig. 6). Nev-
ertheless, as there is no solution correction with the
explicit formulation, Abaqus/Explicit documentation
advocates not to exceed 300,000 increments, which is
not the case with this mesh (Table 1). Also computa-
tion time is three times superior compared to the one
obtained with an implicit formulation.

On the other hand, the implicit formulation of the
finite element software needs fewer shell elements to
reach the same accuracy as the explicit one. Moreover,
Abaqus/Standard permits the use of quadratic shell
elements (S8R) which better accommodate the contact

between metal sheet and rolls with a regular description
of the contact pressure. Also the solving algorithm is
based on a prediction-correction procedure. So implicit
formulation will be used for the next numerical simula-
tions of the proposed study.

As well parallelization helped to decrease the com-
putation time using several processors (Table 2) and
only one hundred minutes were necessary to simulate
the strip threading under tension and the springback
with Abaqus/Standard and eight processors.

Simulations with a perfect initial strip

Basic mechanisms

Attention was paid to plastic strain and residual stress
distributions in a transversal section of elements having
passed through the two rolls.

Figure 7a and c show that the longitudinal plastic
strain increases approaching the strip center whereas
it is almost constant in the thickness direction. That is
to say that the longitudinal fibers are more plastically

Fig. 7 Strain distribution
after bridle rolls

(a) Plastic strain through strip width (b) Flatness in International Units

(c) Plastic strain through strip thickness
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Fig. 8 Stress distribution
after bridle rolls

(a) Residual stress through strip width (b) Residual stress through strip thickness

elongated in the middle than near the edge and that
stretching is more important than bending for deforma-
tion. The bridle rolls configuration seems to produce a
long middle defect in a strip which is initially perfectly
flat. Even if the amplitude of the defect is very low
(2IU , Fig. 7b) in our example, this phenomenon is
sometimes observed in pure tension lines [14].

The residual stress distribution through the strip
width (Fig. 8a) shows there are two areas, in the middle
and next to the edge, of compressive stresses where
buckling phenomenon may appear. The distribution
through the strip thickness (Fig. 8b) confirms this point
and precises that in the center of the strip, the top
surface is in compression whereas in the edge, the
bottom surface is in compression.

Therefore the bridle rolls configuration introduces
more plasticity in the longitudinal fibers in the center
than in the edge. This difference can be explained
taking into account friction in the tangential contact
between the aluminum strip and the rolls. The more
the friction coefficient increases the more the produced
long middle defect amplitude grows. In ideal conditions

with no friction the plastic strain is homogeneous in
the width direction (Fig. 9) and no flatness defect is
generated.

Influence of the rolls profile

An important parameter in forming processes like
rolling or leveling is the rolls deformation during strip
conveying. Even if rolls are modeled as rigid bodies this
phenomenon can be taken into account by consider-
ing no flat rolls. Three profiles of rolls—flat, convex
shape and concave shape—were tested with our finite
element model. For the convex and concave shape rolls,
a parabolic profile was adopted in the transversal direc-
tion with a radius difference equal to 1 mm between the
center and the edge.

As seen in Fig. 10, the long middle defect natu-
rally produced by a perfect bridle rolls configuration
is accentuated by the presence of convex shape rolls.
In the center of the strip ε

pl
xx is higher than with flat

rolls whereas near the edge results are almost identical.

Fig. 9 Strain distribution
according to friction
coefficient

(a) Plastic strain through strip width (b) Flatness in International Units
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Fig. 10 Plastic strain
distribution according to rolls
profile

(a) Plastic strain through strip width (b) Flatness in International Units

Consequently, the flatness defect is multiplied by 3
(6.5IU against 2IU previously) by the change of rolls
profile.

On the contrary, with concave shape rolls, the plastic
strain distribution is reversed and ε

pl
xx increases toward

the edges, that is to say that the longitudinal fibers are
more plastically elongated than in the middle. In terms
of flatness, a long edge defect of 10IU is generated by
concave shape rolls.

To confirm this, the residual stress distribution
(Fig. 11b) shows that compressive stresses in the cen-
tral area are increased with convex shape rolls in
comparison with flat rolls. In contrast, concave shape
rolls make negative residual stresses move in the edge.
Moreover Fig. 11 permits to understand how buckling
decreased the stresses difference in the width with
strip shape changes. The residual stress is small (less
then 2 MPa with the convex shape rolls, less than
1 MPa with the concave shape rolls), as compared with
the stress difference before buckling that can exceed
−6 MPa.

Consequently, rolls profile may be used to correct
some flatness defects by adapting their geometry—
convex or concave profile—to the entering defect and
plastically elongating the appropriate short longitudinal
fibers. In practice inflatable rolls may be used [14].
Thanks to hydraulic pressure increase, the roll shape
can be either concave, cylindrical or convex.

These conclusions are supported by the strip shape at
the exit of the bridle rolls. Long edge defect produced
by concave shape rolls at the end of the simulation is
clearly observable in Fig. 12c. Waves are seen on the
edge because of buckling of the fibers in compression
(Fig. 11b). On the other hand, the long middle defects
produced by flat and convex shape rolls are less easily
identifiable. A large pocket appears in the central area,
whose amplitude and wavelength increase with the roll
crown.

In the case of bridle rolls with concave shape
rolls which produces a long edge, a comparison is pos-
sible between the flatness calculated with the longi-
tudinal plastic strain distribution through width, using

Fig. 11 Stress distribution
according to rolls profile

(a) Stress through strip width before 
relaxation

(b) Residual stress through strip width
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Fig. 12 Strip deformation
according to rolls profile middle

middlemiddle

(a) Strip deformation after flat rolls

(b) Strip deformation after convex shape 
rolls

(c) Strip deformation after concave shape 
rolls

Fig. 13 Plastic strain and
residual stress distribution
with an initial flatness defect

(a) Plastic strain through strip width (b) Residual stress through strip width

Fig. 14 Comparison of initial
and final flatness

(a) Flatness of a strip with initial long edge (b) Flatness of a strip with initial long 
middle
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Fig. 15 Strip with initial long
edge before and after bridle
rolls

(a) Strip with initial long edge (b) Strip deformation after bridle rolls

formulae 4, 5 and on the other side, the manifested
flatness seen in Fig. 12c:

– in Fig. 10b flatness issued from plastic strain distri-
bution is IU pl = 9.74IU ,

– interpolating flatness defect by means of a sine
curve (amplitude A = 9.06 and wavelength L =
1410.34) and applying formula 3, strip flatness is
calculated

IUgeom = π2

4

(
A
L

)2

× 105 = 10.18IU

So the simulation of bridle rolls configuration with
concave shape rolls provides relatively consistent re-
sults between the plastic strain distribution in strip
width and the manifested flatness, observable on the
deformed geometry. In the case of long middle defects
produced by flat or convex shape rolls, this approach is
not applicable and the detected central pocket seems to
be a global buckling phenomenon, not a local wave.

Simulations with an initial flatness defect

The objective of the leveling process being to correct
flatness defects, our finite element model was applied
to a strip presenting initial defects. Flatness geometric
defects were introduced whereas the incoming strip was
free of stress. Some analytical expressions of geometric
fibers defects were chosen under the following form:

z(x, y) = −
(

d
2

+ R + t
2

)
+ A

2
sin

(
2π

x
L

+ π
)

×1

2
[1 + cos (πY)] × exp

(−16Y2
)

where Y = 2y
b for long middle, Y = 1 − 2y

b for long
edge, A = 4 mm is the amplitude of the flatness de-
fect and L = 400 mm its wavelength. According to
formula 3, initial defects equal 24.67IU .

Figure 13a emphasizes that longest fibers of a
strip with an initial geometric flatness defect are less
stretched out than the shortest ones, going through the

Fig. 16 Strip with initial long
middle before and after bridle
rolls

(a) Strip with initial long middle (b) Strip deformation after bridle rolls
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bridle rolls configuration. It seems that the initial length
difference between fibers in strip width is reduced.

In terms of flatness, initial and final ones are com-
pared (Fig. 14). Unlike to the previous sections, the
translation of plastic strain in flatness in International
Units needs here to take the initial length of each
longitudinal fibers in the width into account to apply
formula 1.

It can be noticed in Fig. 14 that the initial flatness de-
fects were well corrected by bridle rolls configuration.
As the long fibers of the strip are less stretched, there is
a rebalancing of the fibers length. The length difference
decreases as well as the strip flatness. From an initial
long edge of 24.67IU , strip flatness is improved with
a final long edge of 8.18IU . Also initial long middle
of 24.67IU is reduced to 11.36IU . As the studied
configuration is only a part of a real leveler, it cannot
perfectly correct the initial flatness defects of strips but
it is able to substantially reduce the length differences
in transversal direction.

The observation of the deformed strip after the two
opposite bendings in bridle rolls confirms these state-
ments (Figs. 15 and 16).

The waves of the initial long edge are reduced (am-
plitude decreased while wavelength was not modified).
A comparison can also be made for flatness predic-
tion from plastic strain distribution and from deformed
strip, IU pl = 8.18IU and IUgeom = 8.33IU . So plastic
strain distribution through the strip width is well trans-
lated in a geometric flatness defect.

Conclusion

This paper presents a finite element simulation of the
leveling process (especially bridle rolls configuration)
used in the metal industry to correct flatness defects. It
is based on an implicit formulation, a discretization of
the strip by quadratic shell elements and a threading of
enough aluminum metal to reach a steady-state regime.

A simple configuration of two rolls has been studied.
The model is able to accurately compute the plastic
strains and the residual stresses distribution through
width and thickness. Buckling phenomena after spring-
back is also predicted. Furthermore initial geometric
defects can be introduced in the incoming sheet.

The analysis has shown that the bridle rolls con-
figuration naturally produces a long middle defect in an
initially flat strip, due to the friction between strip and
rolls. A solution (which is effectively used in practice)

to correct more efficiently flatness defects is to modify
the roll profile and to adapt their shape in order to
lengthen the short longitudinal fibers. The computa-
tions have shown that some defects may be reduced in
this way.

The study of the influence of those geometric
and mechanical parameters on final flatness can help
finding optimal adjustments for levelers in order to
improve flatness and to considerably decrease residual
stresses.
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