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ABSTRACT: We propose a method, termed relaxed grain cluster (RGC), which homogenizes the response of polycrys-
tals, subjected to mechanical loads, from the monocrystal constitutive law in order to predict the evolution of deformation
resistance and microstructure properties, e.g. texture. Generalizing existing grain interaction models, we consider a clus-
ter of 2 × 2 × 2 homogenous grains at each continuum material point. Allowing for additional displacements of the
grain interfaces introduces relaxations with respect to the classical full-constraints (FC) Taylor model. This decouples the
local grain deformation gradients, but may induce interfacial mismatch between grains. The relaxations are determined as
minimizers of the cluster’s total mechanical work density being biased by a (penalty) energy density associated with the
interfacial mismatch. In this work the bias is neglected, thus the minimum energy criterium is equivalent to stress equi-
librium at each interface. As an example, the evolution of texture for plane-strain compression (simplification for cold
rolling) of a commercial aluminum alloy is compared for different configurations of interfacial relaxations. We discuss
the resulting variation in texture intensity in light of the different relaxation modes allowed and point out the fully-relaxed
RGC scheme to be closest to and in decent agreement with experimental reference.
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1 INTRODUCTION
Several advancements of the full-constraints (FC) Tay-
lor model lead to improved texture predictions. Relaxed-
constraints models (e.g., [1–3]) diminish the strict Taylor
assumption of an equal strain (rate) tensor for each grain
by allowing for deviations in one or several components
of each strain tensor. This may be justified for special
anisotropic grain shapes (e.g. flat or elongated). Beyond
such global relaxations, particular grain interactions are
not considered in these models.
By contrast, grain cluster models compose a meso-scale
aggregate of interacting grains (typically two or eight) for
which the boundary conditions are jointly imposed. The
deformation can be relaxed among the grains within a
cluster as long as the external boundary conditions are ful-
filled for the entire cluster. The most simple grain cluster
model is the so-called LAMEL model [4]. It considers a
stack of two grains that are free to move their shared inter-
face in its plane. The inherent anisotropy due to a single
stacking direction is addressed by the so-called advanced
LAMEL model (ALAMEL [5]), which considers grain in-
teractions in a statistical way and divides each grain into
a number of grain boundary regions treated in the spirit of
LAMEL. Another route is followed by the grain interac-
tion (GIA) model [6] (see also [7] and references therein
for further developments), which considers aggregates of
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2 × 2 × 2 grains. A characteristic feature of the GIA
model is the penalizing of incompatibilities, which de-
velop among grains, by assigning energy contributions to
them. Those are associated with the build-up of geometri-
cally necessary dislocations at the grain boundaries.

The objective of the present research is to develop an effi-
cient homogenization scheme, termed relaxed grain clus-
ter (RGC) model, which is based on the generalization of
the grain cluster concept. As an example, the scheme will
be used to simulate texture evolution in cold rolling. Fur-
thermore, we investigate the effects of various relaxation
modes on the development of particular texture compo-
nents.

2 RELAXED GRAIN CLUSTER MODEL

We consider the macro-scale material point to be a cluster
of 2 × 2 × 2 hexahedral grains of (initially) equal shape
and size, which is to be periodically repeated in all three
dimensions (see Fig. 1). In the present model, the finite
deformation framework is adopted. The effective defor-
mation gradient F̄ and the work-conjugated first Piola–
Kirchhoff stress P̄ of the grain cluster are taken as the
volumetric average of the respective local quantities, F g

and P g (assumed homogeneous), and read

F̄ =
8∑
g=1

vg0F g and P̄ =
8∑
g=1

vg0P g , (1)
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Figure 1: Macro-scale body in the reference and deformed
configurations, where a material point is represented by a
cluster of eight hexahedral grains.

with vg0 the volume fraction of grain g in the reference
configuration. The stress of individual grains results from
the local constitutive model P g = P̂ g(F g). The re-
laxation of the local deformation gradient can be conve-
niently described in terms of relaxation vectors agα, each
attached to one face α of grain g, yielding

F g = F̄ +
1
vg0

3∑
α=1

(
agα ⊗ ngα + ag−α ⊗ ng−α

)
(2)

with ngα the unit vector normal to face α of grain g. There
are, in total, 6× 8 = 48 vectors in the whole cluster.
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Figure 2: Relaxation vectors applied at six faces of grain
g (top). The effect of relaxation vector ag−α = ag+−α at the
shared interface between grains g− and g+ (bottom).

Let g− and g+ be two neighboring grains (see Fig. 2 bot-
tom), where face α of grain g− is identical to face −α of
grain g+. To exclude rigid-body translation of grains, we
necessarly impose the kinematical constraints:

ag
+

−α = ag
−

α , ag
−

−α = −ag
−

α and ag
+

α = ag
−

−α . (3)

In the case of 2×2×2-grain cluster, the constraints given
by Eq. (3) reduce the number of independent relaxation
vectors to 12—corresponding to the interior interfaces in
the grain cluster. In the present RGC scheme, these 12
relaxation vectors characterize the local deformation gra-
dients F g for all grains g = 1, . . . , 8 for any given macro-
scale deformation gradient F̄ (see Eq. (2)).
The independent relaxation vectors are determined by
minimizing the total deformation energy density of the
cluster, which is taken as the volumetric average of the
energy density of individual grains. The solution of this
minimization is equivalent to stress equilibrium at each
interface, i.e.,

P g+ng
+

−α + P g−ng
−

α = 0 , (4)

for all pairs of connecting grains g− and g+, where the
normals of the interface ng

+

−α = −ng
−

α .
Note that for clusters extending in more than one dimen-
sion, the relaxation of an interface may cause incompati-
ble deformations or mismatch at other (perpendicular) in-
terfaces. For simplicity, the effect of interfacial mismatch
on the cluster response is intentionally neglected in the
present formulation. A more detailed description of the
RGC model can be found elsewhere [8].

3 ROLLING TEXTURE SIMULATION
We use cold rolling of a face-centered cubic (fcc) commer-
cial AA3104 aluminum alloy as an approximate plane-
strain test case and analyze the texture evolution of RGC
and variants of it. The first variant, S-RGC, differs from
RGC by restricting the interface relaxation vectors accord-
ing to agα · ngα = 0, which correspond to shear-only re-
laxations. The second variant, AFGIA, follows similar
concepts as the RGC scheme, but is formulated in the
(symmetric) infinitesimal strain framework yet does not
enforce symmetry of corresponding interface relaxations.

3.1 TEXTURE AND BOUNDARY CONDITIONS

In this study textures are represented by sets of 8000
grains, thus all of the grain cluster homogenization
schemes are evaluated for 1000 clusters consisting of eight
grains each. Identical boundary conditions are applied to
all 1000 clusters; each cluster acts independently from
all others, hence no account is taken for any interaction
among material points.
The right-handed coordinate system attached to the rolling
direction (RD), transverse direction (TD), and normal di-
rection (ND) of the rolled sheet material is e1 ‖ RD,
e2 ‖ TD, and e3 ‖ ND. Then, the rolling process as
a function of time t can be idealized as isochoric plane-
strain compression, which is expressed as a deformation
gradient in the finite deformation framework by

[
F̄
]

=

 1 + ε̇t 0 0
0 1 0
0 0 1/(1 + ε̇t)

 , (5)
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where ε̇ = 0.007 s−1 is the engineering strain rate in ten-
sion. In this case, t runs up to 1280 s, which corresponds
to about 90 % thickness reduction.

3.2 RESULTS AND DISCUSSION

Figures 3 and 4 present the texture evolution in terms of,
respectively, the fcc α-fiber (Euler angles φ = 45◦, ϕ2 =
0◦) and β-skeleton intensity plus location of maximum
intensity predicted by the FC Taylor, AFGIA, S-RGC,
and RGC homogenization schemes in comparison to data
measured by Hydro Aluminium Deutschland, Bonn.
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Figure 3: Evolution of α-fiber intensity during cold rolling
predicted by various grain cluster-based schemes com-
pared to experimental data.

The RGC and S-RGC schemes most closely match the ex-
perimental intensity distribution. The β-skeleton inten-
sity in Fig. 4 exhibits a systematic reduction between the
{1 1 2}〈1 1 1̄〉 orientation at ϕ2 = 45◦ (Cu component)
and the {1 2 3}〈6 3 4̄〉 orientation at ϕ2 ≈ 63◦ (S com-
ponent) in the order of FC Taylor, AFGIA, S-RGC and
RGC. The intensity close to the {1 1 2}〈1 1 1̄〉 orientation
at ϕ2 = 90◦ (Brass component) is, however, not influ-
enced to a large extent by the choice of homogenization.
The development and in-grain orientation scatter of the
Cu, S, and Brass components were studied in detail in
some earlier works [9, 10] and crucially depend on the de-
tails of the boundary conditions imposed in a model cal-
culation. These studies showed that the development of
those components is promoted by the relaxation of certain
grain-to-grain shear constraints within a grain cluster or
for the overall aggregate (in the case of a simpler model).
Specifically, the exact position and intensity of the Brass
component seemed to depend on the micro-mechanical re-
laxation of the shear between rolling and transverse direc-
tion (RD and TD). The current results clearly show that
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Figure 4: Comparison of β-skeleton intensity and coordi-
nate resulting from different grain cluster schemes to ex-
perimental reference.

this orientation is much less sensitive to the details of re-
laxation and strain constraints than are the S and Cu orien-
tations. This is not surprising since the Brass orientation
is also the stable Sachs orientation, which is formed when
using a Tucker stress state in conjunction with single crys-
tal mechanics and no strain constraints. This means that
from an fcc single crystal Schmid estimate the crystallo-
graphic {1 1 0}-direction is gradually oriented parallel to
the compression axis and the 〈1 1̄ 2〉-axis parallel to the
rolling direction. Since the slip systems with the high-
est Schmid factors are also dominant systems in polycrys-
tal models which impose strain constraints one can con-
clude that the Brass orientation might be less sensitive
to changes in the boundary conditions than the other two
components.
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The systematic decrease of intensity occurring between
the Cu and S component coincides with an increase in
the degree of relaxation allowed by the different schemes.
For a cubical cluster of eight grains the maximum number
of constraints possible in the framework of infinitesimal
strain is 8 grains × 6 components of (symmetric) strain
= 48, while in the finite deformation framework it is 8
grains × 9 components of deformation gradient = 72. In
either framework, the FC Taylor model allows for zero
relaxations. Analyzing the remaining relaxation schemes
reveals the sequence of increasing number of possible re-
laxations to be 20 for AFGIA, 24 for S-RGC, and 36 for
RGC.

This finding is in-line with the observation that the S com-
ponent is in fcc crystals generally much less stable than
the Brass component. Beaudoin et al. [11] showed by
detailed crystal plasticity finite element simulations for a
grain cluster aggregate consisting of eight different vari-
ants of the S orientation that this component tends to un-
dergo strong in-grain orientation fragmentation. The ori-
entation spread that was observed after plane-strain defor-
mation of this grain ensemble extended through the en-
tire α-fiber. This earlier observation underlines that the S
component is very sensitive to the internal boundary con-
ditions as is also evident from the large deviations among
the different models observed here.

The results for the Cu component after 90 % thickness
reduction show two groups with different tendency. The
first class of rather stiff models (FC Taylor and AFGIA)
predicts a quite strong orientation density. The second
class of more compliant models (S-RGC and RGC) pre-
dicts a more modest orientation density for this compo-
nent. This result is interesting and reflects the different
model approximations and their effect on the different tex-
ture components. The Cu orientation is relatively close
(7◦) to the Taylor orientation {4 4 11}〈11 11 8̄〉, which is
the most stable orientation in FC Taylor simulations for
fcc crystals. Hence, the Cu orientation is promoted by stiff
boundary conditions. However, if these stiff constraints
are relaxed, the orientation density in the Cu component
drops. This characteristic behavior of the Cu component
is in contrast to the high stability of the Brass compo-
nent, which does not change much under different relax-
ation modes. The Brass component is stress-stabilized as
pointed out above, i.e., the main slip systems which are ac-
tivated under plane-strain will under most relaxation states
dominate the deformation of this component.

The Cu orientation, in contrast, is strain-stabilized. Its sta-
bility does not result, as for the Brass orientation, from a
characteristic set of highly stressed slip systems. The ac-
tive slip systems (under plane-strain) of the Cu orientation
are not so highly stressed as in case of the Brass orienta-
tion and, therefore, depend more sensitively on the bound-
ary conditions. This means that the closer the constraints
of a model are to the FC Taylor assumption, the stronger
the orientation density of the Cu component should be.
This is reflected by the current results.

4 CLOSING REMARKS
The relaxed grain cluster (RGC) scheme illustrated in this
work shows a very encouraging concurrence with experi-
mental texture evolution in cold rolling of fcc aluminum.
Likely, the most crucial novelty in this scheme is the adop-
tion of the finite deformation framework in contrast to ear-
lier grain cluster models. Its dissociation from any partic-
ular grain constitutive law recommends the scheme for ap-
plication in multi-mechanism and/or multi-phase settings.
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