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Abstract The prediction of the forming limits of sheet
metals typically assumes plane stress conditions that are
really only valid for open die stamping or processes with
negligible out-of-plane stresses. In fact, many industrial
sheet metal forming processes lead to significant compres-
sive stresses at the sheet surface, and therefore the effects of
the through-thickness stress on the formability of sheet
metals cannot be ignored. Moreover, predictions of forming
limit curves (FLC) that assume plane stress conditions may
not be valid when the forming process involves non-
negligible out-of-plane stresses. For this reason a new
model was developed to predict FLC for general, three-
dimensional stress states. Marciniak and Kuczynski (Int J
Mech Sci 9:609-620, 1967) first proposed an analytical
method to predict the FLC in 1967, known as the MK
method, and this approach has been used for decades to
accurately predict FLC for plane stress sheet forming
applications. In this work, the conventional MK analysis
was extended to include the through-thickness principal
stress component (σ3), and its effect on the formability of
different grades of sheet metal was investigated in terms of
the ratio of the third to the first principal stress components
(b ¼ s3 s1= ). The FLC was predicted for plane stress
conditions (β=0) as well as cases with different compres-
sive through-thickness stress values (β≠0) in order to study
the influence of β on the FLC in three-dimensional stress
conditions. An analysis was also carried out to determine
how the sensitivity of the FLC prediction to the through-

thickness stress component changes with variations in the
strain hardening coefficient, in the strain rate sensitivity, in
plastic anisotropy, in grain size and in sheet thickness. It
was found that the out-of-plane stress always has an effect
on the position of the FLC in principal strain space.
However, the analysis also showed that among the factors
considered in this paper, the strain hardening coefficient has
the most significant effect on the dependency of FLC to the
through-thickness stress, while the strain rate sensitivity
coefficient has the least influence on this sensitivity.

Introduction

The poor correlation between the common “cupping” test and
the actual performance of sheet metal in industrial forming
operations led researchers to look at some more fundamental
parameters. A significant breakthrough came in 1963, when
Keeler and Backofen [2] reported that during sheet stretching,
localized necking required a critical combination of major
and minor strains (along two perpendicular directions in the
plane of the sheet). Subsequently, this concept was extended
by Goodwin [3] to sheet drawing and the resulting curve is
known as the Keeler-Goodwin curve or the forming limit
curve (FLC). In other words, Keeler developed the right side
of the FLC (i.e., positive minor strain), and Goodwin
extended the forming limit curve to include negative minor
strains.

In order to predict the FLC, Marciniak and Kuczynski
[1] proposed that the inhomogeneity of the sheet material
could be modeled by a geometric defect in the sheet. In
their study, an imperfection in the form of a shallow groove
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was applied to specimens stretched in equibiaxial tension.
The severity of the imperfection was quantified by the ratio
of the thickness in the groove to the nominal thickness of
the sheet. In general, no reductions in the forming limit
would be seen when the value of the imperfection factor is
between 0.99 and 1.00. In this model, the initial inhomo-
geneity of the material develops continuously with plastic
deformation until a localized neck eventually appears.

In 1970, Azrin and Backofen [4] subjected a large
number of materials to in-plane stretching. They discovered
that an imperfection factor of about 0.97 or less was
required to obtain agreement between the MK analysis and
experimental FLC data. Accordingly, even though the MK
method provided a simple predictive model, there was
inconsistency between its predictions and experimental
data. Similar trends were also observed by Sowerby and
Duncan [5] as well as by Marciniak et al. [6]. In addition,
Sowerby and Duncan [5] also reported that limit strains
predicted with the MK method showed a considerable
dependence on material anisotropy.

Ghosh [7] found that material strain rate sensitivity is
important during post-uniform deformation. The additional
hardening due to strain rate sensitivity plays a significant
role in increasing the forming limits by delaying strain
localization inside the neck.

The physical soundness and the simplicity of the MK
analysis has no doubt been the reason this method has been
the most popular theoretical approach for FLC calculation,
and it has been used by many researchers, even in recent
years: for instance Butuc et al. [8] in 2006, Yoshida et al.
[9] in 2007 and Nurcheshmeh and Green [10] in 2010.

The prediction of the FLC of sheet metals traditionally
assumes plane stress loading conditions and the effect of
the normal stress is usually neglected. Therefore FLC
predictions are only strictly valid for open die and free
forming processes. However, many metal forming pro-
cesses lead to the development of non-negligible normal
stresses in the sheet when it is formed over a die radius.
Through-thickness stresses become even more significant
in hydroforming processes, where a pressurized fluid
compresses a sheet or a tube against the surface of the
die. In many hydroforming applications, the pressure of
the forming fluid can generate such high contact
pressures that the through-thickness stress exceeds the
in-plane stresses. The existence of a significant through-
thickness compressive stress creates a hydrostatic stress
state that has the potential to increase the formability of
the sheet and therefore requires consideration in the
prediction of the FLC.

Very few sheet formability studies have taken into
account the effect of the normal stress and further research
is required in this area. Gotoh et al. [11] presented an
analytical expression that predicts an increase in the plane-

strain forming limit in strain space due to the presence
of through-thickness compressive stresses. They demon-
strated theoretically that an out-of-plane stress (even as
small as one tenth of the yield stress) can raise the
forming limit strain and thus can be effectively used to
delay the onset of fracture in press forming. Smith et al.
[12] developed a new sheet metal formability model that
takes into account the through-thickness normal stress for
materials that exhibit planar isotropy. These authors’
model predicts a greater increase in formability due to
compressive stresses than that predicted by Gotoh’s
model. They also examined the influence of the strain
hardening coefficient (n value) on the sensitivity of the
FLC to the normal stress.

Finally, Banabic and Soare [13] used the MK analysis to
study the influence of fluid pressure normal to the sheet
surface on the forming limits of thin, orthotropic sheets.
Their model was used to predict the FLC of AA3104-H19
aluminum alloy subject to different fluid pressures ranging
from 0 (plane stress condition) to 200 MPa. They showed
that the formability of this aluminum alloy improves with
the application of a fluid pressure, especially on the right
side of the forming limit diagram. Experimental data was
available in the plane stress condition which was predicted
satisfactory and used to calibrate their model.

In the present paper, a three-dimensional stress state was
implemented in a modified version of the MK model to
predict FLC with different through-thickness stress values.
The imperfection factor was related to the surface rough-
ness and grain size of the sheet and was updated throughout
the deformation of the sheet. The imperfection band was
oriented perpendicular to the first principal stress, and its
rotation was also considered as the sheet was plastically
deformed. This modified MK model was validated in
plane-stress conditions with experimental FLC data
obtained for AISI-1012 steel [14] and it was also compared
with other theoretical results obtained by the present
authors [10]. The validation of the model for cases that
involved through-thickness stresses was done with pub-
lished experimental FLC data for AA6011 aluminum [15]
and STKM-11A steel [16] sheets. The sensitivity of the
predicted FLC to the applied out-of-plane stress component
was also analyzed as a function of variations in different
material properties and the results of this sensitivity
analysis will be discussed.

Theoretical approach

Marciniak and Kuczynski [1, 6] presented a theoretical
framework for prediction of FLC that is commonly known
as the MK method, which has been shown to predict FLCs
with reasonable accuracy. This approach is based on the
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fact that inhomogeneities are unavoidable in actual sheet
materials, and it is assumed that this inherent material
inhomogeneity can be modeled as a geometric imperfection
in the form of a narrow band (Fig. 1) with a slightly
different thickness than the rest of the sheet. Although this
approach was originally proposed for plane stress con-
ditions, the current work includes the third stress compo-
nent in the MK model and is shown as σ3 in Fig. 1.

Figure 1 schematically represents a shallow groove on
sheet surface, which effectively divides it into two
separate regions: region (a) with nominal thickness, and
region (b) with the reduced thickness in the groove. The
initial imperfection factor of the groove, f0, is defined as
the thickness ratio between the two regions as follows:

f0 ¼ tb0
ta0

ð1Þ

where t denotes the sheet thickness and subscript ‘0’
denotes the initial state. The thickness difference between
these two regions is critical element in the MK theory
because the predicted limiting strains are very sensitive to
the initial value of the imperfection factor. In most
studies, this coefficient is simply assumed to have a fixed
value close to 1.0 and that can be adjusted so that the
predicted FLC will better fit the experimental data.
However, it has been proposed [10] that a more realistic
approach would be to relate the initial thickness differ-
ence between the two regions to the surface roughness of
the sheet. Indeed, research carried out by Stachowicz [17]
shows that surface roughness changes with deformation
and these changes depend upon initial surface roughness,
grain size, and effective plastic strain. By relating the
thickness difference between regions (a) and (b) to the
surface roughness of the sheet metal, the imperfection
factor not only takes on a value that has physical meaning
but also the option of adjusting this value so that the
predicted FLC can better fit experimental data is elimi-
nated. Stachowicz’s assumption was adopted in this work
and the imperfection factor was assumed to change with

the deformation of the sheet according to the following
relationship:

f0 ¼
ta0 � 2 RZ0 þ Cd0:50 "be

� �
ta0

ð2aÞ

f ¼ ta0 � 2 RZ0 þ Cd0:50 "be
� �

ta0
exp "b3 � "a3

� � ð2bÞ

where RZ0 is the surface roughness before deformation, C is
a material constant, "be is the effective strain in region (b),
and d0 is the material’s initial grain size. Additional details
on the calculation of the imperfection factor are provided in
the authors’ previous work [10].

In general, the imperfection band is randomly oriented and
its orientation can be determined by the angle θ between the
groove axis and the direction of the second principal stress
(Fig. 1). When plastic deformation begins, this angle will
slowly start to change as the groove rotates with respect to the
loading axes, and its orientation can affect the limiting strains.
In order to obtain FLC predictions with good accuracy, the
variations in the groove orientation should therefore be
considered in the calculation of the forming limit strains by
updating its value at each increment throughout the plastic
deformation. This rotation of the imperfection band during
deformation was well researched by Sing and Rao [18] and
they proposed an empirical formula in which the orientation
varies as a function of the true plastic strain increments in
region (a) of the sheet as follows:

tan q þ dqð Þ ¼ tan qð Þ 1þ d"a1
1þ d"a2

ð3Þ

where d"a1 and d"a2 are the major and minor principal strains
in the nominal area of the sheet, respectively.

A constitutive equation was derived in which the yield
function can be expressed in the following general form for
isotropic hardening:

f ¼ 3

2
Sij : N : Sij

� �1=2

� se ð4Þ

where, S is the deviatoric stress tensor and N is a tensor that
describes the anisotropy of the sheet material in terms of the
anisotropic constants in Hill’s 1948 yield function [19].

With consideration of the third principal stress compo-
nent, the three-dimensional plastic potential function was
implemented in the MK analysis:

2h ¼ sx
2 þ F þ Hð Þsy

2 þ F þ Gð Þs2
z � 2Hsxsy

� 2Fszsy � 2Gszsx ¼ f 2
ð5Þ

where the anisotropic coefficients F, G and H can be
calculated from the yield stresses in the principal directions.Fig. 1 Thickness imperfection in the MK model
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Strain hardening is described with the power hardening
including strain rate sensitivity effect as follows:

se ¼ k "
•
e

� 	m
"e þ "0ð Þn ð6Þ

where ε0 is a uniform prestrain applied to the sheet, m is the
strain-rate sensitivity coefficient, n is the strain-hardening
coefficient, σe and εe are the effective stress and strain,
respectively.

The associated flow rule was employed to calculate
plastic strain increments as follows:

d"ij ¼ dl� gradðhÞ ¼ dl� @h

@s ij
ð7Þ

where d1 is the plastic multiplier and h is the plastic
potential function.

There are two main assumptions in the MK analysis. The
first one is the geometric compatibility equation expressed
as the equality of the tangential plastic strain components
inside and outside the imperfection band,

d"att ¼ d"btt ð8Þ

and the second assumption is the equilibrium of the normal
and shear forces across the imperfection, i.e.:

Fa
nn ¼ Fb

nn ð9aÞ

Fa
nt ¼ Fb

nt ð9bÞ
where subscripts n and t denote the normal and tangential
directions of the groove, respectively, and F is the force per
unit width, i.e.:

Fa
nn ¼ sa

nnt
a ð10aÞ

Fb
nn ¼ sb

nnt
b ð10bÞ

Fa
nt ¼ sa

ntt
a ð10cÞ

Fb
nt ¼ sb

ntt
b ð10dÞ

By combining Eqs. 1, 6 and 10a, 10b the following
relation is obtained:

sa
nn

sa
e


 �
sb
nn

sb
e


 ��
¼ f "0 þ "be

� �n�"be

& m� �
"0 þ "ae
� �n�"ae

& m� ��

ð11aÞ

Since the strain rate is defined as "e
& ¼ d"e dt= , it follows

that:

sa
nn

sa
e


 �
sb
nn

sb
e


 ��
¼ f "0 þ "be

� �
= "0 þ "ae
� �� �n � d"be=d"

a
e

� �m
ð11bÞ

Finally, the stress transformation rule leads to the
expressions:

sa
nn ¼ sa

xcos
2 qð Þ þ sa

ysin
2 qð Þ ð12aÞ

sa
nt ¼ � sa

x � sa
y

� 	
sin qð Þ cos qð Þ

¼ sa
x a � 1ð Þ sin qð Þ cos qð Þ½ � ð12bÞ

where α is the ratio of the second true principal stress
component (σ2) to the first true principal stress component
(σ1) in the nominal area which indicates the stress path.
Expressions similar to Eqs. 12a and 12b can be written for
region (b), and using Eqs. 9, 10, and 12 we obtain:

sb
nt

sb
nn

¼ sa
nt

sa
nn

¼ a � 1ð Þ sin qð Þ cos qð Þ
cos2 qð Þ þ asin2 qð Þ ð13Þ

With consideration of the consistency condition, the
plastic potential function and the strain transformation rule:

d"ae
sa
e

F þ Hð Þ � aa � Fba � H½ �sa
xcos

2q þ 1� Gba � Haað Þsa
xsin

2q
 �

¼ sb
x

d"be
sb
e

F þ Hð Þ � ab � Fbb � H
� �

cos2q þ 1� Gbb � Hab
� �

sin2q
 �

ð14Þ
where β is the ratio of the third true stress component to the
first true stress component, such that:

b ¼ s3 s1 ¼ sz sx== ð15Þ
By combining Eqs. 11, 13, and 14, the final governing

equation was analytically determined as a function of the
ratio of the effective plastic strain inside and outside the
imperfection band h ¼ "be "ae

�
. This final differential equa-

tion indicates the evolution of the effective plastic strain
ratio η as the sheet is deformed under a three-dimensional
loading condition.

The plastic deformation of the sheet begins as strain
increments are imposed along a linear strain path (i.e. for a
constant value of r ¼ "2 "1= ) in the nominal region, and the
stress components are calculated from the strain state in the
nominal area. Then the strains and stresses in the
imperfection region are calculated from the strains and
stresses in the nominal area by using the governing
equations described above. During the analysis, it is
assumed that the normal stress applied on the surface of
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the sheet or tube is identical for both region (a) and region
(b) of the MK model. But since the thickness in region (b)
is less than that in the rest of the sheet, the strain rate
increases faster in region (b) than in region (a). Moreover,
the difference in strain rate between the two regions will
intensify as the deformation progresses, and eventually the
strains will localize in the imperfection region. It is
generally assumed that plastic instability occurs when the
effective plastic strain in the imperfection region reaches
ten times that in nominal area ("be ¼ 10 "ae). Once the onset
of necking takes place, the in-plane plastic strain compo-
nents in the nominal area ("a1 and "a2) identify a point on the
FLC for the specified strain path ρ. In order to generate the
entire FLC, the value of the strain ratio ρ is modified and
the procedure is repeated for each new strain path. The FLC
is thus determined from the limiting strain data obtained for
strain paths that vary in increments Δρ=0.05 from uniaxial
tension (ρ=−0.5) to equibiaxial tension (ρ=1.0).

Experimental validation of the modified MK model

The theoretical MK analysis model presented in the previous
section was implemented into a numerical code. This
proposed model was then used to predict the FLC of actual
sheet and tube materials, both with and without applied
normal stresses, in order to validate the numerical code.

Description of materials

The materials that were considered for the validation of the
proposed MK model are a low carbon steel (AISI-1012)
[14], AA6011 aluminum alloy [15], and STKM-11A steel
[16] (the designation of this last steel grade follows the
Japanese standard and it is equivalent to an MT1010 steel
in the ASTM standard). The mechanical properties of these
materials are listed in Table 1. It is also worth noting that in
these publications, AISI-1012 refers to a flat stock sheet
metal, whereas AA6011 and STKM-11A refer to thin
walled tubes.

Equation 2a was used to calculate the initial imperfection
factor value in the MK analysis. It was found that f0=0.995
for AISI-1012 steel, f0=0.997 for AA6011 aluminum, and
f0=0.991 for STKM-11A steel.

Validation of the proposed MK model

In order to validate the three-dimensional FLC model
described in the previous section, theoretical FLCs were
calculated in both plane stress and three-dimensional stress
conditions and the predicted FLCs were compared with
published experimental data [14–16].

The new model was verified first under plane stress
conditions, in the absence of through-thickness stresses
(β=0). Theoretical FLC were compared with the experimen-
tal FLC of as-received AISI-1012 sheet steel [14] which
were obtained by carrying out stretch forming tests using
rectangular and notched blanks of various widths with
different conditions of lubrication to achieve a range of
strain states �0:5 � r ¼ "2 "1 � 1:0= . Each blank was
electro-etched with a 3.0 mm diameter circle grid and
formed over a hemispherical punch until the onset of local
necking. The major and minor strains were measured
directly from the deformed grids using a profile projector.
The FLC predicted with the proposed MK model was also
compared with the FLC predicted by a different MK analysis
code developed previously by the same authors for purely
plane stress conditions [10]. The predicted and experimental
FLCs for this grade of steel are shown in Fig. 2.

Figure 2 shows good agreement between the theoretical
and experimental FLCs obtained under plane stress con-
ditions, and the developed model predicts the FLC for this
steel with acceptable accuracy. Furthermore, it can be seen
that the FLC predicted under plane stress conditions with
the new three-dimensional model is essentially identical to
the FLC predicted with the previous two-dimensional
analysis code [10].

The proposed MK analysis model was also verified for
more general loading conditions where the out-of-plane
stress component is non-negligible (β≠0). This further
validation of the three-dimensional MK model was carried
out by predicting the FLC of AA6011 aluminum tubes that
were hydroformed with up to 15-MPa internal pressure
(which corresponds to σ3≈7.5 MPa). Hwang et al. [15]
prepared 200-mm long tube specimens with a 1.86-mm
wall thickness, and a 51.9-mm outer diameter. The tube
specimens were annealed at 410°C for 2 h and then a grid
of 5-mm-diameter circles with a spacing of 1-mm was
electrochemically etched onto the surface of undeformed
tubes for the purpose of strain measurement. Tubes were
pressurized in a bulge test apparatus without axial feeding
to generate positive minor strains. Other tubes were also
pressurized in a hydroforming test machine with axial
feeding to generate strain paths with negative minor strains.
After the tubes were deformed, the circle grids in the
vicinity of the burst were measured by a three-dimensional
digital image processing system and the major and minor

Table 1 Mechanical properties

Material K (MPa) n m R (Normal) t0 (mm)

AISI-1012 [14] 238 0.35 0.015 1.21 2.5

AA6011 [15] 254.9 0.265 – 0.574 1.86

STKM-11A [16] 1450 0.14 – 2.14 1.4
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strains were determined. The limiting strain data from these
tests was used to construct the left side of the FLC of these
aluminum tubes. The comparison of the predicted and
experimental FLCs is shown in Fig. 3.

It can be seen from Fig. 3 that there is good agreement
between the experimental data and the predicted FLC on
the left side of the diagram. This may seem surprising
considering that the analysis was carried out using Hill’s
1948 yield criterion. Indeed, it is well known that Hill’s
quadratic yield function is not suitable for predicting the
biaxial behaviour of aluminum alloys and more recent, non-
quadratic yield functions have been shown to be much
more appropriate [20]. However, it can be seen that the
experimental FLC data in Fig. 3 corresponds with defor-
mation modes between plane strain and uniaxial tension,

and for such deformation modes the quadratic yield
function is capable of predicting reasonably accurate
results. Non-quadratic yield functions typically lead to
improved predictions of the forming behaviour of alumi-
num alloys for deformations in biaxial tension, because
they are better able to represent the shape of the yield locus
between plane strain and balanced biaxial tension: this
corresponds with the right side of the FLC for which no
experimental data is available. No doubt the predictions of
FLC in the region of plane strain would be improved with
the use of a non-quadratic yield function.

The proposed model was also validated with another set
of experimental limiting strain data for STKM-11A steel
presented by Kim et al. [16]. These authors determined the
experimental FLC by hydroforming straight tubes with both
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an axial end-feed force and 56-MPa internal pressure
(leading to σ3≈28 MPa). A constant ratio of high internal
pressure and relatively low axial force was applied with an
end displacement rate of 2.33-mm/s using a PC-based
controller. During these experiments, tubes were pressur-
ized until they burst, and the average burst pressure was
56 MPa, with the split occurring parallel with the tube axis
and positioned toward the middle of the tube. Strain
measurements were taken as near to the fractured edge as
possible in order to determine limit strains. Figure 4 shows
a comparison of predicted and experimental FLC for
negative minor strains.

It can be seen in Fig. 4 that the FLC predicted by the
proposed MK analysis lies slightly above the experimental
FLC for this grade of steel. This discrepancy between the
theoretical and the experimental FLC data is likely due to

the fact that experimental strains were not actually
measured in local necks since these tubes were allowed to
burst, but they were measured in the uniformly deformed
material right next to the fractured edge of burst tubes.
Therefore these experimental strain data represent a
conservative estimation of the actual FLC. Limiting strain
data was not available for the right hand side of the diagram
because Kim et al. [16] were only able to apply a
compressive axial force to the ends of the tubes, whereas
a tensile axial force is required to obtain positive minor
strains [21].

It is also worth pointing out that the experimental FLC
data [14–16] used to validate the current MK model were
obtained using the well-known circle grid analysis tech-
nique. This technique relies on the measurement of
deformed grids on the surface of the specimens as well as
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the somewhat subjective interpretation about whether necking
has begun or not in a specific grid location. This technique is
therefore dependent on the experimentalist’s experience and the
accuracy of the strain measurements, and therefore it inevitably
leads to some variability in the results. According to the
author’s experience, the experimental error that can be expected
in FLC strain data obtained with the circle grid technique is
estimated to be within ±2.5% strain. More advanced techniques
are now being used to determine the forming limits of sheet
materials with greater repeatability and reproducibility. For
instance, digital image correlation is used to measure the strain
field across the entire specimen gauge area and numerical
interpolation methods are then used to determine the strains at
the onset of necking [22–26]. These techniques are very
powerful as they can determine limiting strains even for very
high strength materials that tend to fracture without necking.

However, although there is some experimental error in the
published experimental FLC data [14–16], the comparisons
between the predicted and experimental FLC (Figs. 2, 3 and
4) nevertheless show that the proposed three-dimensional
MK model provides a good prediction of the FLC, whether
the through-thickness stress component is significant or not.

Influence of the through-thickness stress on the FLC

The primary purpose of this work is to study the effect of
the through-thickness stress component on the forming
limit curve. In this section, the sensitivity of the FLC to the
out-of-plane stress component will be studied by applying
different levels of through-thickness stress to the surface of
AISI-1012 steel sheets. The FLC was predicted for a
normal stress ranging from σ3=0 (plane stress condition) to
σ3=35 MPa. The theoretical results are presented in Fig. 5.

It can be seen from Fig. 5 that the FLC is quite sensitive to
the normal stress: indeed, the entire FLC is observed to shift
up the vertical axis when the applied normal stress increases.
The formability of this sheet steel is seen to improve with a
normal stress as low as 10 MPa. Furthermore, it is apparent
from Fig. 5 that the increase in formability is not proportional
to the increase in normal stress: indeed, the rate of increase in
formability also increases with the normal stress.

Influence of mechanical properties on the sensitivity
of FLC to out-of-plane stresses

In the previous section it was shown (Fig. 5) that the FLC
of AISI-1012 sheet steel is dependent on the magnitude of
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Fig. 6 FLC of a sheet material
that differs from AISI-1012
only by its strain hardening
coefficient (n=0.70),
predicted as a function of the
applied normal stress
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Fig. 7 Increase in FLC0 as a function of the applied normal stress for
two sheet steels that differ only by their strain hardening coefficient
(n=0.35 and n=0.70)



the applied normal stress. Therefore it is also of further
interest to determine if this dependence varies from one
material to another, and if so, how individual material
properties may affect the sensitivity of the FLC to the
normal, or through-thickness, stress. The constitutive
equations in this three-dimensional version of the MK
model are capable of fully describing the elasto-plastic
behaviour of sheet materials; therefore it is possible to
investigate the effect of individual material parameters on
the sensitivity of the FLC to the out-of-plane stress. In this
study, the influence of some of the more significant
properties of sheet materials—the strain hardening coeffi-
cient (n), the strain rate sensitivity (m), the plastic
anisotropy coefficients (R), grain size (d0) and initial sheet
thickness (t0) were investigated. Each parameter was
therefore modified one by one to observe its effect on the
sensitivity of the FLC to increases in the out-of-plane stress,
and the results of this study are presented in this section.

Since the work hardening ability of a sheet material is
such a significant material property in sheet metal
forming, the effect of a change in the strain hardening
coefficient is presented first. All the mechanical proper-
ties of the AISI-1012 sheet steel (Table 1) were kept
unchanged except for the value of the strain hardening
coefficient which was doubled from n=0.35 to n=0.70.
While this change leads to a fictitious material for which
the experimental FLC is not readily available, the present
three-dimensional version of the MK analysis nevertheless
enables us to predict the dependence of the FLC on the
applied normal stress. Figure 6 shows the FLC of a very
formable sheet material (n=0.7) for various levels of
applied normal stress ranging from σ3=0 (plane stress) to
σ3=35 MPa.

Figure 6 shows that the predicted FLC is almost
independent of the applied normal stress for a sheet
material with a very high strain hardening coefficient. In
order to better visualize the effect of the strain hardening
coefficient on the FLC, the vertical shift of the FLC
relative to the plane stress condition was plotted as a
function of the applied normal stress. More specifically,
the percent increase in the limiting major strain in plane
strain (FLC0) due to increases in the out-of-plane stress
component was plotted for both materials considered
(n=0.35 and n=0.70) and shown in Fig. 7. This figure
indicates that through-thickness stresses always improve
the formability of sheet materials, but the positive effect of
the out-of-plane stress is far more significant for lower-
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by its strain rate sensitivity
(m=0.030) predicted as a
function of the applied
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Fig. 9 Increase in FLC0 as a function of the applied normal stress for
two sheet steels that differ only by their strain rate sensitivity
(m=0.015 and m=0.030)



formability sheet materials than it is for higher-formability
materials.

The next mechanical property considered in this study
on the forming limits of sheet metal formed under three-
dimensional stress states is the strain rate sensitivity (m). It
is well known that positive strain rate sensitivity helps to
improve formability by delaying the onset of necking and
by strengthening the material as the strain rate increases in
the area where strains are localizing. In this investigation,
all the mechanical properties of the AISI-1012 sheet steel
(Table 1) were kept unchanged except for the strain rate
sensitivity which was doubled from m=0.015 to m=0.030.
The three-dimensional MK model was then used to
calculate the FLC for each level of applied normal stress,
and the predicted FLCs are plotted in Fig. 8. It is evident

from Fig. 8 that the predicted FLC remains very dependent
on the through-thickness stress after the strain rate
sensitivity was increased by a factor of two. However,
comparing Figs. 5 to 8, the sensitivity of the FLC to the
through-thickness stress does not appear to have changed
significantly.

In order to quantify the effect of the strain rate sensitivity
(m value) on the dependence of FLC to the normal stress
the percentage increase in FLC0 was plotted as a function
of the applied normal stress for both sheet steels (m=0.015
and m=0.030), and the results are shown in Fig. 9. It is
immediately apparent from this figure that, while formabil-
ity significantly increases with normal stress for both
materials, changes in strain rate sensitivity practically have
no effect on the dependence of FLC to the through-
thickness stress.

Another mechanical parameter that was considered in
this investigation is the anisotropy of the sheet material. It
is well known that, according to the MK analysis,
variations in anisotropy are seen to have a significant effect
on the formability of a sheet material, and this effect is
primarily evident on the right hand side of the FLC (i.e. for
positive minor strains). Although experimental FLC data do
not generally show such an influence of anisotropy on the
forming limits [27], the sensitivity of FLC to the applied
through-thickness stress was nevertheless calculated for a
fictitious material whose mechanical properties are identical
to those of AISI-1012 steel except for the anisotropy
coefficients; the plastic anisotropy coefficients were dou-
bled from R0=1.4 to R90=1.35 to R0=2.8 and R90=2.7. It
can be pointed out that, while the anisotropy of this
fictitious is expressed in terms of planar anisotropy
coefficients (R0 and R90) the level of planar anisotropy is
actually low ΔR ¼ R0 þ R90 � 2R45ð Þ=2 ¼ 0:85ð Þ, but the
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Fig. 10 FLC of a sheet material
that differs from AISI-1012 only
by its plastic anisotropy
coefficients (R0=2.8 and
R90=2.7), predicted as a
function of the applied
normal stress
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normal anisotropy, that is, the through-thickness anisotropy, is
quite significant R ¼ R0 þ R90 þ 2R45ð Þ=4 � 2:42

� 	
. The

FLC of this material was then calculated for increasing levels
of applied normal stress and the results are shown in Fig. 10.

Figure 10 shows that the formability of a sheet
material with significant normal anisotropy also
increases with increasing normal stresses. Nevertheless,
a comparison of Figs. 5 and 10 seems to indicate that the
FLC becomes somewhat less sensitive to the through-
thickness stress as normal anisotropy increases. To better
evaluate the sensitivity of the FLC to the normal stress for
different degrees of normal anisotropy, the percent
increase in FLC0 from the plane stress condition was
calculated for both sets of anisotropy coefficients and
plotted in Fig. 11.

Figure 11 indeed supports the observation made from
Fig. 10 that, while FLC0 continues to increase with the
normal stress, the rate of increase of FLC0 is lower for sheet
materials with more pronounced normal anisotropy. It can
also be observed that the increase in formability is
practically proportional to the increase in normal stress for
the sheet material with the greater anisotropy.

In this investigation the imperfection factor in the MK
analysis was defined, amongst other parameters, as a
function of the grain size (d0) of the sheet material. It is
therefore of interest to determine if the sensitivity of the
FLC to the normal stress varies as a function of the grain
size. In order to assess the effect of the grain size, the FLC
of a fictitious sheet material, identical to the AISI-1012
steel except for its initial grain size that was doubled from
25 μm to 50 μm, were calculated for different values of the
applied normal stress. The predicted FLC are plotted in
Fig. 12, and once again, it is evident that sheet formability
continues to be dependent on the applied normal stress.

Similar to the previous cases, the percentage increase in
the predicted FLC0 was plotted as a function of the
through-thickness stress for both the AISI-1012 steel and
the fictitious material with the increased grain size, and
these data are presented in Fig. 13. It appears that when the
grain size of the material increases the dependence of FLC
on the applied out-of-plane stress decreases somewhat, but
the rate of increase in formability still increases with the
normal pressure. The initial grain size of the sheet does not
appear to a have a significant effect on the dependence of
the FLC to the through-thickness stress.

The sheet material’s initial thickness was the last
parameter that was considered in this investigation. Once
again, the FLC of a sheet material with identical mechanical
properties to those of AISI-1012 steel except for the initial
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Fig. 12 FLC of a sheet material
that differs from AISI-1012 only
by its grain size (d0=50 μm),
predicted as a function of the
applied normal stress
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Fig. 13 Increase in FLC0 as a function of the applied normal stress
for two sheet steels that differ only by their initial grain size
(d0=25 μm and d0=50 μm)



thickness that was reduced by a half from 2.5 mm to
1.25 mm (it did not appear reasonable to predict the FLC
for a sheet thickness that was doubled to 5.0 mm), was
calculated for different levels of applied normal stress, and
the predicted FLC are shown in Fig. 14.

Figure 14 shows that the sheet material with a thinner
gauge is still sensitive to the applied normal stress, but that
the dependence of the FLC on the through-thickness stress
seems to decrease somewhat as the initial sheet thickness
drops. Figure 15 confirms that this sensitivity to the
through-thickness stress decreases when the sheet thickness
decreases, although the actual rate of increase in formability
continues to increase slightly with normal stress for this
particular material with a 1.25 mm gauge.

It should be mentioned, however, that the current model
does not address the influence of sheet thickness on limit

strains in the presence of significant bending. Indeed, when
a sheet is drawn over a punch radius the combination of
stretching and bending lead to inhomogeneous through-
thickness deformation. Furthermore, the through-thickness
strain gradient increases with initial sheet thickness and
with the severity of the bend. Ghosh and Hecker [28]
showed that an increase in out-of-plane (i.e. bending)
deformation tends to delay the onset of necking and shifts
the forming limits toward higher strains. Therefore a
different approach is required to predict limit strains in
cases where there is significant bending [29].

In order to compare the effect of each of these material
parameters on the sensitivity of FLC to the through-
thickness stress, the percent increase in FLC0 (compared
to the plane stress condition) was plotted in Fig. 16 for each
of the factors discussed. It can be seen that variations in the
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Fig. 14 FLC of a sheet material
that differs from AISI-1012 only
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(t0=1.25 mm), predicted as a
function of the applied
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strain hardening coefficient clearly have the most
significant effect on the sensitivity of the FLC to the
normal stress: the sensitivity to the normal stress
increases sharply when the work hardening ability of
the material decreases. Similarly, the pressure sensitivity
of the FLC increases when the normal anisotropy
decreases. Another factor that has a significant effect on
the sensitivity of FLC to the normal stress is the initial
sheet thickness however its effect is the reverse of that of
the other properties: the sensitivity of the FLC to the
normal stress increases with the sheet thickness. Finally,
any variation in grain size or in strain rate sensitivity
does not appear to significantly affect the dependence of
FLC on the normal stress unless the normal stress
becomes very large (σ3>30 MPa in this case).

Conclusion

In this research work, the through-thickness stress compo-
nent was included in the traditional MK analysis to predict
FLC in conditions where an out-of-plane stress is applied to
the sheet surface. The current model was validated by
comparing its predictions to experimental FLC data with
different levels of applied normal stress. The FLC of an
AISI-1012 steel sheet obtained under plane stress condi-
tions, and the FLC of AA6011 aluminum and STKM-11A
steel tubes subjected to various levels of internal pressure
were all used to verify the proposed model. A good
correlation between the theoretical and experimental FLCs
was observed in all three cases.

The current MK model takes into account the effects of
material properties such as grain size, surface roughness,
and rotation of the initial imperfection. The value of the
thickness inhomogeneity was defined as a function of
surface roughness and grain size of the sheet material. In
addition, the rotation of the imperfection band, the surface
roughness and the thickness ratio (f) were updated
throughout the loading history. This MK analysis was
implemented into a numerical code, and the FLC of AISI-
1012 sheet steel was predicted for different values of the
applied compressive normal stress. The results obtained
from this series of analyses showed that the FLC of a
typical sheet steel is very sensitive to the applied normal
stress, and the formability of the sheet always improves as
the through-thickness stress increases. Therefore whenever
it is applicable the addition of, or increase in, through-
thickness stress would undoubtedly help to improve the
formability of sheet materials in industrial sheet and tube
forming processes. In many instances, the rate of increase
in formability also increases with the normal stress,
providing additional benefit to even small increases in
applied normal stress.

Finally, the influence of certain sheet mechanical
properties on the sensitivity of FLC to the through-
thickness stress was also investigated using this predictive
MK analysis code. It was found that the work hardening
ability of the material has the greatest influence on the
pressure dependence of FLC. Indeed, the dependence of
FLC on the applied out-of-plane stress increases signifi-
cantly as the strain hardening exponent decreases. Similar-
ly, the sensitivity to the normal stress increases as the
normal anisotropy (R) decreases. The grain size and the
strain rate sensitivity were found to have only a minor
influence on the pressure dependence of the FLC. Finally,
the dependence of FLC on the normal stress was seen to
increase quite significantly with the thickness of the sheet
metal.

All in all, this investigation has shown that, while the
dependence of the FLC on the through-thickness stress can vary
from one material to another, the stress applied normal to the
sheet surface invariably enhances sheet formability. Therefore
the pressure dependence of the forming limits of metal sheets
and thin-walled tubes cannot be ignored if the forming severity
of formed components is to be accurately evaluated and the
robustness of forming processes is to be optimized.
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