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Abstract This paper deals with the variable blank holder
force in sheet metal forming in order to reduce springback
effects after forming. A structural risk minimization
principle-based metamodeling technique, least square sup-
port vector regression (LSSVR) method is applied to
optimization. In order to improve the efficiency, an
intelligent sampling strategy proposed by Wang et al.
(Mater Des 30:1468–1479, 2009a) is integrated with the
LSSVR. Therefore, the proposed strategies establish an
adaptive metamodeling optimization system. The optimiza-
tion procedure can be carried out automatically. To valid the
flexibility of this system, the presented method is used to
optimize the variable blank force parameters of the models
from NUMISHEET’96 and torsion rail model. Compared
with other popular metamodel-based optimization methods,
the test results demonstrate the potential capability for
nonlinear engineering problems.
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Metamodeling

Introduction

Springback is mainly an elastic deformation which occurs
upon the removal of tool [8, 14]. Springback of the part
during unloading largely determines whether the part
conforms to the design dimensions and tolerances. An
accurate prediction of the springback is very importance

issue for the design of tools in automotive and aircraft
industries. It is desired to predict and reduce springback
so that the final blank dimensions can be controlled as
much as possible. Several analytical methods have been
proposed to predict the change in radius of curvature
and included angle due to springback for plane-strain
conditions and simple axisymmetric shapes. These
methods are approximate and associate the source of
springback to non-uniform distribution of strain and
bending moment upon unloading.

The finite element method (FEM) is used widely to
predict springback in research and industry. However, the
accuracy of FEM is not yet always sufficiently accurate and
efficient. Commonly corrections to compensate for spring-
back are made by modifying the shape of stamping tools. It
is very important to predict springback and correct it at the
tool design stage, since the optimization procedure for
controlling springback [3, 9, 17] commonly leads to
tremendous expensive function evaluations. This is particular-
ly the case when objective and constraint functions are
obtained by complete FE simulations involving fine meshes,
many degrees of freedom (DOFs), strongly nonlinear geomet-
rical and material behaviors. The gradient-based optimization,
necessary for common minimization algorithms is not always
available neither accurate, especially when commercial codes
are used. Some heuristic methods, such as genetic algorithm
(GA), particle swarm optimization (PSO), etc., can’t guarantee
the efficiency and convergence ratio. Therefore, metamodeling
technique is used as an alternative method to develop the
optimization efficiency. A metamodel can be used as a
surrogate for calculating fitness values, which are normally
based on time-consuming simulations. Such a metamodel can
be effectively integrated into the search process to gradually
substitute the large portion of simulation which model runs
require. The metamodeling technique was first proposed by
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Blanning [4]. Recently, some efforts have been focused on the
springback reduction. Daniel [7] used FE simulation and
polynomial regression (PR)-based metamodeling technique to
optimize springback in bending processes. Naceur et al. [16]
combined DKTRF (discrete Kirchhoff triangular element
rotation free element) shell element and response surface
method (RSM) involving diffuse approximation technique
and pattern search optimization to control springback effects.
Bahloul et al. [1] predicted springback by experiments and
RSM-based optimization. Liu et al. developed [13] an
automatic optimization method integrated with for compen-
sating springback of stamping parts. Ingarao et al. [11]
suggested a multi-objective approach to reduce springback
and thinning failure of dual phase steels.

Above mentioned metamodel-based optimization
methods are based on empire risk minimization
(ERM) principle, such as PR, moving least square
(MLS) and Kriging (KG) methods, etc. The major
bottleneck of the ERM-based metamodeling technique
is the reliability of optimization results. Compared with
the ERM principle, structural risk minimization (SRM)
suggested by Vapnik and Chervonenkis [19] is an
inductive principle for model selection used for learning
from finite training data sets. It describes a general model
of capacity control and provides a tradeoff between
hypothesis space complexity and quality of fitting the
training data (empirical error).

In order to enforce the reliability of optimization
results, a structural risk minimization (SRM) method,
support vector regression (SVR) proposed by Vapnik [20]
is used for constructing metamodel-based optimization
method and is applied to springback compensation. Unlike
traditional methods which minimize the empirical training
error, SVR aims to minimize the upper bound of
generalization error through maximizing the margin
between separating hyperplane and data. In the past few
years, several studies have successfully applied SVR to
function estimation.

According to the conclusion summarized by Clarke et al.
[6], the SVR-based metamodeling technique achieves more
accurate and robust function approximations than RSM,
KG, Radial basis function (RBF), and multivariate adaptive
regression splines (MARS). Clarke et al. [6] also claimed
that SVR was a feasible technique for approximating
complex engineering analyses. Recently, a least square
(LS) version of SVR (least square SVR, LSSVR) technique
proposed by Suykens and Vandewalle [18] has received
attention for function estimation. In LSSVR, Vapnik’s ε-
insensitive loss function has been replaced by a sum-
squared error cost function. According to the theory of
LSSVR, LSSVR is reformulation to the standard SVRs
which leads to solving a linear KKT (Karush–Kuhn–
Tucker) system. This reformulation greatly simplifies a

problem such that the LSSVR solution follows directly
from solving a set of linear equations.

The rest of this paper is organized as follows. “Related
theories” describes the fundamentals of LSSVR and intelligent
sampling strategy. In “Statement of problem”, the proposed
method is used to reduce springback of sheet forming design.
Conclusions are given in “Concluding Remarks”.

Related theories

In this section, the basic theories of LSSVR are briefly
introduced. According to the comparison tests performed by
Clarke et al. [6], the LSSVR is a feasible alternative for
nonlinear metamodeling technique. In this study, the LSSVR
is integrated with an intelligent design of experiment method
(DOE), boundary and best neighbor sampling (BBNS).

Theories of LSSVR

Considering a regression problem with a training set

xi; yif gNi¼1 with N input data xi and output data yi as
presented in Eq. 1

D ¼ f x1; y1ð Þ; x2; y2ð Þ � � � xi; yið Þ � � � xN ; yNð Þg; xil 2 Rn; yi 2 R

ð1Þ
Using a kernel function, we can obtain a nonlinear

predictor by solving an optimization problem in the primal
weight space:

Min
w;"

Jðw; "Þ ¼ 1

2
wTwþ 1

2
g
XN
i¼1

"2i

s:t:yi ¼ wT8ðxiÞ þ bþ "i; i ¼ 1; 2; . . .N

ð2Þ

where 8ð�Þ ¼ Rn ) Rnh is a nonlinear mapping which maps
the input data into a high dimensional feature space whose
dimension can be infinite; this feature makes SVR solve
high dimensional problems. In Eq. 2, w 2 Rnh denotes the
weight vector in the primal space; "i 2 R is an error
variable and b is the bias term. The cost function J consists
of a sum-squared error fitting error and regulation term. The
+ is a constant coefficient to determine the relative
importance of the ERM and SRM terms. A linear SVR
has been taken with +=1. In the case of noisy data one
avoids over fitting by taking a smaller value of +. But, if
the + is smaller, the reliability of approximation can’t be
promised. Therefore, it is recommended that the value of +
can be determined by considering the kernel function
coefficient together.

The model of primal space can be presented as follows

yðxÞ ¼ wT8ðxÞ þ b ð3Þ
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Then, the Lagrangian multiplier expression applied to
Eq. 2 is obtained as

Lðw; b; "; aÞ ¼ J ðw; "Þ �
XN
i¼1

ai wT8ðxiÞ þ bþ "i � yi
� � ð4Þ

where αi are the Lagrangian multipliers, which can be
either positive or negative.

The conditions for optimality

@ Lðw; b; "; aÞð Þ
@w

¼ 0 ) w ¼
XN
i¼1

ai8ðxiÞ

@ Lðw; b; "; aÞð Þ
@b

¼ 0 )
XN
i¼1

ai ¼ 0

@ Lðw; b; "; aÞð Þ
@"

¼ 0 ) ai ¼ g"i

@ Lðw; b; "; aÞð Þ
@a

¼ 0 ) wT8ðxiÞ þ bþ "i � yi ¼ 0 :

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð5Þ

After elimination of w and ε, we can obtain the
following linear expression

0 IT

I Γ þ 1

g
I

24 35 b

a

" #
¼ 0

y

" #
ð6Þ

where

y ¼ ½y1; y2; . . . yN �T

I ¼ ½1; 1; . . . 1�T

a ¼ ½a1; a2; . . . aN �T

Γ i;j ¼ 8ðxiÞT8ðxjÞ for i; j ¼ 1; 2; . . .N :

8>>>>><>>>>>:
ð7Þ

Based on the Mercer’s condition, there exists a mapping
φ(·) and an expression

Kðx; yÞ ¼
X
i

8iðxÞT8iðyÞ; ð8Þ

If and only if, for any Ψ(x) such that
R
yðxÞ2dx is finite,

one hasZ
Kðx; yÞyðxÞyðyÞdxdy � 0 ð9Þ

which is motivated by the Mercer’s Theorem [15]. Note
that for specific cases, it may not be easy to check whether
Mercer’s condition is met. Equation 9 must hold for every
Ψ(x) with a finite L2 norm. It is known, however, that the
condition is satisfied for positive integral powers of the dot
product K(xi, xj)

Kðxi; xjÞ ¼ 8ðxiÞT8ðxjÞ; for i; j ¼ 1; 2; . . .N ð10Þ

The final LSSVR model for the function estimation is
then obtained as

yðxÞ ¼
XN
i¼1

aiKðx; xiÞ þ b ð11Þ

where al and b are the solutions to Eq. 5, and

Kðxi; xjÞ ¼ exp ð�ðxi � xjÞ2 r2
� Þ ð12Þ

Among all kinds of kernel functions, Gaussian kernel
function as shown in Eq. 12 is the most popular choice and
also chosen in this study. The radius r of the Gaussian
kernel function is manually set in this study after a few
trials for each function; xi and xj are input vectors.
Automatically optimizing kernel function during training
could potentially further improve modeling the efficiency.
The optimal choice for the kernel function is still an area of
active research and will be investigated in future work. In
this study, we substitute different combinations of (+, r) into
Eq. 2, and select the optimal one according to the results. In
order to improve the efficiency, this procedure is imple-
mented by the ANN method in this work.

Boundary and best neighbor sampling strategy

DOE is very important issue for metamodeling techniques.
Traditional DOEs are “offline” strategy; DOE and meta-
modeling techniques are independent models in optimiza-
tion procedure. For the LSSVR method, it is necessary to
collect enough sample points to construct a reliable model.
Due to the difficulty of knowing the “appropriate” size of

The current sample

New sample

Initial sample New sample Boundary sample 

The best neighbor sample

The better  sample set
The boundary sample

2 segments

m1=m2=2

Fig. 1 BBNS searching pattern
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Fig. 3 Stepped variable BHF
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Fig. 2 Flowchart of the BBNS-
based LSSVR metamodel-based
optimization method
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sample points in advance, intelligent or sequential sampling
has gained popularity recently [12]. Intelligent or sequential
sampling strategies actually are “online” style, sampling
and metamodeling procedure are integrated, sampling
direction is determined according the response value of
objective functions. The sample points generated by such
strategy commonly concentrated in optimization region.

The boundary and best neighbor searching (BBNS)
strategy is such a way to generate sample points and reduce
design space as well. The distinctive characteristic of the
BBNS strategy suggested by Wang et al. [22–24] is to
create the new sample points according to generated sample
points distributed in boundaries and neighbor domain. The
fuzzy clustering scheme suggested by Wang et al. [23] is
also integrated and applied to sheet forming optimization
successfully. In order to further enhance the efficiency, a
parallel sampling strategy developed by Wang et al. [24]
was also developed and engaged in sheet forming design.
The details of the BBNS are presented as follows.

Theoretically, any space filling sampling methods, such as
Latin hypercube design (LHD) can be used for generating
initial sample points at the first stage of the BBNS.
Considering the uniformity and orthogonality of sample
points, LHD is employed in this method. Additionally, to
improve the efficiency of sampling procedure and control the
size of sample points, the initial samples should be sparsely

distributed in design space. Furthermore, fractional factorial
design (FFD) is used for locating the boundary sample points.
Although the initial sample points are generated by traditional
space filling strategies, the latter algorithm is quite different
due to its “intelligent” characteristic;

1. The inside initial sample points generated LHD should
be evaluated. Conversely the evaluations with bound-
ary samples derived from FFD don’t need to be
performed till the corresponding criterion is satisfied;

2. The several better sample points (the number of sample
points can be specified by the user, called better sample
set) are collected and the new sample points are
generated by Eqs. 13–14;

3. The position of the new sample points is determined by
Eq. 13

X i
j ¼

XCurrent
j þ XBoundaryðNearestÞ

j

m1

 !
c1

þ XCurrent
j þ XBestðNearestÞ

j

m2

 !
c2 ð13Þ

where X is a vector of value, X i
j denotes the ith new

sample in the jth iteration. The distance between the
current and nearest boundary sample points should be
divided into m1 segments, the distance between the

Table 1 Material parameters

Young’s modulus Poisson’s ratio Coulomb’s coefficient of friction Thickness Yield stress n r0 r45 r90

206 Gpa 0.3 0.11 0.92mm 382Mpa 0.156 0.72 1.21 1.03

Fig. 4 Numisheet’96 benchmark, forming system and blank geometrical dimensions

Int J Mater Form (2013) 6:103–114 107



current and best neighbor influence domain is divided
into m2 segments. The values of m1 and m2 are also
assigned by the user. Both m1 and m2 are set to the

number of design variables N as shown in Fig. 1; c1, c2
denote the acceleration weight coefficients, they are
determined by Eq. 14 according to the objective values.

c1 ¼
R XCurrent

j

� �
þ R XBoundaryðNearestÞ

j

� �
R XCurrent

j

� �
þ R XBoundaryðNearestÞ

j

� �� �
þ R XCurrent

j

� �
þ R XBestðNearestÞ

j

� �� �
c1 ¼ 1� c2

8>>><>>>: ð14Þ
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where R(·) denotes the response value obtained from
function evaluation* with corresponding sample points,

such as XBest
j , XBoundaryðNearestÞ

j and XBestðNearestÞ
j .

Definitions of the superscripts are presented as:1

Current the current sample point in the better
sample set

Nearest the nearest sample point from the
current sample point

Boundary boundary of the design space

Best the sample point which has the best
value of objective function

Boundary (nearest) the nearest boundary sample from the
current sample

Best (nearest) the nearest sample of the better
sample set

3.1. If the location of a new sample point is duplicated or
is outside of the design space, the best sample point
should be substituted by the current one, and the
procedure goes back to regenerate new sample points;

3.1. The function should be evaluated at the new
generated sample points;

3.2. The better sample set is updated.
If

R XBest
j

� �
� R XBest

j�1

� ���� ���
R XBest

j

� ���� ��� � d; d 2 ð0; 1Þ; ð15Þ

then procedure ends, else it goes to Step 3, where δ is
the threshold which can be given by the user and the
default value is 0.1.

Integrating LSSVR and BBNS for metamodeling-based
optimization

In this section, we suggest an adaptive metamodel-based
optimization method called as BBNS-based LSSVR opti-

mization. The BBNS is used for generating sample points
and metamodel is constructed by the LSSVR. The proposed
algorithm is a close-loop one and can run for optimization
automatically. The flowchart of this strategy is presented in
Fig. 2.

As shown in Fig. 2, the proposed method is composed
of three modules: sampling, modeling and optimization.
In the sampling procedure, the response value is evalu-
ated by actual simulation evaluation. When the conver-
gence described in Eq. 15 of the BBNS is satisfied, the
modeling procedure proceeds. The key issue in of the
proposed method is how to objectively decide when to
switch to the metamodel instead of using the simulation
during optimization.

Compared with traditional convergence conditions,
test sample points are used for predicting the accuracy
of metamodel. In this work, leave-one-out cross-
validation (LOOCV) is used for obtaining R2

avg for each

sample point.

R2
avg ¼

Pm
i¼1

1� Pm�1

i¼1

yi�_y
i

� �2

yi�yið Þ2

0@ 1A
m

ð16Þ

where yi is the real value of objective function, _y
i
and yi

denote the predicted function value at the test sample point
and average predicted value, m is the number of sample
points.

For a mathematical problem, the convergence condition
should be set strictly, such asR2

avg > 0:8. For engineering

problems, the convergence condition can be slack accord-
ing to the complexity of cases. This step is used for the
expensive sample points whose responses are obtained
from the computational intensive simulations.

Statement of problem

Blank holder force (BHF) is often used for controlling
springback as springback can be decreased with the1 For practical problems, the function evaluation should be simulation.

Table 2 Comparisons of the initial and optimum status of Numisheet’96

Method HBHF (kN) LBHF (kN) PTPD (%) Maximum engineering
major strain (%)

Maximum reduction
of thickness (%)

Number of
sample points

Initial status 2 10 50 32.8 15.2

Optimum
status

BBNS and
LSSVR

2.82 45.6 68.5 18.4 11.8 47

PSOIS 2.91 44.9 62.3 20.1 13.8 92

SRSM 3.45 50.8 60.8 23.8 12.6 72

MPS 2.92 46.1 62.7 19.2 12.3 63
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increase of BHF, while other processing and material
parameters are held constant. However, the BHF also
causes a subsequent increase of the maximum strain in
material, and it commonly makes blank cracked. To solve
such problem, a stepped variable BHF strategy was
proposed to control both of the springback and strain by
Hishida and Wagoner [10]) However, they had not given an
effective approach to determine the stepped BHF parame-
ters. In this work, the proposed method is used for
predicting the corresponding parameters to control the
springback of sheet forming.

The basic idea of the stepped variable BHF is demon-
strated as Fig. 3. Compared with a constant BHF (CBHF), a
stepped variable BHF (SVBHF) is composed of two stages.
A low BHF (LBHF) is first acted on blank to facilitate the
flow of material. At one specifies percentage of the total
punch displacement (PTPD), a higher BHF (HBHF) is
instead of the LBHF to cause plastic strains in the sidewall.
Therefore, the SVBHF is determined by three parameters:
LBHF, PTPD and HBHF.

Numisheet’96 S-rail

Problem description

The tools and sheet-metal blank of the Numisheet’96
springback benchmark problem are shown in Fig. 4,
applied on an aluminum alloy whose properties are
presented in Table 1. A drawn height of 37mm is taken
into account. The die fillet radius is equal to 3mm while
clearance between die and punch is equal to 1.2mm.

The process is numerically simulated using the
explicit code LS-DYNA, and a subsequent springback
analysis is carried out with implicit solver. A full
integrated quadrilateral shell element with nine integra-
tion points along thickness is utilized. A Coulomb
model is considered for frictional actions. In order to
take into account material anisotropy Barlat and Lian

[2] constitutive model with an isotropic work hardening is
utilized.

The anisotropic yield criterion Φ for plane stress is
defined as

Φ ¼ a K1 þ K2j jm þ a K1 � Kj j2m þ c 2K2j jm ¼ 2sm
Y ð17Þ

where s m
Y is yield stress and Ki¼1;2 are given by

K1 ¼ 1

2
sx þ hsy

� 	
K2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
sx � hsy

� 	2 þ p2t2xy

r
8>><>>: ð18Þ

The anisotropic material constants a, c, h and p are
obtained through R00, R45 and R90, which are the material
Lankford parameters in 0°, 45° and 90° relative to rolling
direction. For body centered cubic (BCC) materials, m=6 is
recommended. The relationship between stress and strain
for the materials used in this study is given by

s ¼ K "0 þ "pð Þn ð19Þ
where, K and n are the strength coefficient and exponent for
swift exponential hardening, ε0 and "P are strain and
effective plastic strain, respectively.

In order to evaluate springback entity, a comparison with
a reference target shape is performed at the end of implicit

Fig. 8 Selected transverse cross sections

2D
1D

1R

2R

1S
2S

Parameters a(o) R1(mm) R2(mm) D1(mm) D2(mm)
Values 100 10 20 98 70

Fig. 7 Torsion rail geometrical
dimensions
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simulation. In particular, the total deviation error between
the target shape and obtained one is calculated (i.e., the
maximum normal distance between the two overlapped
surfaces d (mm)). In the present application the distance d
(mm) is considered a direct and quick indicator of the
geometrical distortions due to springback (see Fig. 5 which
shows the comparison of one of the obtained transverse
cross section and reference shape).

To stay objectivity, we select four transverse cross
sections for construct objective function. In each transverse
cross section, 20 uniform sample points along the trans-
verse cross section are selected to calculate difference
between the target and obtained shape. The distance of each
section can be presented as follows.

dk ¼ 1�
Pn
i¼1

yi �byið Þ2

Pn
i¼1

yi � yð Þ2
ð20Þ

where

k The transverse cross section number
n The number of sample points along the transverse cross

section line

yi The position of sample point i in target shapebyi The position of sample point i in current optimum
shape

y 1
n

Pn
i¼1
byi

Equation 20 is the prediction of future outcomes on the
basis of other related information. It is the proportion of
variability in a data set that is accounted for by the
statistical model. Therefore, dk can be regarded as R2; R2

is often interpreted as the proportion of response variation
“explained” by the repressors in the model. Thus, R2=1
indicates that the fitted model explains all variability in y,
while R2=0 indicates no ‘linear’ relationship (for straight
line regression, this means that the straight line model is a
constant line between the response variable and repressors.
Finally, all transverse cross sections are considered for the
objective function as

f ¼ 1

m

Xm
k

dk ð21Þ

where m denotes the number of transverse cross sections.

In this case, mathematical equations of optimization can
be formulated as

min f ðX Þ
XT ¼ HBHF;LBHF; PTPD½ � 2 Ω

Subjectto

HBHF 2 ½2kN; 10kN�
LBHF 2 ½10kN; 50kN�
PTPD 2 ½0:5; 0:9�

8>>>>>>>>><>>>>>>>>>:
ð22Þ

where X denotes the design variables related with the
SVBHF composed of the HBHF, LBHF, PTPD.

Optimization procedure and results

According to the proposed method described in Fig. 2, we
use the LHS generate 15 sample points. Then the BBNS
start generating new sample points and the LSSVR is used
for constructing metamodel, the corresponding optimization
procedure demonstrated in Fig. 6. The ranges of objective

function and R2
avg are from 0 to 1, so we can observe the

convergence of LSSVR and optimization method. Finally,
we use 47 sample points to complete optimization and
corresponding optimum results presented in Table 2.

To validate the proposed optimization method, the perfor-
mance of optimization procedure is also considered. Some
widely used metamodel-based optimization methods, such as
particle swarm optimization-based intelligent sampling
(PSOIS), successive response surface approximations
(SRSM) proposed by Breitkopf et al. [5] and mode pursuing
sampling (MPS) method proposed by [21]. For give a fair
comparison, we use the same DOE method to generate the

Fig. 9 FE model of torsion rail forming system

Table 3 Material properties for DP800

Young’s modulus Poisson’s ratio Coulomb’s coefficient of friction K n r0 r45 r90

207 Gpa 0.3 0.12 1333.6638 0.2366 1.02 1.34 1.58
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same number of sample points. The optimization procedure
of each method is also presented in Fig. 6. It is observed that
the proposed BBNS-based LSSVR optimization method
obtained better results with the fewest sample points
according to Table 2 and Fig. 6. The PSOIS and MPS also
archive the acceptable optimum results. Although the SRSM
is widely used and implemented in some commercial

software, the performance is far from satisfactory for
engineering applications, especially for nonlinear problems.

Torsion rail

In this case, we use the proposedmethod to investigate a torsion
rail as shown in Fig. 7 We select 6 transverse cross sections to

Table 4 Comparisons of the initial and optimum status of torsion rail case

Method HBHF
(kN)

LBHF
(kN)

PTPD
(%)

Maximum engineering
major strain (%)

Maximum reduction of
thickness (%)

Number of
sample points

Initial
status

15 70 50 50.8 15.20

Optimum
status

BBNS and
LSSVR

16.50 82.00 64.51 23.49 11.81 75

PSOIS 16.91 77.90 57.33 26.12 12.14 76

SRSM 15.45 78.82 54.89 32.85 13.73 88

MPS 15.92 81.18 65.12 26.24 12.21 78
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Fig. 10 Optimization procedure of torsion rail optimization
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measure the springback as shown in Fig. 8. The SVBHF
strategy is also used for control the torsion springback in this
case. The optimization problem can be described as

min f ðXÞ
XT ¼ HBHF;LBHF; PTPD½ � 2 Ω

Subjectto

HBHF 2 ½5kN; 15kN�
LBHF 2 ½50kN; 100kN�
PTPD 2 ½0:5; 0:9�

8>>>>>>>>><>>>>>>>>>:
ð23Þ

The material constitutive model introduced by Barlat and
Lian [2] with anisotropic hardening is also adopted. The
material parameters of DP800 summarized in Table 3 and
the CAE model of the stamping system is shown as Fig. 9.

We also use the proposed method, PSOIS, MPS and
SRSM for optimizing the torsion rail component. Design
variables used in the case are engaged. The number of
initial sample points of each method is the same. The
procedures of each metamodel assisted optimization are
demonstrated in Fig. 10. The SRSM costs the most number
of sample points, the proposed method uses the fewest
sample points. According to Table 4, the proposed method
also achieves the best optimum design. In order to verify
the simulation results, we also establish the stamping

system shown in Fig. 11. Compared with optimum and
real shape as shown in Fig. 12, it is easy to prove that the
proposed method achieves the accepted design.

Concluding remarks

In this paper, a metamodel-based optimization method is
proposed. An intelligent sampling strategy, BBNS, is used
for generating sample points in optimization procedure. The
advantage of the BBNS is that the new samples concentrate
near the current local minima and yet still statistically cover
the entire design space. Therefore, the corresponding
metamodel is constructed based on more attractive sample
points for the purpose of optimization. To obtain more
reliable optimum results, the recently developed LSSVR is
employed, which can also help filter noises in data. To
assess the performance of the BBNS-based LSSVR
optimization method, the performance of metamodeling
and optimization is tested. Compared with other popular
metamodeling techniques, the LSSVR is proved to be an
attractive method for integration with the BBNS. Further-
more, to verify the accuracy and efficiency of the proposed
method, other metamodel-based optimization methods
including the PSOIS, SRSM and MPS are also tested.

Fig. 12 Comparison of section
curves

Fig. 11 Torsion rail stamping
system

Int J Mater Form (2013) 6:103–114 113



Our purpose is to develop a feasible optimization
approach for controlling springback. Thus, we apply the
proposed method to two different springback problems.
These problems are successfully optimized by the proposed
method. The tests demonstrate that the proposed method
shows potential for sheet forming related problems.
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