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ABSTRACT: Present work examines a mathematical model to predict the onset of shear fracture in the industrial 
processes of sheet metal forming such as biaxial stretching. Historically, sheet metal formability has been assessed by 
simple testing such as the Erichsen test. Lately, the concept of experimental Forming Limit Curve, FLC, was developed 
to evaluate formability. The Forming Limit Diagram shows the FLC which is the plot of principal strains in the sheet 
metal surface, ε1 and ε2 , occurring at critical points obtained in the laboratory formability tests or in the fabrication 
process. Two types of undesirable failure mechanisms can occur in sheet metal forming operations: local necking and 
shear fracture. Therefore, two kinds of limit strain curves can be plotted: the local necking limit curve FLC-N and the 
shear fracture limit curve FLC-S. The D-Bressan shear instability criterion model proposed for the theoretical prediction 
of forming limit strain curve owing to the onset of local necking, FLC-N, in sheet metal forming is reformulated to 
predict the shear fracture strain limit, FLC-S, of sheet metal forming operations. Shear fracture is anticipated to initiate 
in the direction of pure shear when the shear stress attains some critical value. The Barlat Yld2000-2d anisotropic yield 
function proposed by Barlat et al. is employed and the material is assumed to display both planar and normal 
anisotropy. The new approach investigate the influence of mechanical plastic properties such us the plastic anisotropy 
parameters, pre-strain and work hardening coefficient in sheet metal formability. Some experimental and theoretical 
results of forming limit curve for aluminium obtained from present model for two values of the power coefficients a =5 
and 6 are shown. The relevant issues related with the FLC-S is presented and discussed. 
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INTRODUCTION  
Formability of sheet metals is an important and complex 
issue related to the optimization and quality control of 
sheet metal final product. New developments and 
research have been carried out, aiming at improving 
sheet materials and fabrication processes such as 
stamping, stretching, deep drawing and other sheet metal 
forming processes. Also, it is important to improve 
equipments in order to increase its productivity, quality 
and to lower costs through the finished product shape 
more simple, with zero defects and obtained by less 
number of operations.  
Historically, sheet metal formability has been assessed 
by simple testing such as the tensile test, the biaxial 
stretching or Erichsen test and the deep drawing or cup 
test. Lately, the concept of experimental Forming Limit 
Curve for strains, FLC, and numerical simulations by 
finite elements were developed to evaluate sheet metal 
formability and its forming operations by predicting the 
onset of local necking and fracture. 

Simulation of sheet metal forming is a process which 
requires a deep understanding and accurate modelling of 
the mechanics of materials elastic and plastic 
deformation behavior under small and large strains, 
strain rate and temperature (macroscopic or micro-
mechanics based models). In addition, numerical 
simulation requires a failure criterion in order to evaluate 
the critical points in the deformed part. 
The concept of formability is based firstly on rupture or 
local necking in the sheet metal. This means that a 
material with good formability characteristics should not 
fracture or show a visible local necking during the 
forming operations, but these are not unique factors. 
Secondly, there are the concepts of rigidity of shape 
(occurrence of spring back effect or elastic recovery, 
looseness), surface roughness or texture and the 
occurrence of wrinkles (or sheet wrinkling).  
In summary, the evaluation of sheet metal formability in 
the press operation is quite sensitive to the material 
mechanical plastic properties, shape and evolution of 
yield surface, hardening law, strain path, failure criteria, 
material friction coefficient, temperature and the FLC. 
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The Forming Limit Diagram shows the FLC curve which 
is the plot of the principal strains in the sheet metal 
surface, ε1 and ε2 , occurring at critical points obtained in 
laboratory formability tests or in the fabrication process. 
Two types of undesirable failure mechanisms can occur 
in sheet metal forming operation: local necking and 
shear fracture. Therefore, two kinds of limit strain curves 
can be plotted: the local necking limit curve FLC-N and 
the shear fracture limit curve FLC-S [1]. Experimental 
curves and theorethical prediction of local necking and 
shear fracture limit have been intensively investigated by 
academic researchers and by industry professionals. 
The goal of present work was to examine a mathematical 
model to predict the onset of shear fracture in industrial 
processes of sheet metal forming such as biaxial 
stretching, using the D-Bressan shear instability criterion 
model and Barlat Yld2000-2d anisotropic yield function. 
 
2 BARLAT YLD2000-2D ANISOTROPIC 
YIELD FUNCTION  
 
Assuming the anisotropic Yield function Yld2000-2d as 
the sum of two scalar functions, the plane stress 
anisotropic yield function is given by [2], 
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where jS ′  and kS ′′  are the principal values of two stress 

tensors ijS ′  and ijS ′′  defined by the linear transformation 

of the stress deviator Sij or the Cauchy stress tensor σij , 
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and similar equation for the double prime tensor ijS ′′  . 

The principal values of the stress tensor ijS ′  and ijS ′′  are, 
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with the appropriate indices (prime and double prime) 
for each case. The principal values of the stress tensor, in 
equation (1) or equation (2), can be expressed in terms of 
the Cauchy stress components, 
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αi  are the coefficients of the linear transformation.        
 
Calculating the plasticity modulus dλ : 
 
The loading condition for plastic strain can be written as:  
 
             ( ) ( ) 0Ff ijij =εσ−σ=εσ )(,                   (6) 
 

where ( )εσ ,ijf  denotes the yield function, F(σij) is 

the yield criterion and commonly is a first degree 
homogeneous function of the Cauchy stress tensor,       
σij = σkkδij + Sij , and which defines the yield surface 
shape. σ  is the equivalent stress and σξ is the uniaxial 
yield stress identified as scalar function of the equivalent 
plastic strain ε . Assuming for the yield criterion a 
homogeneous stress function of degree ‘a’, 

akσσφ ξ =)( , the uniaxial flow stress is, 
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Applying the Euler’s identity theorem for a 
homogeneous stress function of degree ‘a’ to the yield 
criterion function φ , then, 
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Multiplying by the plasticity modulus dλ, 
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Considering that the increment of plastic work is 
dw = λσφεσεσ ξ dadd ijij )(==  , thus,  
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Calculating the associated flow rule or the principal 
strain increments from the normality flow rule : 
 
The normal direction to the yield surface φ , needed to 
calculate the strain increments (or strain rates) through 
the associated flow rule, is calculated by the gradient of 
the yield surface. However, the function φ depend on 
four variables 2121 SSSS ′′′′′′ ,,, ; ),,,( 2121 SSSS ′′′′′′=φφ  
, thus, the potential partial derivative is, 
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Assuming that the plastic potential is identical to the 
yield function, the principal strain increments can be 
calculated from the normality flow rule as,  
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The partial derivatives of equation (2) can be calculated, 
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 etc., where, 
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From the Mohr’s circle of stresses, Figure 1, the Cauchy 
stress components as functions of principal stresses are, 
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Figure 1: Mohr circle of plane stress state. 
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Introducing equations (15) into equations (5), 
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The derivatives ∂σ′i/∂σi and ∂σ′′i/∂σi necessary to solve 
equation (13) are obtained from equations (16a) to (16c). 

3  SHEAR FRACTURE MODELLING 
Present approach analyses a thin sheet metal with strain 
hardening behavior which constitutive equation for flow 
stress is described by, 
 

         ( )noK ε+ε=σ                                                (17) 
 
where K is the strength coefficient, ε  is the equivalent 
true strain, εo is the prestrain and n represents the strain 
hardening coefficient. 
The governing equation for the onset of shear fracture 
mechanism in a plane inclined through the thickness, in 
which the critical shear direction coincides with the 
direction of zero extension or direction of pure shear 
strain in sheet metal stretching processes is [1],  
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where σ1  is maximum principal in-plane stress, τcr  is 
the critical shear stress,  β = dε2 / dε1 is the strain path. 
Defining the stress ratio X = σ2 /σ1 and assuming k = 2, 
the equivalent flow stress can be written as, 
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Combining equations (17), (18) and (19), the equivalent 
and principal true strain at the onset of shear fracture, 
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The relation between β and X are obtained from equation 
(12) combined with equations (13) and (14), 
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4 THEORETICAL AND EXPERIMENTAL 

FLC RESULTS 
The correlation between the experimental results and the 
theoretical predictions can be investigated by comparing 
the FLC of aluminium allow from Tadros and Mellor 
[3]. Assuming that the material coordinate axis (x,y) 
coincides with the principal directions (1,2), i.e., θ = 0, 
equation (21) is reduced to, 
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Figure 2: Experimental [3] and theoretical results of limit 
strains for aluminium alloy sheet for two a-values. 
 
In Figure 2, the predicted FLC for linear strain path for 
aluminium alloy for two values of parameter a are 
shown and compared with the experimental results by 
Tadros and Mellor [3]. The assumed material 
coefficients αi are:  α1 = 0.938 ,  α2 = 1.045 ,  α3 = 0.929 
, α5 = 0.987 , α6 = 1.036 , α8 = 1.101. The other 
plasticity parameters are: n=0.24, εo=0 , τcr/K = 0.40. 
The correlation is reasonable good. 
 
5 CONCLUDING REMARKS 
The theoretical FLC curves for the shear fracture model 
depend greatly on the employed yield criteria, anisotropy 
parameters, critical shear stress and strain path. The FLC 
is superior for a = 6 than the correspondent curve for a = 
5. However, the exact value has to be obtained from 
tensile tests comparisons at different tensile direction. 
The difference between the curves increased largely near 
balanced biaxial stretching. The comparison with 
experimental results for aluminium presented by Tadros 
and Mellor are quite good. However, more experimental 
data from tensile and biaxial tests are necessary to 
evaluate and improve present model.  
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