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ABSTRACT: Polymer injection moulding is a process widely used to produce components in a lot of different 

applications. One of the most critical aspects related to this process is to control the warpage of the parts after the 

extraction from the mould. Numerical simulations can predict a part warpage by using specific warpage models. Among 

numerical codes, Autodesk Moldflow Insight
®
 uses a Corrected In Mold Residual Stress (CRIMS) model, that calculate 

the residual stresses develop during the moulding process. Warpage is then predicted calculating the deformations of the 

component induced by the considered stresses. Using experimental and numerical techniques, a new identification 

procedure was introduced to evaluate the six parameters of the CRIMS model included in the Moldflow
®

 material 

properties database. The study was conducted on a box for an automotive application made of polypropylene. On the 

base of a complete rheological, thermal and physical characterization of the employed material, a numerical simulation 

of the process was implemented, integrating it with an optimization procedure to identify the values of the CRIMS 

parameters that force numerical results to fit measured deformations. As this procedure was very time consuming, 

requiring to run several computationally intensive simulations, artificial neural networks were employed to approximate 

numerical results with lower computational time. Results were verified with independent samples, showing good 

correspondence between experimental results and numerical calculated deformations. 
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1 INTRODUCTION  

Shrinkage and distortion of injection moulded parts after 

ejection from the mould originate a significant industrial 

problem, as the subsequent assembly may be inhibited. 

The reduction in the size of part as compared to the size 

of the mould cavity depends on the volumetric shrinkage 

due to 1) contraction of the polymer chains during the 

polymer melt cooling, 2) crystallization of semi-

crystalline polymers, and 3) relaxation of oriented 

polymer chains. Prediction of shrinkage and distortion 

has been the focus of several recent researches [1-3]. 

Historically, the residual strain method is the older of the 

two shrinkage prediction methods employed in today 

numerical codes. It is based on the following empirical 

model for shrinkage: 
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where 
//

S and 
⊥

S are, respectively, in-plane shrinkage 

strains in the directions parallel and transverse to the 

flow direction, ia  are shrinkage coefficients and 

//

iM are respectively, measures of volumetric shrinkage, 

crystallization, relaxation due to mould restraint, 

material orientation and a constant. Similar measures 
⊥

iM  hold in the transverse flow direction. In practice, 

the coefficients ia  are constants for a given material and 

are determined by means of a shrinkage characterization 

procedure whereby shrinkage data obtained 

experimentally from moulding a standard test piece are 

fitted to the above equations [2]. 

In the residual stress model, rather than calculating 

shrinkage strain a residual stress distribution for each 

element is directly calculated. This more recent model is 

derived from Hooke’s law that, for an elastic solid, has 

the form: 

kl

e

ijklij c εσ =             (2) 

where ijσ and klε are stress and strain tensors. The 

term
e

ijklc is the tensor of elastic constants or effectively a 

viscoelastic relaxation modulus. For neat 

polymers,
e

ijklc is defined by the modulus and Poisson’s 

ratio of the material. Viscoelastic data are difficult to 
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obtain for melts under shear rates associated with 

injection moulding. Therefore, the material is assumed to 

not sustain any stress above the transition temperature, 

whereas below the transition temperature the material is 

assumed to be elastic [2]. 

Unlike the residual strain model, the residual stress 

distribution for each element is calculated in the residual 

stress model. The model, however, tends to overpredict 

shrinkage [1]. To overcome this defect, Kennedy and 

Zheng [2] proposed a hybrid model where the error in 

prediction was corrected by measured shrinkage values 

from moulded parts. For unfilled materials the model has 

the form: 
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where
//

cσ and
⊥

cσ are the corrected principal stresses in 

the directions parallel and transverse to flow 

respectively, pσ is the predicted residual stress, ib are 

constants to be determined and τ  is a measure of 

orientation in the material. In order to determine the 

constants ib  Kennedy and Zheng [2] propose to use 

measured shrinkages, parallel and transverse to flow, 

from moulded rectangular samples and, for each sample, 

to run a simulation in order to calculate average values 

of pσ and τ  for each element in the sample model. The 

measured shrinkages can then be converted into 

equivalent stresses using the modulus of the sample and 

scaling the average of pσ so as to produce the measured 

strain. Hence the left-hand sides of equation (3) are 

known. The constants are then obtained by regression 

using equation (3).This corrected residual in-mould 

stress (CRIMS) model yields a better prediction of 

shrinkage for several neat and filled polymers [1]. 

A new identification procedure is proposed in this paper 

to identify the constants ib  of the CRIMS model. This 

procedure is based on numerical and experimental data 

but, instead of using special purpose rectangular 

samples, it can be applied to any geometry. In order to 

demonstrate the generality of the proposed approach, the 

identification was conducted on an industrial case study. 

On the base of a complete rheological, thermal and 

physical characterization of the employed material, a 

numerical simulation of the process was implemented, 

integrating it with an optimization procedure to identify 

the values of the CRIMS parameters that force numerical 

results to fit measured deformations. As this procedure is 

very time consuming, requiring to run several 

computationally intensive simulations, artificial neural 

networks were employed to approximate numerical 

results with lower computational time. 

 

2 EXPERIMENTAL 

2.1 INJECTION MOULDING  

The CRIMS model was calibrated on an injection 

moulded box for an automotive application made of 

polypropylene (Figure 1).  

 

 

Figure 1: Box for automotive application 

To obtain an accurate calibration of the numerical 

simulation, experimental tests were run at different 

process conditions. The experimental plan was designed 

according to the Design of Experiments (DOE) method, 

considering two factors (melt temperature and packing 

pressure) varying among three levels (respectively 

240°C – 260°C – 280°C and 35 MPa - 40 MPa – 45 

MPa). The factors and their levels were selected on the 

base of industrial requirements. Considering two 

replications, the experimental plan was composed by 18 

runs. For each run, a box was moulded in a Sandretto 

820 tons injection moulding machine, keeping constant 

all the process parameters with the exception of the two 

control factors. 

 

2.2 WARPAGE MEASUREMENT  

In each moulded part, the three critical dimensions 

shown in Figure 2 were measured to estimate the part 

warpage. The distances were measured using a Zeiss 

CMM machine, and the deformations were calculated 

considering the difference between the nominal 

dimension and the experimental result.  

 

 

Figure 2: Warpage measurement 
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Two dimensions are related to the part width (D1 and 

D2) and one to the part length (D3). All the measures are 

referred to the external side of upper contour of the 

component, where the cover of the box must fit. These 

are the most critical dimensions to keep under control 

because a warpage in this area would hindered the 

assembly of the box with its lid.  

 

3 IDENTIFICATION OF CRIMS 

COEFFICIENTS  

An optimization procedure was implemented to calibrate 

a numerical simulation with the experimental results. 

The calibration consists in the identification of the values 

of the CRIMS model parameters that force numerical 

results to fit measured deformations. The differences 

between numerical and experimental deformations was 

minimized using an iterative optimization algorithm. 

Unfortunately, this operation is very time consuming, 

because for each iteration an entire simulation must be 

run with different values of CRIMS parameters. 

Therefore, in order to reduce the computational time 

artificial neural networks were used to locally 

approximate the simulation results. A numerical 

campaign was set-up according to the DOE method for 

training the artificial neural network to reproduce the 

results of the simulation with a large saving of 

computational time. 

 

3.1 NUMERICAL SIMULATIONS 

Numerical simulation were implemented in Autodesk 

Moldflow Insight
®
. The 3D model of the box was 

discretized using a dual domain mesh with 36700 

elements. The hot runners system was modelled, as well 

as the cooling system, according to the industrial mould 

design.  

 

 

Figure 3: 3D meshed model of the part 

Simulations were set up to replicate the real process, 

taking in account rheological and thermal properties of 

the moulded polypropylene. A complete material 

characterization was conducted and all the thermal, 

rheological, mechanical and physical properties of the 

polymer were implemented in the material database. In 

order to compare numerical and experimental 

deformations, warpage results were calculated at the 

nodes of the model which are positioned 

correspondingly to the point measured in the moulded 

box. Figure 4 shows an example of scaled warpage 

result. 

 

Figure 4: Example of scaled warpage results 

3.2 NEURAL NETWORKS 

An artificial neural network (ANN) was used to 

reproduce the numerical simulation with a significant 

reduction in computational time [4]. In order to do so, 

one ANN was trained for each of the nine process 

conditions considered, as the ANN must approximate the 

simulation results for different values of the CRIMS 

parameters but warpage results were influenced by the 

variation of process parameters. As it is exemplified in 

Figure 5, the trained neural networks approximated the 

three deformations for each set of the six CRIMS 

parameters,. 
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Figure 5: Neural Network structure 

To train the networks, a DOE plan was used, considering 

the CRIMS parameters as factors, varying in typical 

range values, and the three deformations as results. For 

each of the 9 process condition, 49 numerical 

simulations were conducted, and the results were used to 

train the 9 ANNs.  
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3.3 IDENTIFICATION  

To identify those CRIMS parameters that force the 

numerical results to fit the experimental deformations, an 

optimization procedure was implemented in 

modeFrontier
®
, a multi-objective optimization software 

(Figure 6). To minimize the difference between 

numerical and experimental results in all the 9 different 

set of process conditions, a genetic optimization 

algorithm was employed [5]. For each iteration and for 

the corresponding values of the six input factors, the 

neural networks previously trained approximated the 

numerically calculated deformations, in order to 

compare them to the experimentally measured 

deformations. 

 

 

Figure 6: modeFrontier optimization workflow 

Eventually, the identification procedure converged to the 

optimal CRIMS parameters. An example of the results of 

the calibrated numerical simulation is reported in Figure 

7, regarding the deformation D1. Similar results were 

obtained for the other two deformations. 

 

 

Figure 7: Deformation D1 (1) measured, (2) calibrated 
and (3) uncalibrated  

3.4 VALIDATION 

The identified CRIMS parameters were then validated at 

a different set of process conditions, with values of melt 

temperature and packing pressure within the range of 

variability used in the previous DOE plan. The moulded 

components were measured and compared with the 

deformations calculated by the numerical code which 

was set using the same process conditions and the 

identified CRIMS parameters. The results of this 

comparison are reported in Table 1. They show a good 

correspondence between experimental and calculated 

deformations. 

Figure 8: Validation results 

 

Calculated 

deformation (mm) 

 Measured 

deformation (mm) Error 

D1  209.0 210.1 -0,313% 

D2  207.2 208.4 -0,542% 

D3 472.3 473.4 -0,231% 

 

4 CONCLUSION 

A new identification procedure is proposed in this paper 

to identify the parameters of the CRIMS model. This 

procedure is based on numerical and experimental data 

but, instead of using special purpose rectangular 

samples, it can be applied to any geometry. In order to 

demonstrate the generality of the proposed approach, the 

identification was conducted on an industrial case study. 

On the base of a complete rheological, thermal and 

physical characterization of the employed material, a 

numerical simulation of the process was implemented, 

integrating it with an optimization procedure to identify 

the values of the CRIMS parameters that force numerical 

results to fit measured deformations. As this procedure is 

very time consuming, requiring to run several 

computationally intensive simulations, artificial neural 

networks were employed to approximate numerical 

results with lower computational time. Results were 

verified with independent samples, showing good 

correspondence between experimental results and 

numerical calculated deformations. 
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