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Abstract The capillary extrusion-forming flow of a fluo-
ropolymer (FEP) melt was studied both experimentally and
numerically. The excess pressure drop due to entry (related
to the Bagley correction), the compressibility, and the effect
of pressure and temperature on viscosity on the capillary
data analysis have been examined. Using a series of
capillary dies having different diameters, D, and length-to-
diameter L/D ratios, a full rheological characterization has
been carried out, and the experimental data have been fitted
both with a viscous model (Cross) and a viscoelastic one
(the Kaye—Bernstein, Kearsley, Zapas/Papanastasiou,
Scriven, Macosko or K-BKZ/PSM model). For the viscous
model, the viscosity is a function of both temperature and
pressure. For the viscoelastic K-BKZ model, the time-
temperature shifting concept has been used for the non-
isothermal calculations, while the time-pressure shifting
concept has been used to shift the relaxation moduli for the
pressure-dependence effect. It was found that the viscous
simulations gave good results in the range of apparent shear
rates studied. The viscoelastic simulations gave slightly
better results in reproducing the experimental data, espe-
cially for the entrance pressure losses for L/D=0. It is
concluded that pressure-dependence of the viscosity and
viscoelastic effects are small to moderate in flow of the FEP
melt, which is a linear polymer.
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Introduction

Fluoropolymers are among the oldest high-performance
polymers, dating from the discovery of polytetrafluoroethy-
lene (PTFE) in 1938 by Dr. Plankett of DuPont. Although
their production is small compared to other commodity
thermoplastics, such as polyethylene and polypropylene,
fluoropolymers are of great commercial and scientific interest
due to their unique combination of properties. These include
excellent chemical stability and dielectric properties, anti-stick
characteristics, mechanical strength, and low flammability [1,
2]. Their most important uses are in electronics and electrical
applications, especially for wiring insulation, chemical
processing equipment, laboratory ware and tubing, material
for roofing and houseware [2, 3].

Fluoropolymers are a class of paraffinic polymers that
have some or all of the hydrogen replaced by fluorine. They
include polytetrafluoroethylene (PTFE), copolymer of
tetrafluoroethylene and hexafluoropropylene (TFE/HFP or
FEP), perfluoroalkoxyl resin (PFA), and some others which
are discussed in detail by Ebnesajjad [2]. The main focus of
this work is on the flow properties of FEP copolymers used
in capillary rheometry and extrusion.

Extrusion forming through capillary dies is extensively
used in both industry and academia to assess the rheolog-
ical behaviour of polymer melts at high shear rates before
testing their processability in full industrial scale [4]. When
such a flow is used and the raw data are collected, a number
of important corrections should be applied before the
rheological data can be compared with corresponding data
from a rotational rheometer [5, 6].
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Capillary extrusion flow involves flow through a
contraction of a certain angle, where there is a large
pressure drop associated with such flow, known as
entrance pressure [4–7]. Many studies have previously
attempted to examine the origin of entrance pressure and
its prediction by some rheological constitutive models. A
recent study by the authors gives an extended list of these
efforts [8]. The same work studied three different poly-
ethylenes, namely a low-density poly-ethylene (LDPE), a
linear low-density polyethylene (LLDPE), and a high-
density polyethylene (HDPE) in flow through tapered
dies. It became apparent that both viscoelasticity and
pressure-dependence of the viscosity were significant in
obtaining high entrance pressures in agreement with
experiments. It should be noted that such high entrance
pressures are important for other materials as well, such as
pastes, as they have been reported by many in the
literature [9–12].

Along these lines, it was decided to study this important
class of polymers [13, 14] in capillary extrusion. Full
experimental capillary data from a large number of capillary
dies are analyzed at different temperatures for complete
rheological characterization. The collected rheological data
are then fitted with appropriate viscous and viscoelastic
models for polymer melts, namely the purely viscous Cross
model [4] and the viscoelastic K-BKZ model, which has
given good predictions of viscoelastic flow phenomena of
polymer melts before [4, 8]. The main objective of the
study is to predict the entrance pressures and associated
Bagley correction (excess pressure losses) in flow of the
FEP melt through capillary extrusion-forming dies by
appropriate rheological modeling and inclusion of all
important effects, such as pressure- and temperature-
dependence of viscosity, compressibility and viscous
dissipation.

Experimental

FEP is produced by copolymerization of tetrafluoroethylene
(TFE) and hexafluoropropylene (HFP). It is mainly a linear
polymer (see its structure below). FEP has a crystalline
melting point of about 265°C and a density of about
2,150 kg/m3 at room temperature. Increasing the amount of
HFP drops significantly their melting point and thus they
become easier to process. It is a soft plastic with tensile
strength, wear resistance, and creep resistance lower than
those of many other engineering plastics [2].

CF2 CF2 CF2 CF

CF3

Despite their increasing commercial interest, very few
studies have been published on the rheological character-
ization and processing of these materials [15–18]. This can
be partly attributed to the fact that TFE/HFP copolymers
(FEP) have a relatively high melting point, and therefore
they are difficult to study and process in the melt state.

In the present work, the rheology of an FEP® resin
(FEP4100 provided by DuPont) was studied by carrying
out experiments in parallel-plate and capillary rheometers.
This resin is a tetra-fluoro-ethylene (TFE)—hexa-fluoro-
propylene (HFP)—perfluoro(alkyl vinyl ether) (PAVE)
copolymer. It has a molecular weight of about 208,000
and a polydispersity index of about 2 [13, 14]. The melting
point of this resin is around 260°C, determined by
differential scanning calorimetry (DSC) analysis.

First, linear viscoelastic measurements were performed
in a Rheometrics System-4 mechanical spectrometer
equipped with a parallel-plate fixture (plates of diameter
equal to 25 mm). Frequency sweep experiments were
performed in a frequency range from 0.01 to 500 rad/s
after ensuring that operation was within the linear visco-
elastic region (sufficiently small shear strain). Measure-
ments were performed in the temperature range from 300 to
350°C. The lower temperature limit was chosen to avoid
residual crystallization, while the upper limit was selected
to prevent thermal decomposition. Time-temperature super-
position was applied to obtain the master curve (thermo-
rheological simplicity) and the data are reported at the
selected reference temperature of Tref=300°C.

Capillary experiments were carried out in an Instron
constant-speed piston-driven capillary rheometer. Circular
extrusion dies of various diameters, D, and length-to-
diameter ratios, L/D, were used (Table 1). All the circular
dies had a 90°-entrance angle of 2ϕ. Orifice dies (L/D=0)
were also used to determine the excess pressure losses
(Bagley correction) in order to get an accurate determina-
tion of the flow curve. The experiments were carried out at
three different temperatures, namely 300°C, 325°C and
350°C. Experimental results for apparent shear rates above
about 80 s−1 showed severe “melt fracture” (a term used in
rheology and polymer processing to signify gross distor-
tions of the extrudate when they are extruded at high
enough shear rates [4]) and were not taken into account into

Table 1 Circular dies used (tapered angle 2ϕ=90°, Dres=9.525 mm)

Diameter, mm L/D ratios

0.254 0, 20, 40

0.508 0, 20, 40, 100

0.762 0, 10, 20, 40, 70, 100

1.27 0, 20, 40, 70
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rheological modeling as they are subject to strong slip
phenomena [13, 19, 20].

Governing equations and rheological modelling

We consider the conservation equations of mass, momen-
tum and energy for weakly compressible fluids under non-
isothermal, creeping, steady flow conditions. These are
written as [21, 22]:

u � rrþ r r � uð Þ ¼ 0; ð1Þ

0 ¼ �rpþr � t; ð2Þ

rCpu � rT ¼ kr2T þ t : ru; ð3Þ
where ρ is the density, u is the velocity vector, p is the
pressure, t is the extra stress tensor, T is the temperature, Cp

is the heat capacity, and k is the thermal conductivity. For a
weakly compressible fluid, pressure and density are
connected as a first approximation through a simple linear
thermodynamic equation of state [22]:

r ¼ r0 1þ bcpð Þ; ð4Þ
where βc is the isothermal compressibility with the density
to be ρ0 at a reference pressure p0 (=0).

The viscous stresses are given for inelastic non-
Newtonian compressible fluids by the relation [21, 22]:

t ¼ h �gj jð Þ �g � 2

3
r � uð ÞI

� �
; ð5Þ

where h �gj jð Þ is the apparent non-Newtonian viscosity,
which is a function of the magnitude �gj j of the rate-of-
strain tensor �g ¼ ruþruT , which is given by:

�gj j ¼
ffiffiffiffiffiffiffiffiffi
1

2
II �g

r
¼ 1

2
�g : �g

� �� �1=2

; ð6Þ

where II �g is the second invariant of �g

II �g ¼ �g : �g
� �

¼
X
i

X
j

�gij �gij; ð7Þ

The tensor I in Eq. (5) is the unit tensor.
To evaluate the role of viscoelasticity in the prediction of

Bagley correction, it is instructive to consider first purely
viscous models in the simulations. Namely, the Cross model
was used to fit the shear viscosity data of the FEP melt. The
Cross model is written as [4]:

h ¼ h0;C
1þ ðl �gÞ1�nC

; ð8Þ

where η0,C is the Cross zero-shear-rate viscosity, l is a time
constant, and nC is the Cross power-law index. The fitted
viscosity of the FEP melt by Eq. (8) is plotted in Fig. 1,
while the parameters of the model are listed in Table 2. We
observe that the FEP melt has a wide Newtonian plateau
and then is shear-thinning for shear rates above 1 s−1 giving
a power-law index n=0.32. The Cross model fits the data
well over the range of experimental results.

For easy checks and simple analytical formulas, the high
shear-rate range of the viscosity data can be fitted to the
power-law model for the viscosity [4]:

h ¼ K �gj jn�1; ð9Þ
where K is the consistency index and n is the power-law
index. These values are also given in Table 2.

For the capillary extrusion flow simulations the effect of
pressure on viscosity should be taken into account as this
becomes evident below. When flow over long capillaries is
considered, the effect of pressure can be moderate. This
effect can be taken into account by multiplying the
constitutive relation with a pressure-shift factor, ap, defined
by the Barus equation, that is [4–6, 8]:

ap � h
hp0

¼ exp bpp
� �

; ð10Þ

where η is the viscosity at absolute pressure p, ηp0 is the
viscosity at ambient pressure, and βp is the pressure
coefficient. This coefficient has been reported to be around
10–20 GPa−1 for polyethylenes [23, 24]. For the present
FEP melt an average value of βp has been reported to be
30 GPa−1 [17].

FEP 4100
T=300°C
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Fig. 1 The shear viscosity of the FEP melt at 300°C fitted with the
Cross (Eq. 8) and the power-law (Eq. 9) models using the parameters
listed in Table 2
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Viscoelasticity is included in the present work via an
appropriate rheological model for the stresses. This is a K-
BKZ equation proposed by Papanastasiou et al. [25] and
modified by Luo and Tanner [26], which has given many
good results in predicting viscoelastic flow phenomena
associated with polymer melts [21]. This is written as:

t ¼ 1

1� q

Z t

�1

XN
k¼1

ak
lk

exp � t � t0

lk

� �

� a
ða � 3Þ þ bIC�1þð1� bÞIC

� C�1
t ðt0ÞþqCtðt0Þ

	 

dt0; ð11Þ

where t is the current time, λk and ak are the relaxation
times and relaxation modulus coefficients, N is the number
of relaxation modes, α and β are material constants, and IC,
IC−1 are the first invariants of the Cauchy-Green tensor Ct

and its inverse Ct
−1, the Finger strain tensor. The material

constant θ is given by

N2

N1
¼ q

1� q
; ð12Þ

where N1 and N2 are the first and second normal stress
differences, respectively. It is noted that θ is not zero for
polymer melts, which possess a non-zero second normal
stress difference. Its usual range is between 0.1 and 0.2 in
accordance with experimental findings [4, 21].

As discussed above, experiments were performed in the
parallel-plate and capillary rheometers for the FEP melt to
rheologically characterize it. Figure 2 plots the master
dynamic moduli G′ and G″ for FEP at the reference
temperature of 300°C. The model predictions obtained by
fitting the experimental data to Eq. (11) with a spectrum of
relaxation times, λk, and coefficients, ak, determined by a
non-linear regression package [27], are also plotted. The
parameter α is found by fitting the experimental shear
viscosity data [27]. The parameter β is found by fitting
experimental elongational viscosity data [27]. For a linear
polymer, like FEP or HDPE [28], these data follow the
Linear Viscoelastic Envelope (LVE) [4] in start-up exten-
sional experiments; they are not shown here due to the well
known strain-thinning behaviour of linear polymers in
extension [4]. The parameters found from the fitting

procedure are listed in Table 3. The relaxation spectrum is
used to find the average relaxation time, l, and zero-shear-
rate viscosity, η, according to the formulas (Table 3):

l ¼
PN
k¼1

akl2k

PN
k¼1

aklk

; ð13Þ

h0 ¼
XN
k¼1

aklk : ð14Þ

The values of these parameters are l=2.6 s, η0=
5482 Pa·s, indicating a slightly elastic melt with a rather
small average relaxation time, certainly less elastic than the
PE melts studied before [8].

Figure 3 plots a number of calculated and experimental
material functions for the FEP melt at the reference
temperature of 300°C. Namely, data for the shear viscosity,
ηS, the elongational viscosity, ηE, and the first normal stress
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Fig. 2 Experimental data (symbols) and model predictions of storage
(G′) and loss (G′′) moduli for the FEP melt at 300°C using the
relaxation times listed in Table 3

Parameter Value

η0,C 5,246 Pa·s

λ 0.0167 s

nC 0.316

K 22,000 Pa·sn

n 0.5

Table 2 Parameters for the FEP
melt obeying the Cross model
(Eq. 8) and the power-law
model (Eq. 9) at 300°C

Table 3 Relaxation spectrum and material constants for the FEP melt
obeying the K-BKZ model (Eq. 11) at 300°C (α=7.17, β = 0.6, θ=
−0.111, l=2.6 s, η0=5,482 Pa·s)

k lk (s) ak (Pa)

1 0.1147×10−2 0.49050×106

2 0.6039×10−2 0.22702×106

3 0.2940×10−1 66,224

4 0.1911 4823.1

5 1.66 172.41

6 10.13 18.628

7 56.520 3.6235
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difference, N1, are plotted as functions of corresponding
rates (shear or extensional).

Non-isothermal modeling

The viscoelastic stresses calculated by the above constitu-
tive equation (Eq. 11) enter in the energy equation (Eq. 4)
as a contribution to the viscous dissipation term. This
assumes that all the elastic stored energy in the material is
converted into heat and serves to raise the temperature of
the melt. This treatment has been the standard practice in
non-isothermal simulations so far (see, e.g., [29–32]) and it
is followed in the present work as well. Peters and Baaijens
[33] have devised a different approach to handle the
splitting between the viscous contribution to energy
dissipation and elastic stored energy. However, such a
development is beyond the scope of this study.

The details of the non-isothermal modeling are given in
earlier publications [29–33] and will not be repeated here.
Suffice it to say that they involve the Arrhenius
temperature-shifting function, aT, given by [4, 29]:

aT ðTÞ ¼ h
h0

¼ exp
E

Rg

1

T
� 1

T0

� �� �
: ð15Þ

In the above, η0 is a reference viscosity at T0, E is the
activation flow energy, Rg is the ideal gas constant, and T0 is
a reference temperature (in K). The activation energy can be
calculated from the shift factors determined by applying the
time-temperature superposition to obtain the master curves
plotted in Fig. 2 [4, 14]. It was found to be 50,000 J/mol.

In the present work we have applied the above equation
to derive the non-isothermal constitutive equation from the
isothermal one. This method is based on the time-
temperature superposition principle and simply consists of
shifting the relaxation times 1 k from the temperature
history within the material’s internal time scale t' [30].
The equation used to shift the relaxation times in the
material’s history is given by [30, 31]:

lk T 0 t 0ð Þð Þ ¼ lk T0ð ÞaT T 0 t 0ð Þð Þ: ð16Þ

where T' is the temperature at time t'.
The viscoelastic stresses calculated by the non-

isothermal version of the above constitutive equation
(Eq. 11) enter in the energy equation (Eq. 3) as a
contribution to the viscous dissipation term.

The thermal properties of the melt have been
gathered from various sources. The thermal conductiv-
ity was given in the textbook by Van Krevelen [34] to
be 0.255 W/m·K, and the heat capacity was 0.96 in kJ/
(kg K) at 300°C [34]. The density was 2.12–2.17 g/cm3 at
room temperature [34], while at 300°C, its value was
1.492 g/cm3 [35].

All these properties and their provenance are listed
together in Table 4. In this table, we have also added a
typical value for polymer melts for the coefficient of
compressibility, βc, from Hatzikiriakos and Dealy [36].

The various thermal and flow parameters are combined
to give appropriate dimensionless numbers [37, 38]. The
relevant ones here are the Peclet number, Pe, and the
Nahme-Griffith number, Na. These are defined as:

Pe ¼ rCpUR

k
; ð19Þ

Na ¼ hEU 2

kRgT2
0

; ð20Þ

where h ¼ f ðU=RÞ is a nominal viscosity given by the
Cross model (Eq. 8) at a nominal shear rate of U/R, and U
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Fig. 3 Experimental data (solid symbols) and model predictions of
shear viscosity, ηS, first normal stress difference, N1, and elongational
viscosity, ηE, for the FEP melt at 300°C using the K-BKZ model
(Eq. 11) with the parameters listed in Table 3

Table 4 Values of the various parameters for the FEP melt at 300°C

Parameter Value Reference

βc 0.00095 MPa−1 [36]

βp 0.03 MPa−1 [17]

m 1.39×10−4 Panp�1 This work

np 0.54 This work

ρ 1.492 g/cm3 [35]

Cp 0.96 J/(g K) [34]

k 0.00255 J/(s cm K) [34]

E 50,000 J/mol [14]

Rg 8.3143 J/(mol K) [4]

T0 300°C (573 K) [14]
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¼ �gAR 4=ð Þ is the average velocity in the capillary die. The
Pe number represents the ratio of heat convection to
conduction, and the Na number represents the ratio of
viscous dissipation to conduction and indicates the extent of
coupling between the momentum and energy equations. A
thorough discussion of these effects in non-isothermal
polymer melt flow is given by Winter [37].

With the above properties and a die radius R=0.04 cm,
the dimensionless thermal numbers are in the ranges: 3.2<
Pe<32, 0.001<Na<0.048, showing a moderate convection
(Pe>1), and a very small coupling between momentum and
energy equations (Na<0.1). A value of Na>1 indicates
temperature non-uniformities generated by viscous dissipa-
tion, and a strong coupling between momentum and energy
equations, which may be true for polyethylene melts [38],
but not for the FEP melt at hand. More details are given in
Table 5.

The fully developed values for temperature occur for L/
D=∞ and give a maximum temperature rise ΔTmax at the
centreline of the tube according to the formula for a power-
law fluid [39]:

ΔTmax ¼ K

k

nR

3nþ 1

� �2 nþ 1

n

� �
Vmax

R

� �nþ1

: ð21Þ

According to Eq. (21) and for R=0.04 cm, we get a
ΔTmax=1.4°C. Thus, a small temperature rise is expected
for very long dies, but for shorter dies as the ones used
here, the non-isothermal simulations are not necessary.

Pressure-dependent modeling

Similarly with the time-temperature superposition principle
where the stresses are calculated at a different temperature
using the shift factor aT, the time-pressure superposition
principle can be used to account for the pressure effect on
the stresses. In both cases of viscous or viscoelastic models,
the new stresses are calculated using the pressure-shift
factor ap. For viscous models, Eq. (10) is used to modify
the viscosity. For viscoelastic models, such as the K-BKZ

model (Eq. 11), the pressure-shift factor modifies the
relaxation moduli, ak, according to:

ak p t0ð Þð Þ ¼ ak p0ð Þap p t0ð Þð Þ: ð22Þ

This is equivalent to multiplying the stresses by ap,
according to Eq. (11). It should be noted that ap is an
exponential function of βp.

The pressure-dependence of the viscosity gives rise to
the dimensionless pressure-shift parameter, Bp. This is
defined as:

Bp ¼
bphU

R
: ð23Þ

Similarly, the compressibility coefficient βc gives rise to
the dimensionless compressibility parameter, Bc. This is
defined as:

Bc ¼ bchU
R

: ð24Þ

When Bp=0, we have no pressure-dependence of the
viscosity, and when Bc=0, we have incompressible flow.
For the present data, we get: 5.4×10−4<Bp<3.5×10

−3 and
1.7×10−5<Bc<1.1×10

−4, showing a moderate dependence
of viscosity on pressure and an even weaker compressibility
effect in the range of simulations. More details are given in
Table 5.

Method of solution

The solution of the above conservation and constitutive
equations is carried out with two codes, one for viscous
flows (u-v-p-T-h formulation) [40] and one for viscoelastic
flows [32, 41]. The formulation u-v-p-T-h refers to the
primary variables, i.e., the two velocities u and v, the
pressure p, the temperature T, and the free surface h (which
is not used here). Quadratic interpolation functions are used
for all variables except the pressure for which linear
interpolation functions are used. For the temperature T, a
subdivision of the quadratic parent element into 4 bilinear
quadrilateral elements is also used for implementing the
Streamline-Upwind/Petrov-Galerkin (SU/PG) scheme [38,
40], which stabilizes the T-solution in flows dominated by
convection (high Peclet number flows). However, due to
the mild conditions studied here, the results were identical
with or without SU/PG.

The boundary conditions (BC) for the problem at hand
are well known and can be found in our earlier publication
[32]. Briefly, we assume no-slip and a constant temperature
T0 at the solid walls; at entry, a fully-developed velocity
profile is imposed, corresponding to the flow rate at hand
and a constant temperature T0 is assumed; at the outlet, zero

Table 5 Range of the dimensionless parameters in the flow of FEP
melt at 300°C (die radius R=0.04 cm)

Apparent
Shear Rate,�gA (s−1)

Peclet
Number,
Pe

Nahme
Number,
Na

Compressibility
Parameter, Bc

Pressure-Shift
Parameter, Bp

6 3.2 0.001 1.7×10−5 5.36×10−4

9 4.8 0.002 2.44×10−5 7.71×10−4

15 8.0 0.004 3.8×10−5 1.2×10−3

30 16.1 0.014 6.69×10−5 2.1×10−3

60 32.1 0.048 1.12×10−4 3.5×10−3
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surface traction and zero heat flux are assumed; at the
centerline, symmetry is assumed.

The viscous simulations are extremely fast and are used
as a first step to study the whole range of parameter values
and die designs. The viscoelastic simulations admittedly are
harder to do and they need good initial flow fields to get
solutions at elevated apparent shear rates. In our recent
work [8], we explained how it was possible for the first
time to do viscoelastic computations up to very high
apparent shear rates (1000 s−1) with good results. Briefly,
the solution strategy starts at a given apparent shear rate
from the viscous non-isothermal solution without pressure
dependence, and then using this as an initial solution it
continues for the non-isothermal viscoelastic solution with
all effects present. The results for L/D=0 were obtained as
in Ref. [8] by subtracting from the longest dies (L/D=100)
results obtained for the same dies without the reservoir.
Thus, it was found again necessary to use a long die to fully
unravel the viscoelastic stresses of the FEP melt.

Experimental results

Figure 4 shows the apparent flow curves for resin FEP®
4100 obtained with dies having a constant diameter (D=
0.762 mm) and various L/D ratios. It can be seen that the
data do not fall on a single curve. Instead, the apparent flow
curves shift to higher values of the wall shear stress with
increasing L/D ratio, thus pressure. This implies that the
viscosity of FEP® 4100 is a function of pressure, usually
taken as the Barus equation (Eq. 10).

To obtain the pressure coefficient of viscosity, βp, the
data points corresponding to various values of L/D ratio in
the smooth region were brought together on a single curve
by varying βp. It is noted that at very low shear rates and

for small L/D ratio, the wall shear stress slightly depends on
pressure and this dependence increases with an increase of
L/D and shear rate. In our case, the various βp coefficients
determined by using data from various dies having different
L/D (variation of pressure at a given shear rate) exhibit a
power-law dependency on pressure as can be seen from
Fig. 5. This dependence can be expressed by the following
equation:

bp ¼ mp�np ; ð25Þ
where m=1.39×10−4 Panp�1 and np=0.54, with the pres-
sure p given in Pa. The pressure-corrected flow data for the
FEP are plotted in Fig. 6. Essentially the shear stress data
plotted in Fig. 4 were divided by exp(βpp), where p is the
average pressure along the capillary estimated as (2L/D)w. It
can be observed that a relatively good superposition of the
data results. There are outliers for the longer dies with
L/D=70 and 100, and these data have not been taken into
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Fig. 5 The pressure coefficient, βp, as a function of pressure
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C determined with dies having L/D ratios from 10 to 100
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account as they may refer to data where “melt fracture” (or
gross distortion of the extrudate when extruded at high
enough shear rates) has started occurring [17]. The values
of βp plotted in Fig. 5 agree well with the reported values in
the literature [23, 24].

Figure 7 plots the end pressure (Bagley correction) of the
FEP melt at 300°C obtained with capillary dies having
lengths of L/D=0 and different diameters, D. These data
will be simulated using the models discussed above.

Numerical results

Viscous modeling

It is instructive to perform first calculations with a purely
viscous model, so that the effect of viscoelasticity will
become evident later. The numerical simulations have been
undertaken using the purely viscous Cross model (Eq. 8).
This constitutive relation is solved together with the
conservation equations of mass and momentum either for
an incompressible or compressible fluid under isothermal or
non-isothermal conditions (conservation of energy equa-
tion) without or with the effect of pressure-dependence of
the viscosity.

For the finite element mesh arrangement we have used
our experience with viscous and viscoelastic flows and
chosen a grid that progressively adds more elements as one
moves towards the singularity at the entrance to the die,
while the elements become bigger as one moves away from
the singularity. A typical finite element grid is shown in
Fig. 8 for L/R=20. The domain represents a 12.5:1 abrupt
circular contraction with an entrance angle 2ϕ = 90°. The
grid consists of 1700 elements, 7161 nodes, and 22,261
unknown degrees of freedom (d.o.f.), while a 4-times

denser grid is also used, having been created by subdivision
of each element into 4 sub-elements for checking purposes
of grid-independent results. This checking consists of
reporting the overall pressures in the system from the two
meshes and making sure that the differences are less than
1% between the two results. Having fixed the Cross model
parameters and the problem geometry, the only parameter
left to vary was the apparent shear rate in the die
( �gA ¼ 4Q=pR3). Simulations were performed for the stable
range of experimental apparent shear rates, namely from
5 s−1 to 60 s−1, before melt fracture sets in. We have chosen
for detailed studies a die with D=0.762 mm having a
constant contraction ratio Dres/D=12.5 but different lengths.

First, runs were carried out to study each effect
separately, namely: (a) the effect of compressibility alone,
(b) the effect of a pressure-dependent viscosity alone, (c)
the effect of a temperature-dependent viscosity alone, and
these were compared with the base case of no effects at all
(βc=βp=aT=0).

It was found that compressibility played a negligible
role, as the results were virtually the same with or without

Fig. 8 a A typical finite element grid for the simulations in an 12.5:1
tapered circular contraction with L/R=20 and 2ϕ=90°. The upper grid
(M1) consists of 1700 elements and 7161 nodes, while the lower grid
is created by subdivision of each M1 element into 4 sub-elements to
form a denser grid for checking the results for grid-independence; b
detailed grids near the die entry
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compressibility and they are not shown here. Admittedly,
this is expected because the value for FEP of βc=
0.00095 MPa−1 is small, giving rise to very small values
for the dimensionless compressibility parameter Bc in
Table 5 in the range of simulations. The same was true for
the LDPE and HDPE melts in our previous work [8].

The effect of temperature-dependent viscosity was also
very small in the range of simulations (not shown here)
never exceeding a maximum temperature rise of a fraction
of a degree. This is not surprising given the very low Na
numbers of Table 5.

On the other hand, a pressure-dependence of the
viscosity, with a variable value of βp obeying Eq. (25)
plays a considerable role (Fig. 9 with all effects present)
augmenting the pressure drop by about 16% at the highest
apparent shear rate. The pressure is higher than the base
case for all apparent shear rates, due to the dominant effect
of pressure-dependence of the viscosity. This effect is the
most significant and masks out the other two negligible
contributions of compressibility and temperature-
dependence of viscosity.

When the die is longer (L/D=40), the overall effects are
more pronounced as evidenced in Fig. 10. At the highest
shear rates we see a curvature in the pressure drop in the die
due to the pressure-dependence of the viscosity.

Collecting all the pressure results together for the four
dies with L/D=0.2, 10, 20, 40, and five apparent shear rates �gA gives the well known Bagley plot shown in Fig. 11. The

experimental results are shown as symbols while the
numerical results here and in the subsequent graphs are
shown as lines. These simulation results have been obtained
with all parameters switched on, i.e., compressibility,
pressure- and temperature-dependence of viscosity. The
results agree well with the experimental data, except for the
well-known inability of a viscous model to capture the end
correction (for L/D=0). A purely viscous model for FEP
predicts end corrections lower than the experimental ones.
It is then at this point that we turn our attention to the
viscoelastic results.

Viscoelastic modeling

It is again instructive to compare pressure distributions
between the viscous and the viscoelastic models with all
effects present. This is done in Fig. 12, where we show the
pressure results from the Cross and the K-BKZ models for
the case of L/D=40 with D=0.762 mm. The viscoelastic
pressures are higher than the viscous ones, and this
becomes more apparent at elevated shear rates (maximum
difference of 6% at 60 s−1). However, it seems that the
overall pressure results are well captured by both models
mainly due to the small range of apparent shear rates
studied, in relation to the intersection point of G' and G" of
Fig. 2.
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Collecting again all the pressure results together for the
four dies with L/D=0.2, 10, 20, 40 and five apparent shear
rates �gA gives the corresponding viscoelastic Bagley plot
shown in Fig. 13. The agreement is again good as with
the viscous simulations, but the more severe test is the

Bagley correction for L/D=0. This is shown in Fig. 14.
We see that the viscoelastic simulations better capture the
experimental results, which are underestimated by the
viscous simulations.

The small effect of different die diameters D on the end
correction was not captured by the model as such. Such
experimental data, where the entry pressure has shown a
diameter dependence, have been reported by Meissner [42].
At this point the origin of this dependence is not known and
it is a subject of further investigation.

Bagley Plot

L / D
0 10 20 30 40

Δ
P

 (
M

P
a)

0

10

20

30

40

50

γA=6 s-1

γA=9 s-1

γA=15 s-1

γA=30 s-1

γA=60 s-1

γA=6 s-1

γ

γ

γ
γ

A=9 s-1

A=15 s-1

A=30 s-1

A=60 s-1

FEP, T=300°C 
symbols=experim.
lines=K-BKZ model

.

.

.

.

.

.

.

.

.

.
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Simulations with the K-BKZ model (Eq. 11)
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Fig. 11 The effect of L/D on the pressure for the FEP melt at 300°C at
various values of apparent shear rate (all effects accounted for).
Simulations with the purely viscous Cross model (Eq. 8)
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Conclusions

A FEP melt has been studied in entry flows through
capillary dies with different L/D ratios with the purpose of
predicting the entry pressure to capillaries (Bagley correc-
tion) and its flow behaviour in pressure-driven circular
extrusion-forming flows. Full rheological characterization
was carried out both with a viscous (Cross) and a
viscoelastic (K-BKZ) model. All necessary material prop-
erties data were collected for the simulations.

The viscous model was found to predict well the
extrusion pressures but underestimated the Bagley correc-
tion (L/D=0). On the other hand, the viscoelastic model
showed a slight but still better agreement with the
experimental results. The simulations showed that: (a)
compressibility is not important in these steady flows; (b)
viscous dissipation is negligible, even for the more severe
conditions (high L/D and apparent shear rates); (c) the
pressure-dependence of viscosity is moderate and must be
accounted for, especially for the more severe conditions
(high L/D and apparent shear rates). This is the first time
that all these effects are taken into account in a viscoelastic
simulation for a fluoropolymer melt.
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