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Abstract Leukemia is one of the most aggressive hema-

tological malignancies. Leukemia stem cells account for

the poor prognosis and relapse of the disease. Decades of

investigations have been performed to figure out how to

eradicate the leukemia stem cells. It has also been known

that cancer cells especially solid cancer cells use energy

differently than most of the cell types. The same thing

happens to leukemia. Since there are metabolic differences

between the hematopoietic stem cells and their immediate

descendants, we aim at manipulating the energy sources

with which that could have an effect on leukemia stem

cells while sparing the normal blood cells. In this review

we summarize the metabolic characteristics of distinct

leukemias such as acute myeloid leukemia, chronic mye-

loid leukemia, T cell lymphoblastic leukemia, B-cell

lymphoblastic leukemia, chronic lymphocytic leukemia

and other leukemia associated hematological malignancies

such as multiple myeloma and myelodysplastic syndrome.

A better understanding of the metabolic profiles in distinct

leukemias might provide novel perspectives and shed light

on novel metabolic targeting strategies towards the clinical

treatment of leukemias.
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Abbreviations

AML Acute myeloid leukemia

CML Chronic myeloid leukemia

T-ALL T-cell lymphoblastic leukemia

B-ALL B-cell lymphoblastic leukemia

CLL Chronic lymphocytic leukemia

MM Multiple myeloma

MDS Myelodysplastic syndrome

LSCs Leukemia stem cells

OXPHOS Oxidative phosphorylation

FAO Fatty acid oxidation

PPP Pentose phosphate pathway

Glut1 Glucose transporter 1

Ara-C Arabinofuranosyl cytidine

2-DG 2-Deoxy-D-glucose

RTKs Receptor tyrosine kinases

ROS Reactive oxygen species

CSCs Cancer stem cells

PPARc Proliferator-activated receptor gamma ligands

CPT1 Carnitine O-palmitoyltransferase I

GAT Gonadal adipose tissue

GA Glutaminase

IDH1/2 Isocitrate dehydrogenase 1 and 2

PHGDH Phosphoglycerate dehydrogenas

I-ASP l-Asparaginase

GS Glutamine synthase

ASNS Asparagine synthetase
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Background

Leukemia is a kind of hematological malignancy that often

initiates in the bone marrow and leads to abnormal and

immature white blood cells which are also named blasts or

leukemia cells. In a contemporary view, LSCs is respon-

sible for the initiation and development of the disease and

can explain most of the poor prognosis in clinical trials.

Numerous studies have shed light on eliminating LSCs

based on their distinct genetic and epigenetic characteris-

tics compared with the normal blood stem cells [1, 2]. In

recent decades, awareness that the metabolic phenotype of

leukemia cells is heterogeneous and distinct from that of

their normal counterparts—is increasing. How the leuke-

mia cells survive and propagate in adverse environment

such as low glucose, hypoxia and oxidative stress remains

poorly understood [3, 4].

Glucose, free fatty acids, glutamine, amino acids are

basic and important materials for the catabolism pathways

that support the growth and survival of the cancer cells.

These catabolites are either assimilated from the blood

circulation or synthesized within cancer cells. Glucose is

the among the most available nutrients in blood and a

metabolic substrate generally utilized by cancer cells [5]. It

is well known that anaerobic glycolysis and aerobic

mediated oxidative phosphorylation (OXPHOS) are the

two major pathways in glucose metabolism. Thus, various

drugs that interfere with glycolysis and OXPHOS are being

investigated and designed as anti-cancer agents. Fatty acids

are also essential substrates for catabolic pathways in

cancers. The pentose phosphate pathway (PPP) mediated

glucose catabolism is known to be an important initiating

point for the production of NADPH and maintenance of a

redox balance in normal cells [6]. However, fatty acid

oxidation (FAO) take the place of PPP in cancer cells and

contributes substantially to these processes under meta-

bolic stress due to the low glucose levels [7]. Contrary to

the FAO catabolism, lipids and steroids are de novo syn-

thesized to generate the new phospholipid bilayers, which

are essential for the fast proliferation and division of the

cancer cells [8]. Glutamine is another indispensable nutri-

ent for cancer cell growth since the amido nitrogen is an

essential substrate for hexosamine and nucleotide synthesis

[9], and is also getting involved in TCA cycle to produce

energy for cancer cells. Other critical metabolic processes

include asparagine metabolism, folate metabolism and

oxidative stress metabolism. Like solid cancer cells, leu-

kemia cells are not metabolically homogenous and distinct

types of leukemia cells utilize special metabolic raw

material preferentially. Thus, targeting the metabolic dif-

ferences between leukemia cells and normal blood cells

provides novel anti-leukemia strategy. In this review, we

discuss the metabolic profiles of four major leukemias as

well as other hematological malignancies. In particular, we

underscore potential metabolic vulnerabilities for each type

of leukemia.

Glucose Metabolism

The well established Warburg effect has demonstrated that

solid cancer cells mainly use glycolysis to meet their

energy requirement [10]. The Warburg effect had long

been believed to be an adaptation to low-oxygen environ-

ment in cancer cells. Since most of the raw materials and

energy required for cell proliferation are from glycolysis,

cancer cells need to activate glycolysis pathways although

they mostly reside in a condition that has enough oxygen.

Targeting the glucose metabolism of leukemia cells has

already becoming an emerging trend for leukemia

treatment.

Role in AML

There are still some controversies concerning whether

AML cells use glycolytic metabolism or OXPHOS meta-

bolism although the glucose metabolism in AML has been

implicated in many studies. An interesting study by Wang

et al. had demonstrated that AML cells are so unique in the

way they sense the glucose availability and utilization

while normal cells do not get disrupted because they have

other glucose metabolism in place in case of an emergency.

They suggested that by precise control of the level of

glycolysis would be a novel therapeutical strategy for

treating AML without affecting the normal function of the

HSCs [11]. Besides, Saito et al. indicated that AMPK

deletion substantially delays leukemogenesis and eradi-

cates LSCs in MLL-AF9 induced AML by downregulating

the expression of glucose transporter 1 (Glut1), enhancing

oxidative stress and inducing DNA damage. This study

powerfully supports that the Warburg effect does exist in

leukemia [12]. Moreover, Chen et al. [13] showed that

elevated glycolysis decrease the vulnerability to anti-leu-

kemia agent arabinofuranosyl cytidine (Ara-C) while

inhibition of glycolysis suppresses AML cell growth and

enhances cytotoxicity of Ara-C in killing leukemic cells.

Also, Larrue et al. demonstrated that the glycolytic inhi-

bitor 2-deoxy-D-glucose (2-DG) exhibited great anti-leu-

kemia activity through modulating the expression of

receptor tyrosine kinases (RTKs) such as FLT-ITD and

KIT. Modulating glycolysis by using 2-DG provides a

therapeutic approach in some subset of AML harboring

mutated RTKs [14]. One of the traditional ways of treating

AML is by chemotherapy but sometimes it is not quite

effective because of chemoresistance. A recent research by
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Song et al. revealed that increased glycolysis and decreased

OXPHOS may result in the drug resistance of AML cells.

Targeting anaerobic glycolysis metabolism is an effective

strategy for manipulating chemoresistance in AML [15].

Despite the numerous evidence proofing that AML mainly

uses glycolysis as their glucose utilization pathways, which

is consistant with the solid cancer cells, an intriguing

investigation by Lagadinou et al. reported that OXPHOS is

the unique fuel source for LSCs of AML. They discovered

that LSCs in AML reside in a low levels of reactive oxygen

species (termed ‘‘ROS-low’’) condition and exhibit a

slower rate of energy metabolism compared with the nor-

mal blood cells. Interestingly, they found that the anti-

apoptotic molecule BCL-2 is aberrantly overexpressed in

ROS-low LSCs. Targeting the BCL-2 dependent OXPHOS

could selectively kill LSCs while spare the normal blood

stem cells [16] (Table 1).

Role in ALL and CLL

Intriguingly, T-ALL leukemia cells might also prefer to

reprogram glycolysis to OXPHOS to survive under the

metabolic stress. For example, a study by Kishton et al.

[17] revealed that AMPK is essential to maintain mito-

chondrial metabolism which alleviates metabolic stress and

prevents T-ALL cells from apoptosis. Moreover, Liu et al.

implied that specifically targeting Glut1 impaired the gly-

colysis and anabolic metabolism of B-ALL cells harboring

BCR-ABL fusion protein [18]. CLL leukemic cells also

tend to use glycolysis. Synergistically using a tyrosine

kinase inhibitor dasatinib and inhibiting two master

metabolic regulators (mTORC1 and AMPK) could target

the CLL lymphocytes by reducing lactate production, thus

decreasing aerobic glycolysis [19].

Role in CML

Glycolytic dependencies is also reported in CML. For

instance, Gottschalk et al. showed that imatinib (STI571),

which is a classic inhibitor of the BCR-ABL oncoprotein,

induces cell apoptosis in human leukemia BCR-ABL

positive cells by altering the glucose metabolism from

glycolysis to mitochondrial metabolism [20].

To sum up, leukemia cells may not always depend on

anaerobic respiration as their energy source. Moderated

aerobic glycolysis, along with alternative metabolic path-

ways like OXPHOS, may also be necessary to promote the

growth and survival of leukemia cells especially when they

are in an adverse environment in the long run. The

heterogeneity of glucose metabolism in distinct leukemias

remains to be studied and more evidence is needed to get a

comprehensive map of leukemic glucose metabolism for

treatment in the future (Fig. 1).

Lipogenesis Metabolism

The process of lipogenesis, also named lipid synthesis,

plays an important role in the pathogenesis of solid cancer.

Several enzymes are getting involved in the lipid synthesis

pathways, including fatty acid synthase, acetyl-CoA car-

boxylase, ATP citrate lyase and choline kinase [21–25].

Choline is the raw material in regenerating the membrane

phospholipid phosphatidylcholine of cancer cells. The

expression and activity of choline kinase are increased in

various solid human cancers because of growth factor

stimulation and activation of Ras signaling pathway [23].

Many studies support that lipid synthesis favors leukemo-

genesis (Table 2).

Role in AML

A recent finding by Fraineau et al. [29] revealed that

mesenchymal stromal cells (MSCs) derived from bone

marrow niche create a favorable microenvironment that

sustains the initiation and progression of AML. This dis-

covery also indicates that novel therapeutic treatment could

target the leukemia niche which favors more for the sur-

vival of cancer cells than the normal blood cells. However,

there are evidence showing that adipogenesis was inhibited

in some subtype of AML. For example, Kim et al. sug-

gested that adipogenic associated transcription factors are

negatively regulated in the promyelocytic leukemia (PML).

This contributes to fat accumulation by blocking the dif-

ferentiation of preadipocytes into adipocytes [27]. In

Table 1 Select agents targeting metabolism that are approved, or are

in trials, for the treatment of cancer, focusing on targets discussed in

this review

Drug Target enzyme

2-DG RTK such as FLT-ITD and KIT

Imatinib (STI571) BCR-ABL oncoprotein

Inhibitor ST1326 CPT1a

Avocatin B Mitochondrial

ABT-737 BCL-2

NXT629 PPAR-a

ABT-199 BCL-2

BPTES Glutaminase

I-ASP Circulating asparagine

Methotrexate (MTX) Dihydrofolate reductase (DHFR)

SU9516 Dihydrofolate reductase (DHFR)

mTOR inhibitors (MTIs) mTOR

3-DeazaneplanocinA (DZNep) Histone methyltransferase

AZD1208 Pan-Pim kinase
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addition, Yasugi et al. [28] showed that peroxisome pro-

liferator-activated receptor gamma ligands (PPARc) pro-

mote the lipogenesis as well as myeloid differentiation in

human NB4 cells. This finding seemed to indicate the

association of the AML differentiation with lipogenesis but

it did not clarify a definite cause and effect relationship

between them. It remains to be explored whether lipoge-

nesis contributes to the myeloid differentiation or vice

versa.

Role in Other Hematological Malignancies

A study by Medina et al. demonstrate that adiponectin,

cytokine generated by adipocytes could significantly sup-

press the survival of MM cells by activating PKA/AMPK

pathway and inactivating the ACC1 activity, thus allevi-

ating lipogenesis [26]. These results not only clarify the

positive association between obesity and the trend to

develop into MM but also provide a therapeutic strategy by

targeting the lipogenesis of MM cancer cells.

To summarize, whether lipogenesis promote the devel-

opment of leukemia or not is still elusive. Leukemic

dependency on lipogenesis may be determined by the

genetic and epigenetic characteristics of distinct leukemias.

FAO Metabolism

The fatty acid oxidation (FAO) is considered to be the

reverse lipid metabolism in terms of lipogenesis. It is

noteworthy that FAO has been associated with chemore-

sistance and mitochondrial uncoupling. Warburg’s

discovery about the glycolysis in cancer cells can be

explained as a result of the preferential oxidation of fatty

acids in the mitochondrial of cancer cells. In fact, targeting

FAO or other anaplerotic pathways that compensate FAO

has been demonstrated to provide novel therapeutic

strategies in treating distinct leukemias [30].

Role in AML and CML

Carnitine O-palmitoyltransferase I (CPT1) is a critical rate-

limiting enzyme, which catalyzes the transfer of the acyl

group of a long-chain fatty acyl-CoA from coenzyme A to

l-carnitine in FAO. Inhibition of CPT1 has been implicated

its anti-leukemia effect in vivo and intro. For example,

Ricciard et al. [31] demonstrated that a novel CPT1a

inhibitor ST1326 exhibits high anti-leukemia activity by

inducing cell cycle arrest, mitochondrial damage, and cell

apoptosis in several leukemia cell lines including AML,

ALL and CLL, with the best efficacy for AML cells.

Despite the catalytic enzymes involved in FAO in cyto-

plasm, the cell surface fatty acid transporters are also novel

therapeutic targets for AML. Recently, Ye et al. showed

that fatty acid transporter CD36 positive LSCs, which were

substantially enriched in gonadal adipose tissue (GAT),

have unique metabolic properties and could evade from

chemotherapy by the GAT niche. Targeting the CPT1

mediated FAO pathway upsteam of CD36 provides a

unique strategy of selective targeting the quiescent LSCs

both in human AML and CML treatment [32]. Since free

fatty acids are not able to cross the mitochondrial mem-

branes without help, carnitine-acylcarnitine translocase,

also named carnitine transporter, is responsible for

Fig. 1 Basic metabolic

pathways in leukemia cells
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transporting both carnitine-fatty acid complexes and free

carnitine across the inner mitochondrial membrane. A

study by Wu et al. revealed that targeting the carnitine

transporter 2 (CT2, SLC22A16) which is overexpressed in

AML shows the great efficacy in eradicating AML cells

[33]. Since FAO is carrying out in mitochondrial, a study

by Lee et al. [34] revealed that avocatin B could inhibit the

mitochondrial function, which provides a novel strategy for

selectively eradicating leukemia cells while sparing their

normal counterparts. Moreover, Velez et al. [35] implied

that metformin and phenformin inhibit the FAO and sen-

sitize leukemia cells to the BCL-2 inhibitor ABT-737

induced cell-intrinsic apoptosis. Interestingly, Shinohara

et al. [37] showed that by synergistically using the anti-

cancer fatty acid derivative AIC-47 and imatinib could

strengthen the attack on CML cells by inhibiting CPT1c

expression and FAO metabolism.

Role in ALL and CLL

Messmer et al. revealed that one antagonist of PPARa called
NXT629 efficiently eliminates the CLL cells by suppressing

peroxisome proliferator-activated receptor (PPAR)-a,
which is a main transcriptional modulator of FAO. This

finding strongly supported that the survival and growth of

CLL cells also depend on the fatty acid metabolism [36]. In

addition, Hermanova et al. suggested that pharmacological

inhibition of FAO greatly sensitizes the ALL cells to L-ASP,

which is a key agent in treating T-ALL.

To sum up, targeting the leukemia’s ‘‘fatty tooth’’ has

exerted a great potential and efficacy in treating distinct

kinds of leukemias. Targeting FAO as well as other

metabolic pathways simultaneously, with moderate inhi-

bition by combination therapy, provide a great value in

leukemia treatment.

Glutaminolysis Metabolism

Glutamine is the most abundant amino acid in amino acid

metabolism. Glutaminolysis, a process in which glutamine

is discomposed to glutamate, aspartate, CO2, pyruvate,

lactate, alanine and citric acid, is an extra energy resource

in cancer cells particularly when glycolysis is relatively

low due to the accumulation of a dimeric form of PKM2.

The rate-limiting step in intracellular glutamine catabolism

is catalyzed by glutaminase (GA) which converts glu-

tamine to glutamate. The genes that encode GA are called

GLS1 and GLS2. They are alternatively spliced and dis-

tinct GA isoforms are generated.

Role in AML and CML

Glutaminolysis plays an important role in maintaining the

growth and survival of AML cells as is evidenced by the

indication that glutaminolysis inhibition through CB-839

concomitant with using the BCL-2 inhibitor ABT-199

induced GLS1 inhibition contributes to the leukemic cell

cycle arrest and apoptosis without affecting their normal

human CD34? progenitors [38]. Moreover, an in vitro

assay by Goto et al. [39] suggested that glutamine depri-

vation reduces the intracellular glutathione content and

increases reactive oxygen species (ROS) most significantly

in four AML cell lines especially in HL-60. The incidence

of mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2)

is frequently found in AML. These mutations contribute to

the glutamine dependency as the main source for a-ke-
toglutarate which could be converted to the oncoprotein

2-hydroxyglutarate in cancer cells. Targeting the glutamine

dependency of the leukemia cells would be mostly bene-

ficial to a specific subset of AML with IDH mutations. For

Table 2 Metabolism dependency in distinct hematological malignancies

References

Glucose metabolism

Glycolysis dependency in AML [11–15]

OXPHOS dependency in AML [16]

OXPHOS dependency in T-ALL [17]

Glycolysis dependency in CML [18, 20]

Glycolysis dependency in CLL [19]

Lipogenesis metabolism

Adipogenesis independency in AML [27, 28]

Lipogenesis dependency in MM [26]

FAO metabolism

FAO dependency in AML [31–35]

FAO dependency in CML [37]

FAO dependency in CLL [36]

Glutaminolysis metabolism

Glutaminolysis dependency in AML [38–40]

Glutaminolysis dependency in CML [43–45]

Glutaminolysis dependency in T-ALL [41, 42]

Aspartate metabolism

Aspartate dependency in AML [48]

Aspartate dependency in T-ALL [46, 47, 49]

Aspartate independency in B-ALL [50]

Folate metabolism

Folate dependency in AML [51]

Folate dependency in T-ALL [52–54]

Folate independency in T-ALL [55]

Oxidative stress metabolism

ROS dependency in AML [58, 59]

ROS dependency in T-ALL [60]

ROS dependency in CML [61]
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example, Emadi et al. [40] demonstrate that a small

molecule of glutaminase inhibitor called Bis-2-(5-pheny-

lacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide BPTES,

exclusively suppresses the survival of human primary

AML cells expressing mutated IDH compared with those

expressing the normal IDH. The impact of glycosylation of

ASCT2 which was ever underestimated in metabolic

reprogramming could be a therapeutic target in leukemia

treatment. For example, Polet et al. [43] showed that the

defect in glycosylation of glutamine transporters could

result in glycolytic inhibition in AML as well as in CML.

Drug resistance resulting from the metabolic reprogram-

ming accounts for the relapse of leukemia treatment. For

instance, Stäubert et al. [44] demonstrated that resistant

leukemia cells alter their metabolism characterized by

reduced dependency on glutamine metabolism at the cost

of a higher requirement for glucose and enhanced FAO

with decreased pantothenic acid uptake ability. Moreover,

Polet et al. implied that phosphoglycerate dehydrogenas

(PHGDH) is upregulated after glutamine deprivation.

Silencing PHGDH in vitro and the use of diet without

serine in vivo suppresses AML. Besides, the glutamine

dependency could also be observed in BCR-ABL positive

CML. Sontakke et al. indicated that the expression of

glutamine importer SLC1A5 is increased in BCR-ABL

transduced human cord blood CD341 cells and these

cancer cells are more susceptible to the glutaminase inhi-

bitor BPTES, which implies that the glutamine metabolism

is elevated in CML to maintain OXPHOS level [45].

Roles in ALL

Glutaminolysis has been also highly implicated to be a

critical process in other forms of leukemia such as T-ALL.

For example, Herranz et al. [41] revealed that glu-

taminolysis is an important pathway for mutated NOTCH1

induced T-ALL growth and a critical determinant of sen-

sitivity in anti-NOTCH1 leukemia treatment in vivo.

ASCT2, also named SLC1A5, which is known as a major

glutamine transporter, has been reported to participate in

the growth of solid cancer cells [42].

To sum up, targeting glutaminolysis have shown a great

efficacy in treating AML as well as ALL. More research is

needed to determine whether distinct types of leukemia

cells glutamine metabolism as a complemental source.

Aspartate Metabolism

l-Asparaginase (I-ASP, erwinia l-asparaginase), which

converts L-asparagine to ammonia and aspartic acid, is an

anticancer agent exhibiting both asparaginase and glu-

taminase activity.

Role in AML

I-ASP shows great efficacy in treating AML disease. For

example, Parmentier et al. [47] showed that asparaginase

activity of I-ASP alone may not be enough for the cyto-

toxicity to the leukemia cells in T-ALL, and that glutam-

inase activity may be essential for its full anti-leukemia

activity. Moreover, Willems et al. [48] reveal that l-ASP

increases the expression of the glutamine synthase (GS)

and knockdown of GS contributes to l-ASP induced

autophagic process in AML cells.

Role in ALL and CLL

I-ASP has also been demonstrated to be a efficacious

amidohydrolase in treating T-ALL and natural killer (NK)

cell lymphoma by inhibiting the protein synthesis, inducing

the cell cycle arrest and enhancing the ROS level to the

mitochondrial permeabilization and subsequent cell apop-

tosis in cancer cells [46]. However, an study done by Chan

et al. showed that the glutaminase activity of L-ASP is not

always indispensable for anticancer effect in solid tumors.

They implied that the L-ASP’s glutaminase activity is

essential for inhibiting the asparagine synthetase (ASNS)

positive cells but not for ASNS negative cells. The thera-

peutic significance of this observation is that glutaminase

negative variants of L-ASP instead of wild-type L-ASP

should be explored for better treatment of ASNS negative

cancers [49]. Although different L-ASP based chemother-

apy are highly efficient, disease relapse could happen fre-

quently. For example, Chien et al. [50] reported that

cleavage of anti-apoptotic molecule BCL-2A1 contribute

to the sensitivity of malignant natural killer (NK) cell lines

and B-ALL cells.

In summary, l-ASP associated therapeutics towards

distinct types of leukemia provide one-carbon metabolism

targeting strategy in leukemia treatment.

Folate Metabolism

Folate metabolism is considered one of another important

one-carbon metabolism besides the aspartate metabolism.

Antifolates are the first effective chemotherapy drugs

which suppress the growth and survival of cancer cells by

inhibiting DNA and RNA synthesis.

Role in AML

A study by Lynn et al. discovered that the expression of

folate receptor b (FRb) is elevated when treating AML

cells with all-trans retinoic acid (ATRA), which improves

immune therapy by using CAR-T cell therapy. This
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observation provides novel therapeutic treatment by tar-

geting the folate metabolism [51].

Role in ALL

In addition, Methotrexate (MTX) is well known for its role

in treating various hematological malignancies by inhibit-

ing dihydrofolate reductase (DHFR). For example,

Uchiyama et al. [52] demonstrated that a cyclin-dependent

kinase inhibitor called SU9516, which downregulates the

expression of both DHFR mRNA and protein, leads to

enhanced sensitivity to MTX in human T-cell leukemia

Jurkat cell line. However, the polymorphisms of DHFR are

concerned with worse ALL outcome, which is associated

with higher DHFR expression [53]. Combined effects

should be carefully examined on other genes involved in

folate metabolism. Drug combination shows very high

efficacy as it is evidenced by Teachey et al. [54] showed

that mTOR inhibitors (MTIs) substantially increase the

sensitivity of ALL cells to MTX by downregulation of both

DHFR and cell cycle promotor cyclin D1. Drug resistance

also gives rise to major obstacles in applying MTX to treat

T-ALL [55]. Thus, individual and personalized treatment

based on molecular diagnosis should be provided to the

patients who are possibly resistant to MTX. In general,

although most of the current investigations of folate

metabolism focus on T-ALL treatment, future directions

would be extended to other forms of hematological

malignancies to advance the understanding of folate

metabolism in leukemia.

Oxidative Stress Metabolism

Role in AML and CML

Oxidative stress and OXPHOS are interconnected:

OXPHOS occurs in mitochondrial, induces oxidative stress

[56], which in turn reduces OXPHOS flux [57]. Reactive

oxygen species (ROS) is generated during oxidative stress

and plays an important role in regulating cell growth,

division, differentiation and apoptosis. A moderate level of

is essential to maintain the survival of the cancer cells.

However, the LSCs might be vulnerable to high ROS

condition, and upregulation of ROS level might even

induce the differentiation of leukemia cells. For example,

Zhou et al. showed that 3-Deazaneplanocin A (DZNep), a

histone methyltransferase inhibitor, downregulates poly-

comb-repressive complex 2 (PRC2) and induces cell

apoptosis by enhancing the oxidative stress in primary

AML samples [58]. Recently, a study from Doshi et al. [59]

indicated that by jointed using pan-Pim kinase inhibitor

AZD1208 and topoisomerase 2 inhibitors significantly

contribute to cell apoptosis by inducing increased DNA

damage and enhanced ROS level in AML with FLT3-ITD

translocation. In addition, Liu et al. revealed that bone

marrow niche induces oxidative adaptation and protects

leukemia cells from apoptosis in ALL, thus providing cues

that targeting redox balance by suppressing antioxidant

generation and anti-apoptosis pathways could overcome

drug resistance [60]. Moreover, the therapeutic approach

by oxidative stress enhancement to kill leukemia cells

could be also applied to CML. For example, a recent study

by Singh et al. [61] suggested that high endogenous ROS

level is able to weaken the nitric oxide (NO) generation in

neutrophils (PMN) of CML. To briefly conclude, targeting

the oxidative condition represents a general strategy in

treating distinct types of leukemias.

Conclusions

Though sharing many similarities, leukemia is genetically

and epigenetically different from solid tumor. Besides, the

emerging trend of using metabolic strategies to treat leu-

kemia is more or less enlightened by the metabolic treat-

ment in solid tumor. Since leukemia originates from a

small subset of cell population called LSCs, it is critical to

figure out the metabolic differences between LSCs and

HSCs and further develop strategies by specifically tar-

geting LSCs. Similar to their normal counterparts, LSCs

are orchestrated in a high hierarchy which is from stem

cells, progenitor cells to more differentiated cell lineages.

The metabolic profiles might depend on diverse cell lin-

eages that determine the LSC origin in distinct leukemias.

Therefore it is not difficult to understand why different type

of leukemia would prefer different ways of utilizing energy

resources. Moreover, microenvironment could also exert an

influence on the leukemia cells and is constantly reshaping

their ‘‘metabolic behavior’’. Due to the complicated niche

where the leukemia cells reside in, it is essential to dig into

the composition of the niche for each type of leukemia,

thus figure out more clearly how the niche changes the

‘‘metabolic behavior’’ in distinct leukemia cells. In other

words, it is critical to take the context-dependent deter-

minants into consideration in attempts to study metabo-

lisms in diverse leukemias. To summarize, a better

understanding of the connection between the cell origin

and their metabolic status, and the function of each leu-

kemia niche would better map the metabolic profiles in

distinct hematological malignancies.

With regards to specific targeting strategies based on the

metabolic profiles in distinct hematological malignancies,

high throughout sequencing and metabolomics would show

their power in discovering more potential targets. For

example, by comparing different metabolic profiles in the
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normal human CD34? cord blood samples and the primary

AML patient samples, one can do an analytic selection to

target the most potential molecule or molecule combina-

tion. Drug inhibition of the metabolic signaling pathways

and molecules has been implicated in clinical treatment of

leukemias but it is also noteworthy that the normal blood

cells should be spared when designing small inhibitors for

the potential targets. And sometimes combinatorial use of

drugs would potentiate the efficiency in eliminating the

leukemia cells and even the LSCs. Moreover, drug depri-

vation contributes to metabolic compensation, which is

recognized as a metabolic adaption and reprogramming.

Combined modulation of related metabolic signaling

pathways is indispensable because leukemia cells would

bypass or utilize other pathways in order to better prolif-

erate and survive. Finally, figuring out novel functional

sites of metabolic targets would be helpful of targeting

genetic mutation induced drug resistance. Finally mapping

a whole and comprehensive metabolic profiles of distinct

hematological malignancies is the first and most critical

step to address all of the issues that are constantly bewil-

dering us.
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