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ABSTRACT: Severe thin strip cold rolling conditions usually induce heterogeneity of in-bite plastic deformation always
translated to irregular stress field. This stress field may dwell sufficiently compressive in several out-of-bite areas to cause
buckling (flatness defects) which generates stress reorganisation in rolled strip and probably affects the bite zone. Hence,
out-of-bite buckling, in-bite elastic-(visco)plastic deformation and thermo-mechanical roll-stack/strip interaction may be
strongly coupled. However, a completely coupled model providing realistic rolled strip shape specially when flatness
defects occur is not easy to establish. This call for two ways of flatness defect modelling in thin strip rolling: with a
completely coupled approach but using a simple buckling criterion, or using an uncoupled approach by chaining strip
rolling model calculation with shell element models presenting good buckling computing capabilities. Our objective is the
improvement of the flat product rolling – specialized FEM software Lam3/Tec3 [1] using Counhaye simple buckling
criterion [3] and Asymptotic Numerical Method (ANM) for shell element model [9,10] respectively with coupled and
uncouple approaches detailed in the present paper. These two approaches bring computed stress profiles to very good
agreement with experiments and the most important result at this stage is the weak influence of buckling on in-bite stress
and strain fields providing a more rigorous justification of the traditional decoupled methods [2,5-8].
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1 INTRODUCTION
Due to severe loading in cold rolling, roll stack deformation
(flattening, elastic deflection, thermal crown) induces
heterogeneous elongation across strip at bite outgoing. This
heterogeneity generates residual stress and buckling, named
flatness defect in this context. The latter is a major
industrial  concern  in  rolling  as  it  is  one  main  factor  for
quality product.
In addition, buckling implies stress reorganization, because
stresses always saturate in buckled areas. This complete
rearrangement of the stress field in the post-bite strip can be
considered  as  a  change  in  the  boundary  conditions  of  the
plastic deformation in the bite. Hence, in-the-bite and out-
of-bite stress fields may be strongly coupled.
Thus, mechanical problem includes coupling combining
elastic roll stack deformation, strip elastic-(visco) plastic
deformation and out of bite buckling. However, most
authors [2,5-8] neglect bite/post-bite coupling excepting
[3].

2 THIN COLD ROLLED STRIP
BUCKLING PREDICTION

2.1 COUPLED APPROACH
In a previous presentation [4], we introduced in Lam3/Tec3
[1], 3D finite element model adapted for rolling simulation,
the Euler-type simple coupled buckling model criterion [3].
Since compressive stress generally saturates around a
threshold value when buckling occurs in structure, it
consists of an out of bite stress-relaxation algorithm. In
fact, it is supposed that buckling will shorten a material
element by λ wherever compressive stress exceeds σc. This
decreases the strain sent back after each Newton-Raphson
iteration to the constitutive model solver, and therefore the
compressive stresses (and as a consequence, the stresses in
the tensile area, to maintain mechanical equilibrium). This
tends to force iteratively the stress field to respect the
buckling criterion (1).
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E is Young's modulus, k is a parameter representing the
ratio between the material “buckling stiffness” and the
Young modulus, h the strip thickness, and δ the wavelength
(assumed similar to the compressive stress area
dimensions). λI and λII are the λ components in the strip
plane deduced respectively from σI and σII .  These latter
correspond to principal stresses expressed along the first
and the second principal direction I and II which  are
defined by α angle in the laboratory reference frame.
Note that, due to the steady state nature of the model,
opposed to the non-steady state character of the waves,
only the occurrence of waves can be predicted with a
certain degree of certainty, not their severity. Furthermore,
although buckling does not occur at element scale, here it is
treated locally on each element reaching the critical stress
estimated in (1).
However, despite the simplicity and questionable
assumptions of this model, figures 1 and 2 show, for
particular rolling conditions (Table 1 : named “case 1”),
that :

1. in this case (manifested flatness defect), neglecting
the occurrence and effects of buckling results in a
completely wrong stress profile;

2. the impact of buckling on the final stress state is to
bring it much closer to experiments (measured
with tensiometer roll).

3. Furthermore, we note an insignificant dependence
of results on the more or less arbitrarily chosen σc
value. This supports the criterion (1) in spite of its
approximations.

4. we noted that taking account or not of buckling
and its stress relaxation effect doesn’t affect in-
bite zone.

5. manifested flatness defects are identified as shown
in  figure  3,  the  wavy  edge  is  visible, λI >  0  and
angle α ≈ 0° near the edge (I = x); the significant
λII  value at the corner of the bite exit might denote
a tendency to have a superimposed oblique wave
(α ≈ 30°). However, this simple model is unable to
predict neither buckling mode nor post-buckling
strip state.

2.2 UNCOUPLED APPROACH
Lam3/Tec3 coupled with a complete shell element buckling
model seems certainly more relevant. However, it is very
difficult to implement, and the absence of bite/buckling
interaction (cf. [4]) justifies uncoupled ("chained")
technique described as follows :
§ At first, rolling calculation is made using Lam3/Tec3
without buckling (using a horizontal symmetry plane)
providing stress distributions as well as out-of-bite stress
field.

§ This stress field is used as residual stress by a code
based on asymptotic numerical method (ANM) [9,10] and
shell element formulation for buckling plates caused by
residual stresses to supply critical load, buckling mode and
post-buckling state together with the new (and real) stresses
distribution in strip.

Table 1: Simulated rolling operation description (case1).
Friction law Coulomb : 0.033=μ
Width 851 mm
Entry thickness 0.355 mm
Looked thickness for 0.225 mm
Upstream imposed
tension

170 MPa

Incoming strip crown 2.54 %
Grinding crown 0,01614 %
Downstream imposed
tension

100 MPa

Rolling velocity 22 m.s-1
Work roll diameter 555 mm

Behaviour law

Young’s modulus E = 210
GPa
Poisson ‘s ratio 0.3u =
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Figure 1: Comparison of stress profiles computed with and
without accounting buckling, and measured in experiments
(far away enough from the bite).
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2.2.1 Asymptotic numerical method formulation
Considering Hu-Washizu functional, the stationary
condition can be written in the following form
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where D is the elastic stiffness tensor, S is the second Piola
Kirchhoff stress tensor, γu is the compatible Green
Lagrange strain obtained from the displacement field and
which can be decomposed into a linear and a quadratic part
γu = γl (u)  + γnl (u,u). γ% is  the  enhanced part  of  the  strain
independent of the displacement and assumed to be
orthogonal to the stress field. Pe(δu) is the virtual work of
external load and g is a scalar load parameter. The latter
gets critical value gc at bifurcation point when buckling
happens.
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Figure 3: Flatness defect prediction. a : first principal
buckling strain λI, b: second principal buckling strain λII, c :
angle α defining the eigendirections of the buckling strain λ .

The  basic  idea  of  the  ANM  consists  in  searching  the
solution  path  of  the  non-linear  problem  (2)  under  an
asymptotic expansion form with respect to a control
parameter ‘a’. This expansion is developed in the
neighbourhood of a known regular solution (U0, λ0) as
following:
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Equation (2) can be written in the following simple form:
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where L(.) is a linear operator, Q(. , .) a quadratic one, F the
external load vector and R the  residual  vector.  If  we
substitute (3) in (4) and equating coefficients of the same
power of a, the non-linear problem (4) will be transformed
into a sequence of linear problems as follows:
order 1:
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( )0 .tL  is the tangent operator which depends only on the
initial solution.

2.2.2 Applications and results
Several buckling academic applications and strip rolling
cases had been analysed using ANM shell element model.
Therefore, critical load (gc) analytical evolutions with
length/width ratio for free and simply supported edge cases
where pure compression is considered (cf. [11]) are
reproduced (cf. figure 4). Besides, for “case 1” (presented
on table 1) out of bite stress fields become closer to
experiments after buckling as mentioned in figure 5.
Furthermore, figure 6 illustrates the rolled strip post-
buckling state presenting wavy edges and longitudinal
stationary waves near the bite exit. Moreover, we deduce
correlation between the presented approaches in spite of
their large differences.
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Figure 6: Flatness defect of rolled strip for case presented
on table 1: wavy edges and longitudinal stationary waves
near to the bite exit.

3 CONCLUSIONS
The flat product rolling – specialized FEM software
Lam3/Tec3 has been complemented with a simple buckling
model inspired by [3]. The computed stress profiles are
therefore in very good agreement with experiments and the
most important result at this stage is the weak influence of
buckling  on  in-bite  stress  and  strain  fields.  This  was  not
expected, as out-of-bite relaxed stresses may be viewed as
boundary conditions for the bite; but it provides a more

rigorous justification of the traditional decoupled methods
of the literature using shell elements looked more adapted
models for buckling. Here, decoupled method is adopted
using Asymptotic Numerical Method (ANM) for shell
element model which gives excellent buckling computing
capability with more realistic results. Thus it looks much
more precise and predictive buckling model, in particular
allowing modelling of post-buckling.
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