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ABSTRACT: This work deals with the identification of constitutive parameters by inverse methodology. Two different
approaches are presented and analysed: the single-point and FE analysis. The use of these two different methodologies
for the evaluation of objective functions in the identification process is still an open question and the interest in this field
has been increasing among the metal forming community. To discuss this issue, two different constitutive models suitable
for metals were used, i.e. an elastoplastic hardening model and an elastoplastic model with isotropic and kinematic
hardening. The determined material parameters for the two models, the respective objective function values and the CPU
time required to perform the simulations are presented and discussed.
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1 INTRODUCTION

Nowadays, industrial and scientific communities are con-
fronted with extremely complex mechanical engineering
problems. These problems can no longer be solved with
trial and error methods, mostly for economical reasons. It
is in this context that the Finite Element Analysis (FEA)
assumes an important role allowing virtual testing. Al-
though FEA is a well established numerical approach in
both industry and research, complex techniques are still
being developed to simulate with increasing accuracy the
behaviour of different materials [1, 2].
In order to obtain accurate stress and strain fields, an ef-
fective FEA requires secure input data such as geometry,
mesh, non-linear material behaviour laws, loading cases,
friction laws, etc. This sort of problems can be defined as
direct problems in which the quality of the results relies on
the quality of the input data that are not always available.
In order to overcome these difficulties a possible approach
is the inverse problems that, for instance, refer to the de-
termination of input parameters to be used in geometric or
constitutive models, based on experimental observations.
Considering the need to evaluate the input data, distinct
inverse problems can be formulated. One category of in-
verse problems is called parameter identification. The aim
of these problems, for instance, is to estimate material pa-
rameters for constitutive models. This inverse problem is
solved with the aid of optimization algorithms [3].
In this work, the use of single-point or metal forming
FE analysis for the evaluation of the objective function
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in the identification process is analysed. This study is
conducted considering two different constitutive models
and two different steels commonly used in metal form-
ing processes. The models are a non-linear elastoplastic
hardening model and a differential elastoplastic model, in
which the work-hardening combines isotropic and kine-
matic contributions. In order to determine the best param-
eters set, a Levenberg-Marquardt optimization algorithm
was applied.

2 PARAMETERS IDENTIFICATION

The determination of the parameters needed for the con-
stitutive models can be accomplished solving an inverse
problem, which consists in searching for a set of param-
eter values for which the experimental reality and the nu-
merical simulation are similar. The comparison between
the mathematical model and the experimental data results
in the objective function that will be subjected to opti-
mization methods. A correct definition of this function is
essential to all the optimization processes and to the effi-
cient determination of the constitutive parameters [1, 2, 4].
One of the most used objective functions consists on the
sum of the squares of the stress difference at different
strain levels [2]. In the parameters optimization problems,
the objective function can be defined as

Sobj(x) =
ntests∑
k=1

npoints∑
i=1

(
σexp

i − σnum
i (x)

Wabs + Wrelσ
exp
i

)2

(1)

The numerator in equation 1 is the difference between the
experimental and the numerical stress for the i-th value
of strain, and Wabs and Wrel are weighting factors that
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should be adapted to the optimization problem in study.
Analysing the objective function it can be observed that, if
the correspondence between the physical experiment and
the numerical model is perfect, Sobj(x) will be equal to
zero. However this fact never happens and it is only ex-
pected that Sobj(x) takes low non-zero value. The exis-
tence of local minimums also leads to practical difficulties
in the interpretation and selection of the obtained results.
Therefore, during the analysis of the results it is neces-
sary to remember that it is possible to obtain several dis-
tinct sets of parameters for which the objective function
assumes reasonable values. In these cases, it is the duty
of the user to evaluate the obtained results considering the
physical definition and the meaning of each parameter [4].
In this work, a Levenberg-Marquardt gradient algorithm
was used to minimize the objective function.

3 SINGLE-POINT OR FE ANALYSIS

The use of FE or single-point analysis for the evaluation
of objective functions in the identification process is still
an open question. By definition a constitutive model is a
mathematical representation of the phenomena that take
place in an infinitesimal amount of material (according to
the continuum mechanics theory). On one hand, the sin-
gle infinitesimal point evaluation seems to characterize an
infinitesimal amount of material subjected to all kind of
deformation history. Although it is computationally very
inexpensive, it cannot be used to account phenomena such
as specimen necking or springback. On the other hand,
in all FE analysis codes, the constitutive model is imple-
mented and accounted for each element integration point.
Numerical approximations of the FE method include it-
eratively accumulated errors, and can impair the whole
identification process. Nonetheless, FE analyses allow to
model the specimen used in the experimental procedure
and predict geometrical phenomena such as necking and
springback.

The main difference between the two approaches are the
time and space integration methods used in each one.
This fact influence the obtained results in the evalua-
tion of the objective function and afterwards the opti-
mization process. For the single point analysis the nu-
merical method used to integrate in time was a sec-
ond order Runge-Kutta explicit method. The Finite El-
ement analysis was performed using the implicit FE
code ABAQUS/STANDARD that generally uses New-
ton’s method as a numerical technique for solving the non-
linear equilibrium equations. For each time increment the
implicit methods need to converge leading to a large com-
putation time when compared with the explicit methods.
However the explicit methods can iteratively accumulate
errors.

4 CONSTITUTIVE MODELS

In this section the constitutive models are briefly pre-
sented.

4.1 NON-LINEAR ELASTOPLASTIC HARDEN-
ING MODEL

The first constitutive model here studied is an elastoplastic
model with non-linear hardening for stainless steel AISI
304 [3]. Experimental tests were carried out in propor-
tional loading for uniaxial tension. The hardening law can
be described by the following equation [1]:

σ̄(ε̄pl) = σ0 + (σ∞ − σ0)[1 − exp(−δε̄pl)] + ζε̄pl (2)

where ε̄pl =
√

2/3εpl
ijε

pl
ij is the equivalent plastic strain

and εpl
ij is the plastic strain tensor. Considering a one-

dimensional analysis, this elastoplastic model with non-
linear hardening contains 4 material parameters to de-
termine: σ0, σ∞, δ and ζ. For the elastic part, it was
considered E=380 GPa and ν=0.29. This constitutive
model leads to feasible stress-strain results only when
σ0 < σ∞. Therefore during the formulation of the min-
imization problem this constraint must be taken into ac-
count [3].

4.2 NON-LINEAR ELASTOPLASTIC MODEL
WITH ISOTROPIC AND KINEMATIC HARD-
ENING

For this constitutive model the material studied was a mild
steel E220BH. The experimental data used was obtained
by Thuillier et al [5]. This data comprises experimental
values of monotonous tensile and shear tests, both car-
ried out at 0◦ to the rolling direction (RD). Additionally
three shear tests, in order to highlight the Bauschinger ef-
fect and to measure kinematic work-hardening parame-
ter, were performed. The constitutive model analysed is
an elasto-plastic model that takes into account the kine-
matic and the isotropic work-hardening of the material.
The yield function considered is given by:

f(σ, X, R) = σ̄ − R

=

√
3
2
(σd − X) : (σd − X) − R (3)

where σd represents the deviatoric part of σ and σ̄ is the
equivalent stress. X and R represent the back-stress tensor
and the isotropic work-hardening respectively. The plastic
component of the strain follows a flow rule derived from a
plastic potential Ω which is a power function of the yield
function (Lemaitre and Chaboche [6]):

Ω(f) =
Kpl

npl + 1

(
f+

Kpl

)npl+1

(4)

where npl is the strain rate sensitivity coefficient, Kpl a
weight coefficient of the plastic part of the stress and f +

the positive part of f . The behaviour is elastic for f ≤ 0
and plastic for f > 0. The plastic strain-rate is written as:

ε̇ =
∂Ω
∂σ

= Ω
′
(f)

∂f

∂σ
(5)

34



The equivalent plastic strain rate ˙̄εpl can be defined from
the plastic work conservation principle; i.e.

˙̄εpl =
(σd − X) : ε̇pl

σ̄
. (6)

The work-hardening combines isotropic and kinematic
contributions and the evolution of the isotropic work-
hardening is related to the cumulated plastic strain follow-
ing the swift law given as

R = K(ε̄pl + ε0)n with ε0 =
(σ0

K

)1/n

(7)

where K is a material parameter, n the hardening coef-
ficient and σ0 is the initial yield stress. The non-linear
evolution law of the kinematic work-hardening is based in
the additive combination of a purely kinematic term (lin-
ear Ziegler hardening law) and a relaxation term (the re-
call term), which introduces the nonlinearity. This law is
expressed as

X = C
1
σ0

(σ − X) ˙̄εpl − γX ˙̄εpl (8)

where C and γ are material parameters that must be de-
termined. C is the initial kinematic hardening module,
and γ determine the rate at which the kinematic harden-
ing module decreases with the increasing of the plastic
deformation [7].

5 NUMERICAL RESULTS AND DISCUS-
SION

The optimization based on the single-point analysis was
achieved with the Sdl optimization software [3]. For the
FE analysis the ABAQUS code was integrated with the
Sdl optimization program. In ABAQUS two models of
experimental specimens were modulated in order to sim-
ulate the tensile and the shear tests for both constitutive
models here studied. For both specimens the nonlinear
effects of large deformations were considered. Consid-
ering the symmetry inherent of the tensile tests only a
quarter of the specimen was modelled for this test. There-
fore, the dimensions considered were 7× 30× 1 mm and
an equal spaced mesh of 20 × 50 elements was applied.
The specimen subject to the shear test has 4.5x50x1 mm
and an equal spaced mesh of 20 × 200 was applied. For
both specimens a 4-node bilinear plane stress quadrilat-
eral element with reduced integration and hourglass con-
trol was applied. In Figure 1 it is possible to observe the
final meshes for one of the tensile and the shear tests per-
formed. During the optimization process a weighting ab-
solute factor equal to 1 and 2 was defined for the objec-
tive function evaluation.The optimization process stops if
from one iteration to another the relative decrease of the
objective function is less than 1 × 10−30 or if the max-
imum admissible iteration number, 200, is reached. In
table 1, the results obtained with the single point and the
FE analysis for both models are presented, respectively.
The results presented in table 1 allow to conclude that for

Figure 1: The finite element mesh and von Mises stress
distribution at the end of the (a) tensile and (b) shear test

Table 1: Single-point and FE analysis results for the non-
linear elastoplastic hardening model.

Parameters Starting Single-point FE
set analysis analysis

σ0 [MPa] 310 314.51 320.09
σ∞ [MPa] 700 614.19 680.72
δ 7 7.74 6.71
ζ [MPa] 800 929.84 768.49
Sobj(x)[MPa2] - 126.34 141.49
Iterations - 96 65
CPU [min] - 0.017 13

Table 2: Non-linear elastoplastic model with isotropic and
kinematic hardening.

Parameters Starting Single-point FE
set analysis analysis

σ0 [MPa] 180 160.47 188.09
C[MPa] 1000 8613.94 1069.30
γ 28 99.98 28.05
K 550 322.78 547.28
n 0.2 0.20 0.22
Sobj1(x)[MPa2] - 1239.41 4877.49
Sobj2(x)[MPa2] - 299.94 4744.65
Sobj3(x)[MPa2] - 434.91 593.76
Sobj4(x)[MPa2] - 539.86 108.24
Sobj5(x)[MPa2] - 537.01 1638.35∑

Sobj(x)[MPa2] - 3051.13 11962.49
Iterations - 189 42
CPU [min] - 7 480

the elastic-plastic hardening model the single point analy-
sis leads to more satisfactory results in terms of objective
function value. Also considering the CPU time, also the
single point leads to better results. For this model it is
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Figure 2: Experimental data and optimized curves for the
non-linear elastoplastic hardening model

considered that the single point analysis is more efficient
in terms of objective function value/computational cost re-
lation, but both of the approach leads to good values of the
objective function as it is possible to observe in Figure 2.
In the case of the elastoplastic model with isotropic and
kinematic hardening, it also observed that the single point
analysis leads to better results when we consider the error
function value and the CPU time. In table 2 is also pre-
sented the error function values for each test being, S obj1

the error function value for the tensile test, the 2 corre-
sponds to the shear test, 3 the cyclic test with inversion at
0.3 value of deformation, 4 the cyclic test with inversion at
0.2 value of deformation and 5 the cyclic test with inver-
sion at 0.1 value of deformation. In both tests it was for the
tensile test that the optimized parameters lead to poor re-
sults. Also in this case it is considered that the single point
analysis gives good improvements in terms of objective
function value when compared with the FE analysis (as it
possible to observe in Figure 3) and the CPU time is re-
ally advantageous for the single point analysis. The main
difference in these analyses is the numerical integration
technique. The single point analysis uses a Runge-Kutta
explicit method with adaptive step providing error control.
The FE analysis applies an Euler implicit method with au-
tomatic step, that doesn’t guarantee error control. This
fact leads to a less objective function sensibility in the FE
analysis that takes to a premature stagnation. Table 1 and
2 evidence this fact, being the number of iterations lesser
for the FE analysis even with a greater function error.

6 CONCLUSIONS

A comparative study between the use of the single point
and the FE analysis in the parameters determination prob-
lems was performed. The constitutive models studied
were a non-linear elastoplastic hardening model and a
non-linear elastoplastic model with isotropic and kine-
matic hardening. For both constitutive models the single-
point analysis was considered more efficient in terms of
objective function value/computational cost relation.
It was considered that both of the strategies presented can
be applied depending on the studied problem. The FE
analysis allows the user to know all the history deforma-
tion of a complex geometry and predict geometrical phe-
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Figure 3: Experimental data and optimized curves for the
non-linear elastoplastic model with isotropic and kinematic
hardening

nomena such as necking, springback and stress concentra-
tion. In the problems where the geometrical phenomena
doesn’t exist the single-point is more appropriate consid-
ering the good relation between the CPU time and the ob-
jective function values.
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