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ABSTRACT: This paper investigates the computational performance of the direct substructuring method. Substructuring
is used to reduce the computing time in the implicit simulation of single point incremental forming (SPIF). Substructuring
divides the finite element (FE) mesh into several non-overlapped substructures. The substructures are categorized into
two groups: the plastic–nonlinear–substructures and the elastic–pseudo-linear–substructures. The plastic substructures
assemble a part of the FE mesh that is in contact with the forming tool; they are treated by the fully nonlinear method. The
elastic substructures model the elastic deformation of the rest of the FE mesh. Two approaches are used to treat the elastic
substructures: the linearized approach and the condensed linearized approach. In both approaches, the geometrical and
the material behaviour are assumed linear within the increment. The geometrical and material nonlinearity are considered
after convergence. Combined with the plastic substructures treatment, the approaches are refered to as the plastic linear
elastic (PLE) approach and the plastic condensed linear elastic approach (PCLE). The substructures categorization in
plastic and elastic substructures is adapted during the simulation to capture the tool motion. Different sizes for the
substructures are considered. In an example of 1600 shell elements, the best results achieved by the PLE speeding–up the
classical implicit simulation by 2.82 times.
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1 INTRODUCTION
Single Point Incremental Forming (SPIF) is a displace-
ment controlled process performed on a CNC machine. A
clamped blank is deformed by the movement of the tool
that follows a prescribed tool path [1], a sketch of SPIF is
presented in Figure 1. Because SPIF is a dieless process, it
is perfectly suited for prototyping and small volume pro-
duction. The simulation of SPIF results in enormous com-
puting times for two reasons. First of all, the blank is de-
formed by a sequence of small increments that requires
thousands of numerical increments to be performed. Sec-
ondly, the small contact area between the forming tool and
the blank requires a very fine FE mesh to capture the in-
troduced deformation. The extreme computing times cur-
rently limit the applicability of FE simulations to very
simple academic samples.
The implicit simulation of SPIF provides a very good
agreement with experimental data [2]. For nonlinear im-
plicit simulations, the Newton–Raphson method is of-
ten preferred because of its quadratic convergence be-
haviour but every iteration is relatively expensive. The
modified Newton–Raphson method is cheaper per itera-
tion, but it shows only linear convergence behaviour [3].
In SPIF simulation, it has been noticed that the over all
computing time by a modified Newton–Raphson method

∗Corresponding author: Materials Innovation Institute, P.O. Box
5008, 2600 GA Delft, The Netherlands, +31 53 489 4567,
a.hadoush@m2i.nl

Figure 1: Schematic representation of the SPIF process.

is higher than the computing time by a full Newton–
Raphson method, because it requires much more iterations
per increment to converge.
The deformation in SPIF is modeled as localized plastic
deformation [4]. According to this hypothesis plastic de-
formation is localized in a small zone in the region of the
forming tool surrounded by elastic deformation of the rest
of the blank. The localized plastic deformation results in
a localized nonlinearity in the FE mesh. The contribu-
tion of this paper is to treat the localized plastic part of
the blank by a full Newton–Raphson iterative procedure,
while the non-localized deformation is modeled by a lin-
earized elastic predictor and corrector that is updated ev-
ery increment. This is implemented by substructuring. It
is used as tool to manage the assembly of the predictor and
the corrector. This approach combines the advantage of a
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fast convergence for the highly nonlinear process in the
plastic part with a cheap calculation in the much larger
elastic part of the blank, significantly reducing the total
computing time. For the linearized elastic predictor and
corrector, static condensation is considered as an option in
order to reduce the size of the SOEs. Similar approaches
have been introduced in computational mechanics and two
of them are mentioned here. The first approach is the
subcycling in explicit methods to overcome the problem
of very small or very stiff elements [5]. The second ap-
proach is the implicit-explicit method, where part of the
system Jacobian matrix is treated implicitly and part ex-
plicitly [6].
In this paper, two different approaches are introduced to
implement substructing in the implicit scheme, The ap-
proaches are the plastic linear elastic (PLE) approach and
the plastic condensed linear elastic (PCLE) approach. A
simple academic simulation is presented. As effeciency
measure, the required computing time of the approaches
are compared to the computing time for the standard fully
nonlinear iterative implicit (Standard) method, as a refer-
ence.

2 SUBSTRUCTURING
Direct substructuring is considered as a non-overlapping
domain decomposition method. It is a way to organ-
ise the static condensation of large linear systems aris-
ing from the discretization of partial differential equations
[7]. In this section, the implicit solution of the nonlin-
ear SOE is substructured in order to manage the calcula-
tion of predictor and corrector and performing the stress
update for SPIF simulation. In the iterative procedure,
the Newton–Raphson method updates an incremental dis-
placement vector d with an iterative displacement vector
∆d, using the tangent of the nonlinear SOEs A(d) or in en-
gineering terms the effective tangent stiffness matrix, by
solving

rj+1(d) = rj(d)+Aj(d)∆dj = 0 (1)

where the residual r(d) defines the difference between the
internal forces and the external forces. The subscript j is
the iteration number. Substructuring divides the FE mesh
into substructures. For each substructure the linearized
model in equation (1) becomes
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The subscripts i and e represent internal and external
DOFs respectively. The superscript s refers to substruc-
ture number, s = 1,2, ...,n where n is the total number of
substructures in the FE model.
According to the localized plastic deformation hypothe-
sis in SPIF, the plastic deformation is localized in a small
zone in the region of the forming tool surrounded by elas-
tic deformation of the rest of the blank. For that reason,
the substructures are categorized into plastic substructures
and elastic substructures. The plastic substructures model
the introduced plastic deformation in the blank by the

forming tool. On the other hand, the elastic substructures
model the elastic deformation of the rest of the blank.
The plastic substructures are treated by the fully nonlin-
ear method. For the elastic substructures, two approaches
are introduced. The first approach is to assume a linear
geometrical and material behaviour with the increment.
The geometrical and material nonlinearity are considered
after the convergence of the increment. This approach
combined with plastic treatment of the plastic substruc-
tures will be refered to as the plastic linear elastic (PLE)
approach. The second approach is to use a condensed
linear geometrical and material behaviour within the in-
crement and to consider the nonlinearity after the conver-
gence. Comabined with the plastic substrctures treatment
is called the plastic condensed linear elastic (PCLE) ap-
proach.

2.1 PLE APPROACH

The plastic substructures are iteratively treated by fully
nonlinear method. For elastic substructures, the effective
tangent stiffness matrix As and the residual rs contains
only the contribution of the internal force since there is no
external force. At the beginning of each increment, As and
rs are calculated. As is kept constant during the iterative
procedure. Linearly, rs is updated by the multiplication of
As and the incremental displacement d
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The global SOE is assembled from the contributions of
the plastic substructures and the elastic substructures. The
global SOE is solved for ∆d. After convergence, the non-
linear stress update is performed for the elastic substruc-
tures. The main advantage of this approach is that the
calculation of As and the stress update is performed only
once per increment for the elastic substructures combined
with a linear update for the rs. This saves the redundant
computing time of calculating those values iteratively.

2.2 PCLE APPROACH

Beside the plastic–elastic substructural treatment in the
PLE approach, condensation is implemented for the elas-
tic substructures. After the calculation of As and rs, the
internal (slave) DOFs contribution in the substructural
linearized model are statically condensed to the external
(master) DOFs
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that reduces the substructural linearized model to

rs
c, j+1 = rs

c, j +As
c,0∆ds

e (5)

where
As

c,0 = As
ee,0−As

ei,0(A
s
ii,0)

−1As
ie,0 (6)

The substructural condensed residual rs
c, j is updated lin-

early by
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The reduced SOEs is formed by the assembly of the plas-
tic substructures contribution and the condensed elastic
substructures contribution. The reduced SOEs is solved.
At the convergence of the increment, the evaluation of the
internal DOFs followed by the nonlinear stress update for
the elastic substructures are performed. Beside the advan-
tage of the PLE approach, PLCE reduces the size of the
SOEs significantly. On the other hand, the reduced SOEs
is denser than the initial SOEs.
The PLE and the PCLE alogrithms run on a single proces-
sor. It is important to mention that the condensation, the
evaluation of the internal DOFs of each substructure, the
nonlinear stress update and the calculation of As can be
done independently of the other substructures. The PCLE
and The PLE algorithms can be modified to make use of
parallel computing, but that is not the focus of this paper.

3 CASE STUDY
To compare the accuracy and efficiency of PLE approach
and PCLE approach to the Standard approach, a single
point incremental forming process of a 45◦ pyramidal
shape is simulated with the different approaches. The
20 mm deep pyramid is made out of a 100× 100× 1.2
mm initially flat blank. An analytical spherical tool of 10
mm radius is used. The tool follows a counter clockwise
tool path for 40 loops. In each loop, the tool moves 0.5
mm vertically downwards. At a fixed vertical position,
the tool performs the in-plane tool path. the simulation
finishes when the tool reaches the end of loop 40. The
blank edges are completely suppressed for the entire sim-
ulation. Two different substructure sizes are used. The
substructure sizes are 10 mm and 20 mm (S10 and S20).
For each approach two simulations are performed, one per
substructure size. The total computing time of each simu-
lation is compared to the computing time required by the
Standard Newton–Raphson simulation, as reference. Each
simulation is performed on one core of a Sun Fire X4450
server with Intel Xeon X5365 3 GHz processors.

3.1 ELASTIC–PLASTIC DISTRIBUTION

The considered FE mesh is divided into equal sized sub-
structures. In Figure 2 the substructures are visualized
with thick lines. A number of virtual cross points are in-
troduced in the FE mesh. The cross point is a common
node between 4 adjacent substructures. Each substructure
is attached to at least one cross point. The closest cross
point to the tool center categorizes the adjacent substruc-
tures as plastic substructures while the rest of the substruc-
tures are categorized as elastic substructures. The move-
ment of the tool changes the active cross point and as re-
sult the elastic–plastic substructures distribution.

3.2 FE MODEL

The numerical blank is discretized with 1600 triangular
shell elements. The element type is the discrete shear tri-

Figure 2: Substructuring 1600 triangular element into 25
substructures, the 4 substructures in the vicinity of the tool
(the circle) are plastic substructures and the others are
elastic substructures.

angle DST for bending, combined with a linear membrane
element. The element has 6 DOFs per node. It has 3 inte-
gration points in plane and 5 in thickness direction (total
15). The elements are grouped for S10 and S20 in 100 sub-
structures (with 81 virtual cross points) and 25 substruc-
tures (with 16 virtual cross points), respectively. The vir-
tual cross points are used to determine the elastic-plastic
substructure distribution. In order to focus on the sub-
structuring technique only, the material model is kept as
simple as possible. The isotropic yield behaviour of the
material is modelled with the von Mises criterion. The
work hardening is governed by the Swift relation:

σ = 500(ε +0.00243)0.2 (9)

Where σ and ε are the flow stress and the equivalent plas-
tic strain, respectively. The material has a Youngs modu-
lus of 200 GPa and Poissons ratio of 0.3. For realistic cal-
culation, the authors acknowledge that a better material
model is required, that includes the anisotropic behavior
of the sheet and the cyclic mode of deformation.

3.3 RESULTS AND DISCUSSION

The Standard approach requires 6.73 hrs to finish the sim-
ulation. A speed factor is defined to compare the perfor-
mance of the approaches with different substructure sizes.
It is the ratio of the computing time of the Standard sim-
ulation to the considered simulation computing time. It
should be larger than 1, the larger speed factor is the better
in speeding the Standard approach. The simulations speed
factor are summarized in Table 1. Considering the PLE
approach, S10 simulation requires 2.38 hrs while S20 re-
quires 2.99 hrs. The only difference between the Standard,
S10 and S20 simulations is the total number of elements
that are treated iteratively. The Standard simulation treats
all elements in the FE model (1600 elements) while S10
and S20 simulations treat 64 elements and 256 elements,
respectively. This results in a higher Speed factor for S10
(2.82) than the speed factor for S20 (2.25). In view of the
PLCE approach, S10 simulation requires 2.95 hrs while
S20 simulation requires 6.37 hrs. The speed factor of S10
(2.28) is higher than S20 (1.06), because of the condensa-
tion of a large substructural SOEs requires more time than
a small substructural SOEs. Incrementally, S20 condenses
246 DOFs into 96 DOFs while S10 condenses 78 DOFs
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Table 1: The simulations Speed factor

Standard PLE PCLE
S10 1.0 2.82 2.28
S20 1.0 2.25 1.06

into only 48 DOFs. Also S20 treats larger number of el-
ements than S10. These facts result in larger incremental
cost for S20 than S10 and as a consequence a lower Speed
factor. In this academic simulation, the PLE approach is
more efficient reducing the total computing time for the
standard simulation, for both substructural sizes S10 and
S20, than PCLE for two reasons. First of all, PCLE has
additional cost to the increment by the condensation. Sec-
ondly, the cost of solving the initial SOEs is almost neg-
ligible compared to iteration cost (5.3%). For this reason,
the reduction in the cost of the solver has no pronounced
influence in reducing the incremental cost. But for large
(real life product) simulation when solver time becomes
problematic, it will have more contribution in reducing the
incremental cost. It is currently investigated.
In Figure 3 the results obtained by the Standard, PLE
(S10) and PCLE (S10) simulations are presented. Both
PLE and PCLE results show a very good agreement with
the Standard results. The achieved vertical displacement
(left) maximum value is 19.95 mm for the Standard sim-
ulation while PLE and PCLE have less than 0.05% error
in the maximum value. The maximum equivalent plastic
strain for the highest plane of integration points (right) is
0.855. The same value is achieved by the PLE and PCLE
simulations with almost equal contour distribution com-
pared to the Standard simulation contour distribution. S20
results have the same good agreement with the Standard
results, for Both PLE and PCLE.

4 CONCLUSIONS
In this case study, The PLE and PCLE successfully reduce
the computing time required by the Standard method. PLE
has a better performance than PCLE. PLE (S10) has the
highest speed factor of 2.82. A very good agreement of
the results are achieved by PLE and PCLE in comparison
with the Standard results.
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