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Abstract
Individualized resistance training is necessary to optimize training results. A model-based optimization of loading schemes 
could provide valuable impulses for practitioners and complement the predominant manual program design by customizing 
the loading schemes to the trainee and the training goals. We compile a literature overview of model-based approaches used 
to simulate or optimize the response to single resistance training sessions or to long-term resistance training plans in terms 
of strength, power, muscle mass, or local muscular endurance by varying the loading scheme. To the best of our knowledge, 
contributions employing a predictive model to algorithmically optimize loading schemes for different training goals are 
nonexistent in the literature. Thus, we propose to set up optimal control problems as follows. For the underlying dynamics, 
we use a phenomenological model of the time course of maximum voluntary isometric contraction force. Then, we provide 
mathematical formulations of key performance indicators for loading schemes identified in sport science and use those as 
objective functionals or constraints. We then solve those optimal control problems using previously obtained parameter 
estimates for the elbow flexors. We discuss our choice of training goals, analyze the structure of the computed solutions, 
and give evidence of their real-life feasibility. The proposed optimization methodology is independent from the underlying 
model and can be transferred to more elaborate physiological models once suitable ones become available.

Keywords Isometric · Resistance training · Optimal control · Optimization · Ordinary differential equation model

Abbreviations
FTI  Force-time integral
KPI  Key performance indicator
MVIC  Maximum voluntary isometric contraction
ODE  Ordinary differential equation
RT  Resistance training
TUT   Time-under-tension

1 Introduction

1.1  Resistance training and model‑based 
approaches

Resistance training (RT) is a popular choice among athletes, 
rehabilitation patients, or the general public to improve 

physical performance. Benefits of RT include increased 
muscular strength and endurance, improved body compo-
sition, or enhanced functional capacity and quality of life 
[52]. To optimize results, individualized RT is necessary 
[24]. Therefore, training variables as exercise selection, fre-
quency, volume, or intensity are adjusted to the trainee and 
the training goals. These adjustments are commonly per-
formed by the trainee or a coach via trial-and-error [20].

To complement such a manual decision- making, many 
research areas like chemical or mechanical engineering have 
adopted methods from scientific computing, e.g., modeling, 
simulation, and optimization. For this reason, scientific com-
puting is often considered to be the third pillar of methodol-
ogy in science next to theory and experiment [38]. Neverthe-
less, sport science and exercise physiology are only slowly 
realizing the potential of model-based approaches [7]. In 
particular, applications covering loading schemes for resist-
ance training are limited. We refer to the literature overview 
in the next section to justify this claim.

A model-based optimization of loading schemes for 
RT could provide valuable impulses for practitioners and 
complement the predominant manual program design. By 
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calibrating the model to the trainee, individual parameters 
are obtained. Then, optimized RT programs could be com-
puted specifically for this trainee, exercise, and training 
goal based on a key performance indicator (KPI) accessi-
ble in the model. Furthermore, a comparison of effective 
loading schemes in practice and algorithmically optimized 
loading schemes could help to identify the driving stimuli 
for adaptations, e.g., the contributions of mechanical load-
ing, metabolic stress, and muscle damage to hypertrophic 
adaptations [44] or the effect of different mechanical stimuli 
on strength and power adaptations [21]. Moreover, RT pro-
grams could be designed to induce the same level of meta-
bolic disturbances. This would allow to increase the com-
parability between training approaches, e.g., between blood 
flow restriction training and conventional training.

1.2  Purpose

In this work, we provide a literature overview of model-
based approaches used to simulate or optimize the response 
to single RT sessions or to long-term RT plans in terms of 
strength, power, muscle mass, or local muscular endurance 
by varying the loading scheme. To the best of our knowl-
edge, contributions employing a predictive model to algo-
rithmically optimize loading schemes for different training 
goals are nonexistent in the literature. Thus, we propose to 
set up optimal control problems as follows. For the under-
lying dynamics, we use a phenomenological model of the 
time course of maximum voluntary isometric contraction 
(MVIC) force. Then, we provide mathematical formulations 
of key performance indicators for loading schemes identi-
fied in sport science and use those as objective functionals 
or constraints. Those KPIs are the force- time integral, the 
time-under-tension (TUT), the accumulated fatigue defined 
as loss of MVIC force, and variants thereof. We then solve 
those optimal control problems using previously obtained 
parameter estimates for the elbow flexors. Last, we discuss 
our results, point out limitations, and give an outlook on 
further research.

2  Literature overview

In the following, we provide an overview of model-based 
approaches used to simulate or optimize an individual’s 
response to single RT sessions or to long-term RT plans in 
terms of strength, power, muscle mass, or local muscular 
endurance by varying the loading scheme. We begin with 
defining prerequisites which are necessary for a model to be 
used with our approach.

Remark Here, we do not include work that is restricted to 
the biomechanical analysis of RT exercises, the description 

of muscular fatigue during RT, or general models of the 
training-performance relationship without a specific applica-
tion to RT, as a thorough literature overview including these 
fields of research is beyond the scope of this work. However, 
we would like to mention that substantial work has been 
done in these fields—either close or synergetic to ours. For 
example, model-based approaches are stronger established 
in endurance sports to analyze optimum pacing strategies [8, 
57], training strategies [23], or long-term adaptations [54]. 
Furthermore, as soon as a suitable extension of the model to 
dynamic movements is available, possible synergies could 
arise from existing works which analyze and compute opti-
mum movements [22, 27]. For the interested reader, we refer 
to these exemplary works and the references therein.

2.1  Model prerequisites

To enable a real-life application for practitioners, the model 
used should fulfill several criteria. First, the inputs of the 
model, which correspond to the training plan of the trainee, 
have to be interpretable for practitioners. As such, using 
quantities which reduce the dimensionality of the training 
input [48] is not desirable. For example, using only volume 
load (defined as weight × repetitions × sets) [11] to describe 
the loading scheme of an RT session provides no information 
about the intensity distribution and is therefore unsuitable. 
Second, the parameters of the model should be identifiable 
through commonly available measurement procedures, e.g., 
force measurements, to avoid an overly laborious model cali-
bration. Third, due to the high number of possible training 
inputs, the model should be suitable for high-dimensional 
optimization, i.e., for derivative-based optimization [29]. 
Fourth, the model should allow to incorporate real-life con-
straints into the optimization problem, e.g., days or weeks 
off [43]. Last, the model should be assessed for its predictive 
ability. We classify a model as predictive if it has been fit 
to a subset of the available data and the resulting param-
eter estimates can be used to predict the remaining data. 
We emphasize this, as the terminology is sometimes used 
differently and models are already classified as predictive if 
they fit the whole dataset—a property we call descriptive. 
However, overparameterization or other model deficiencies 
might diminish the model’s ability to predict unknown data-
sets. Benzekry et al. [10], for example, demonstrated this 
issue illustratively for tumor growth modeling. Furthermore, 
fit and prediction should be evaluated by suitable measures 
[46] and should not be judged based on the plots alone, as 
those are heavily depending on the chosen visualization.

2.2  Existing models

Banister et al. [9] introduced a systems model based on the 
assumption that each training load induces a negative effect 
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(fatigue) and a positive effect (fitness) on performance. As 
the original paper cannot be found easily, we refer to Calvert 
et al. [19] for a description of the model. The ordinary dif-
ferential equation (ODE) model has been adopted for various 
settings and several modifications have been proposed. The 
model is commonly known as Banister model or Fitness-
Fatigue model and predominantly given in a time-discrete 
formulation. Busso et al. [16, 17] fitted variants of the Ban-
ister model to data from Olympic weightlifters. The authors 
used weighted weekly training volume as input and clean 
and jerk performance as output and correlated the model 
components to different hormones. However, the predictive 
ability of the model was not tested, i.e., the whole dataset 
was used for fitting the model. Model variants were further-
more used by Philippe et al. [40] to describe the response of 
rats to resistance training. In subsequent work, the authors 
used exponential growth functions for this purpose [41]. In 
both works, model prediction was not tested.

Mader [36, 37] developed an ODE model of the active 
adaptation and regulation of protein synthesis on a cellular 
level. The model uses intensity of the functional activity as 
input and gives protein mass as an indicator of functional 
capacity as the most important output. The model is able 
to describe supercompensation as well as overtraining, 
which is demonstrated by simulating different scenarios. An 
extended version of the model has been proposed by Ullmer 
and Mader [51]. None of the variants were experimentally 
validated.

Gatti et al. [26] computed training plans for shoulder 
rehabilitation by determining the optimal number of sets per 
exercise for increasing maximum isometric strength given 
a time constraint. Two different objective functions were 
examined and compared to current practice. No statements 
about training intensity were made.

Gacesa et al. [25] used a nonlinear dynamic system to 
separately fit fatigue data and muscular growth data of the 
triceps brachii. The predictive ability of the model was not 
tested.

Arandjelović [2] introduced a model of neuromuscular 
adaption to resistance training. In this model, the so-called 
capability profile of an athlete is modified depending on 
the execution of an exercise. The author subsequently used 
simulations to examine the influence of using fixed loads 
or accommodating loads on the training stimulus. Further-
more, the author proposed a framework to calibrate the 
model from video data [5, 7]. The model was found to suc-
cessfully predict performance in the bench press and the 
squat. Resistance training can then be adjusted via trial-
and-error by inspecting the simulated adaptations. Addi-
tionally, Arandjelović used the model to examine training 
strategies to overcome the sticking point of an arm curl [3], 
to examine the influence of externally supplied momentum 
on the hypertrophy stimulus of a shoulder lateral raise [6], 

and to examine different loading mechanisms of a Smith 
machine [4]. Although these three studies are mainly of 
biomechanical nature, we mention them here, as they 
specifically aim at increasing force or muscle mass by a 
model-based examination of possible adaptations.

Wisdom et al. [53] proposed ODE models of muscle 
adaptation to chronic overstretch, overload, understretch, 
and underload and compared those models to experi-
mental data. The predictive ability of the models was not 
tested. Zhou et al. [56] used similar dynamics to describe 
hypertrophy and atrophy of a muscle fiber given as cross-
sectional area with muscle activation level as input. After 
fitting their model to experimental data, the authors simu-
lated muscle atrophy during a spaceflight and how differ-
ent exercises could serve as countermeasures.

Torres et al. [49] extended an energy balance model to 
account for the hypertrophic effects of resistance training 
and used the model for simulation studies. Moreover, the 
model was fit to data from elderly participants following 
a resistance training routine. Resistance training input is 
described via a scaling variable and has no direct interpre-
tation in terms of volume, intensity, or frequency.

Herold et al. [29] constructed and validated a model 
of the time course of maximum voluntary isometric con-
traction force. Exemplarily, the model was used to algo-
rithmically maximize the force-time integral (FTI) of an 
isometric RT session. We use this model as the foundation 
of our work, as it is—to the best of our knowledge—the 
only one to be tested for its predictive ability, suitable for 
derivative-based optimization, and directly interpretable 
for practitioners in terms of RT input. However, as the 
model provides a phenomenological description of mus-
cular fatigue for different loading schemes, it does not 
directly link the RT input to a physiological adaptation 
of the trainee. Additionally, there still exist research gaps 
concerning the exact stimuli and mechanisms of muscular 
adaptation. To circumvent these issues, we provide math-
ematical formulations of KPIs for loading schemes identi-
fied in sport science and accessible in the model. Those 
KPIs are the force-time integral, the time-under-tension, 
the accumulated fatigue defined as loss of MVIC force, 
and variants thereof.

3  Materials and methods

In this section, we describe the model and the optimization 
problems. For readers with a focus away from mathemati-
cal modeling, simulation, and optimization, we provide 
a short textual summary and then invite them to directly 
proceed to the results section if desired.
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3.1  Textual summary

Previous work [29] allows us to predict how MVIC force of 
a muscle group decreases and recovers under isometric load-
ing (Eq. 1). Using mathematical methods of optimal control, 
this enables us to compute optimized isometric RT sessions 
(Eq. 2) with respect to different trainings goals. These train-
ing goals are constructed from the force-time integral, time-
under-tension, or fatigue (Eqs. 3–6).

3.2  Model

For our numerical experiments, we use a phenomenological 
model of the time course of maximum voluntary isometric 
contraction force. We state the ordinary differential equation 
system and give a short explanation of the components. For 
a detailed description of the model, we refer to the original 
paper [29].

The model describes the current MVIC force capacity 

of a muscle (or muscle group) at joint level under an external 
isometric load

on the time horizon [0, T] . MVIC force capacity and exter-
nal load are normalized to baseline MVIC force and are thus 
dimensionless. Moreover, the ranges of functions specified 
in this description are restricted to physiological meaning-
ful values. The defining equations of the model are given as

where

consists of two dimensionless state variables xfast and xslow . 
The model furthermore contains five dimensionless param-
eters pi ∈ [0,∞) for i ∈ {1,… , 5} describing fatigue and 
recovery properties. The initial conditions for the states are 
given by

For an unfatigued muscle, one chooses x0 = (1, 1)⊤ . To sim-
ulate MVIC efforts, it is favorable to substitute

(1a)hMVIC ∶ [0, T] → [0, 1]

(1b)uabs ∶ [0, T] → [0, 1]

(1c)
d

dt
xslow(t) = p1(1 − xslow(t)) − p2uabs(t)

(1d)
d

dt
xfast(t) = p3(1 − uabs(t))

p4 (1 − xfast(t))

− p5uabs(t)

(1e)hMVIC(t) = xslow(t)xfast(t),

(1f)x ∶ [0, T] → [0, 1]2

(1g)x(0) = x0 ∈ [0, 1]2.

and use

 the load relative to the current force capacity, as input.
The model was validated with a comprehensive set of 

data from the elbow flexors [29]. We use the corresponding 
parameter estimates in this work.

3.3  Optimal control problem

We use a multi-stage formulation on ns ≥ 2 stages—denoted 
by superscripts i ∈ {1,… , ns}—to model the resistance 
training sessions [29]. To include metrics for the TUT, the 
FTI, and the accumulated fatigue, we extend the model by 
three states tracking these quantities xTUT, xFTI, and xfatigue . 
The general multi-stage optimal control problem can then 
be formulated as 

(1h)uabs(t) = urel(t)hMVIC(t)

(1i)urel ∶ [0, T] → [0, 1],

(2a)max
xi(⋅),ui

abs
(⋅),Ti

�(xns (Tns))

(2b)s.t. x1(0) = (1, 1, 0, 0, 0)⊤

(2c)xi(0) = xi−1(Ti−1) for i ∈ {2,… , ns}

(2d)
ns
∑

i=1

Ti = CT

(2e)x
ns
TUT

(Tns) ≤ CTUT

(2f)x
ns
FTI

(Tns) ≤ CFTI

(2g)
and for i ∈ {1, 3,… , ns − 2, ns} and t ∈ [0, Ti] ∶

d

dt
xislow(t) = p1(1 − xi

slow
(t)) − p2u

i
abs
(t)

(2h)
d

dt
xifast(t) = p3(1 − ui

abs
(t))p4 (1 − xi

fast
(t))

− p5u
i
abs
(t)

(2i)
d

dt
xiFTI(t) = ui

abs
(t)

(2j)
d

dt
xiTUT(t) =

{

0 if ui
abs
(t) = 0

1 else
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 with CT being the total time and CTUT and CFTI the upper 
bounds on the total time-under-tension and the force-time 
integral. During odd numbered stages contractions with 
ulow ≤ uabs are possible. Even numbered stages are consid-
ered rest periods. The duration Ti of each stage is being opti-
mized. We adapt this optimal control problem to different 
scenarios in the following. If not mentioned otherwise, all 
sessions last 20 min, allow nc = 25 possible contractions 
and have no restrictions on FTI or TUT. This implies CT = 
1200 s, ns = 49 and neglecting Constraints (2e) and (2f). 
Table 1 gives an overview of the symbols used in the prob-
lem formulation.

To solve the problems numerically, we employ a first-
discretize-then-optimize strategy. We use the optimal control 
software MUSCOD-II [33, 34], which originates from the 
work of Bock and Plitt [13] and implements a direct mul-
tiple shooting approach to transcribe the problem to finite-
dimensional form. We employ a piecewise constant con-
trol discretization. To integrate the ODE system, we use a 
Runge–Kutta–Fehlberg method and generate the sensitivities 
via internal numerical differentiation [12]. The necessary 
derivatives of the model functions are generated via finite-
difference approximations. The resulting nonlinear program 
is solved with a tailored structure-exploiting trust-region 
sequential quadratic programming method with limited-
memory block-updates of the Hessian. For details, we refer 
to the references above.

In the following, we present how this general optimal 
control problem formulation (2) is adapted to different ses-
sions (labeled Session A to K). We refer to Table 2 for a 
concise overview.

(2k)
d

dt
xifatigue(t) = 1 − hi

MVIC
(t)

(2l)ulow ≤ ui
abs
(t) ≤ hi

MVIC
(t)

(2m)
and for i ∈ {2, 4,… , ns − 3, ns − 1} and t ∈ [0, Ti] ∶

d

dt
xislow(t) = p1(1 − xi

slow
(t))

(2n)
d

dt
xifast(t) = p3(1 − xi

fast
(t))

(2o)
d

dt
xiFTI(t) = 0

(2p)
d

dt
xiTUT(t) = 0

(2q)
d

dt
xifatigue(t) = 0,

3.4  FTI‑based goals

Resistance training volume is an important determinant 
of long-term adaptations [24]. For isometric contractions, 
where no actual physical work is performed, the force-time 
integral is an often used analogue of work [42]. Thus, for 
Session A, we maximize the FTI accumulated during an 
RT session without imposing restrictions on the contrac-
tion intensity, i.e., �(x) = xFTI and ulow = 0.

To increase maximum strength, high loads are recom-
mended by some researchers, e.g., by the [1]. Therefore, 
the model has previously been used to compute an exem-
plary optimized RT session, which maximizes the FTI 
and ensures that the contraction intensity is higher than 
a minimum threshold intensity of 80% of baseline MVIC 
force [29]. We adopt this example and examine how low-
ering or raising the minimum threshold intensity influ-
ences the solution. For Session B70% , we set �(x) = xFTI 
and ulow = 0.7 . For Session B90% , we set �(x) = xFTI and 
ulow = 0.9.

As an alternative to the full FTI maximized in Session A, 
one can use the FTI accumulated above the minimum thresh-
old intensity as an indicator of effective training volume. For 
Session C, we thus set ulow = 0 and replace Eq. (2i) with

A similar measure has been used by Burnley [15] when 
examining work capacity above critical torque.

(3)
d

dt
xiFTI(t) = ui

abs
(t) − 0.8.

Table 1  Overview of symbols used in the multi-stage optimal control 
problem (2)

Symbol Interpretation

CT Total time
CFTI Upper bound on total FTI
CTUT Upper bound on total TUT 
hi
MVIC

MVIC force
i Stage index
xi
TUT

Time-under-tension
xi
FTI

Force-time integral
xi
fatigue

Accumulated fatigue
ns Number of stages
pj Parameters
� Objective functional
t Time
Ti Stage duration
ui
abs

External force
ulow Lower bound on uabs
xi
fast

State variable
xi
slow

State variable
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For Session D, we examine the influence of the number of 
possible contractions on Session B and compute the solution 
for nc ∈ {5, 6,… , 49, 50} possible contractions. This allows 
to investigate if more but expectedly shorter contractions 
allow to accumulate a higher FTI while ensuring a minimum 
threshold intensity of ulow = 0.8 and if the additional possible 
contractions are actually realized in the solution.

Instead of choosing a minimum threshold intensity, we 
can emphasize higher loads by evaluating a weighting func-
tion on the integrand of the FTI. For demonstration pur-
poses, we choose a quadratic weighting function for Session 
E. Therefore, we set �(x) = xFTI and replace Eq. (2i) with

ulow is set to 0. A similar approach has been used by 
Arandjelović [6] to describe the hypertrophy stimulus of a 
resistance training set, although he used a sigmoid function, 
which can be interpreted as a smoothing of the constraint 
ulow ≤ uabs used in Session B.

A similar weighting can be applied to Session C by 
replacing Eq. (2i) with

(4)
d

dt
xiFTI(t) = (ui

abs
(t))2.

(5)
d

dt
xiFTI(t) = (ui

abs
(t) − 0.8)2

and setting the objective functional to �(x) = xFTI for Ses-
sion F. In contrast to Session C, ulow = 0.8 is necessary here, 
as otherwise uabs = 0 would be the solution.

3.5  Fatigue‑based goals

Effects of fatigue, e.g., metabolic stress or increased motor 
unit recruitment, have been attributed to trigger or positively 
influence muscle hypertrophy [44]. We examine which load-
ing scheme maximizes fatigue, defined as the accumulated 
loss of MVIC force over time. Thus, for Session G, we 
choose �(x) = xfatigue and ulow = 0.

For Session H, we maximize fatigue while ensuring a 
minimum threshold intensity of 80% of baseline MVIC 
force. Therefore, we choose �(x) = xfatigue and ulow = 0.8.

In contrast to maximizing fatigue, it might also be desired to 
accumulate a certain amount of work while minimizing fatigue, 
e.g., during the tapering period before a competition. For Session 
I, we exemplarily choose �(x) = −xfatigue and CFTI = 150 s.

3.6  TUT‑based goals

Several authors have examined time-under-tension as a 
determinant of acute responses and long-term adaptations 
to RT (e.g., [14] or [45]). Therefore, for Session J, we 

Table 2  Overview of sessions used in this work. If not mentioned otherwise, all sessions last 20 min and allow 25 possible contractions

Session Explanation Objective Constraints Modified equations

FTI-based
   A Maximize FTI �(x) = xFTI ulow = 0 –
   B70% Maximize FTI while ensuring a minimum threshold intensity �(x) = xFTI ulow = 0.7 –
   B90% Maximize FTI while ensuring a minimum threshold intensity �(x) = xFTI ulow = 0.9 –
   C Maximize FTI accumulated above a minimum threshold 

intensity
�(x) = xFTI ulow = 0 d

dt
xiFTI(t) = ui

abs
(t) − 0.8

   D5 Maximize FTI while ensuring a minimum threshold intensity 
with 5 possible contractions

�(x) = xFTI ulow = 0.8 –

   D50 Maximize FTI while ensuring a minimum threshold intensity 
with 50 possible contractions

�(x) = xFTI ulow = 0.8 –

   E Maximize a weighted version of FTI �(x) = xFTI ulow = 0 d

dt
xiFTI(t) = (ui

abs
(t))2

   F Maximize a weighted version of FTI �(x) = xFTI ulow = 0.8 d

dt
xiFTI(t) = (ui

abs
(t) − 0.8)2

Fatigue-based
   G Maximize fatigue �(x) = xfatigue ulow = 0 –
   H Maximize fatigue while ensuring a minimum threshold inten-

sity
�(x) = xfatigue ulow = 0.8 –

   I Minimize fatigue to reach a certain FTI �(x) = −xfatigue ulow = 0, CFTI = 150 –
TUT-based

   J Maximize TUT while ensuring a minimum threshold intensity �(x) = xTUT ulow = 0.8 –
   K Maximize a weighted version of TUT �(x) = xTUT ulow = 0.8 d

dt
xiTUT(t) =

{

0 if ui
abs
(t) = 0

t else



A mathematical model‑based approach to optimize loading schemes of isometric resistance… Page 7 of 15 1

maximize TUT while ensuring a minimum threshold inten-
sity by choosing �(x) = xTUT and ulow = 0.8.

Session J does not take into account the duration of the 
contractions used to accumulate the total TUT. However, some 
author have reported different adaptations to short and long 
duration contractions with greater hypertrophy occurring after 
long duration contractions [45]. Thus, to weight the duration of 
contractions quadratically, we replace Eq. (2j) with

for Session K. All other settings are kept as in Session J.

4  Results

In the following, we provide the results of our computations. 
Here, we focus on the structure of the computed solutions. 
For readers who skipped the methods section, we redescribe 
the scenarios without the mathematical details. We refer to 
Table 2 for a concise overview. If not mentioned otherwise, 
all sessions last 20 min and allow 25 possible contractions.

4.1  FTI‑based goals

Resistance training volume is an important determinant 
of long-term adaptations [24]. For isometric contractions, 
where no actual physical work is performed, the force-time 
integral is an often used analogue of work [42]. Thus, for 
Session A, we maximize the FTI accumulated during an 
RT session without imposing restrictions on the contraction 
intensity. Figure 1a illustrates the model response obtained 
by simulating Session A.

To increase maximum strength, high loads are recom-
mended by some researchers, e.g., by the [1]. Therefore, 
the model has previously been used to compute an exem-
plary optimized RT session, which maximizes the FTI and 
ensures that the contraction intensity is higher than a mini-
mum threshold intensity of 80% of baseline MVIC force 
[29]. We adopt this example and examine how lowering or 
raising the minimum threshold intensity to 70% or 90% of 
baseline MVIC force influences the structure of the solu-
tion. Figure 1b, c illustrates the model response obtained by 
simulating Sessions B70% and B90%.

For Session C, as an alternative to the full FTI maxi-
mized in Session A, one can use the FTI accumulated above 
the minimum threshold intensity as an indicator of effec-
tive training volume. A similar measure has been used by 
Burnley [15] when examining work capacity above critical 
torque. Figure 1d illustrates the model response obtained by 
simulating Session C.

(6)
d

dt
xiTUT(t) =

{

0 if ui
abs
(t) = 0

t else

For Session D, we examine the influence of the number of 
possible contractions on Session B and compute the solution 
for 5–50 possible contractions. This allows to investigate 
if more but expectedly shorter contractions allow to accu-
mulate a higher FTI while ensuring a minimum threshold 
intensity of 80% of baseline MVIC force and if the addi-
tional possible contractions are actually realized in the solu-
tion. Figure 1e, f illustrates the model response obtained 
by simulating Sessions D5 and D50 . Figure 2 depicts the 
objective functional value in dependency of the number of 
possible contractions. Figure 3 depicts the durations of con-
tractions and rests in dependency of the number of possible 
contractions. For all sessions, all 25 possible contractions 
are realized. 

Instead of choosing a minimum threshold intensity, we 
can emphasize higher loads by evaluating a weighting func-
tion on the integrand of the FTI. For demonstration pur-
poses, we choose a quadratic weighting function for Session 
E. A similar approach has been used by Arandjelović [6] 
to describe the hypertrophy stimulus of a resistance train-
ing set, although he used a sigmoid function, which can be 
interpreted as a smoothing of the constraint used in Ses-
sion B. Figure 1g illustrates the model response obtained by 
simulating Session E.

For Session F, a similar quadratic weighting function 
can be applied to Session C. Figure 1h illustrates the model 
response obtained by simulating Session F.

4.2  Fatigue‑based goals

Effects of fatigue, e.g., metabolic stress or increased motor 
unit recruitment, have been attributed to trigger or positively 
influence muscle hypertrophy [44]. For Session G, we exam-
ine which loading scheme maximizes fatigue, defined as the 
accumulated loss of MVIC force over time. Figure 1i illus-
trates the model response obtained by simulating Session G.

For Session H, we maximize fatigue while ensuring a 
minimum threshold intensity of 80% of baseline MVIC 
force. Figure 1j illustrates the model response obtained by 
simulating Session H.

In contrast to maximizing fatigue, it might also be 
desired to accumulate a certain amount of work while 
minimizing fatigue, e.g., during the tapering period before 
a competition. For Session I, we model such a scenario. 
Figure 1k illustrates the model response obtained by simu-
lating Session I.

4.3  TUT‑based goals

Several authors have examined time-under-tension as a 
determinant of acute responses and long-term adaptations 
to RT (e.g., [14] or [45]). Therefore, for Session J, we 
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(f) Session D50.
Fig. 1  Model response obtained by simulating Sessions A to K . We refer to the text and Table 2 for an explanation of the individual sessions. 
The left column depicts the model response. The absolute force input is illustrated in the right column.
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Fig. 1  (continued)
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maximize TUT while ensuring a minimum threshold inten-
sity of 80% of baseline MVIC force. Figure 1l illustrates the 
model response obtained by simulating Session J.

Session J does not take into account the duration of the 
contractions used to accumulate the total TUT. However, 
some author have reported different adaptations to short 
and long duration contractions with greater hypertrophy 

occurring after long duration contractions [45]. Thus, we 
weight the durations of contractions quadratically for Ses-
sion K. All other settings are kept as in Session J. Figure 1m 
illustrates the model response obtained by simulating Ses-
sion K.

4.4  Durations of contractions and rests

Table 3 contains the minimum, the maximum, and the mean 
durations of the contractions and rests for all sessions plot-
ted. To a certain extent, this allows to examine the real-life 
feasibility of the computed sessions.

5  Discussion

5.1  Choice of training goals

In general, a model-based approach is limited by the predic-
tive ability of the employed model and the available numeri-
cal solution methods. As mentioned, the model of Herold 
et al. [29] offers a phenomenological description of muscular 
fatigue for different loading schemes and does not directly 
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link the RT input to a physiological adaptation of the trainee. 
Thus, when choosing the training goals, we are limited by 
key performance indicators accessible in the model. For this 
reason, we use assumptions from sport science about opti-
mal training as objectives and constraints.

The three KPIs force-time integral, time-under-tension, 
and loss of MVIC force can readily be used in the optimal 
control problem formulations. Furthermore, we employ 
variants of these three KPIs to demonstrate how even slight 
modifications can change the structure of the solution. This 
highlights how important it is for exercise physiologists 
and sport scientists to identify the correct driving stimuli 
for adaptations to design optimized RT programs. Suitable 
physiological models would allow a more thorough search, 
e.g., by incorporating the build up of metabolites such as 
hydrogen ions and inorganic phosphate or by describing the 
activation of different fiber types.

5.2  Structure of the computed RT sessions

While the resulting differences between the solutions might 
seem small at first, one should keep in mind that these dif-
ferences accumulate during the course of an RT plan over 
weeks and months.

The results of Session D favor a higher number of con-
tractions to accumulate more force-time integral in this 
scenario. This is in line with the solutions of most other 
sessions, in which all 25 possible contractions are realized. 
However, this is not the case for the solutions of Sessions 
A, F, G, and K. The results of Session A illustrate that the 
inclusion of rests is not beneficial during the beginning and 
the end of the session for this setting. To enable high con-
traction intensities, the solution of Session F consists of only 
20 contractions. This is due to the fact that we weight the 
contraction intensities proportionally more than in the solu-
tion of Session C, where all 25 contractions are realized. The 

solution of Session G describes a sustained MVIC effort, 
which is caused by choosing the accumulated loss of MVIC 
force as training goal. The solution of Session K only real-
izes 12 contractions in order to enable longer contraction 
durations compared to the solution of Session J. This can 
be verified by comparing the mean contractions duration of 
Session J and K, i.e., 6.99 s and 12.01 s (see Table 3).

Except for the solutions of Sessions H, J, and K, all solu-
tions consist exclusively of MVIC efforts. This was unex-
pected, as we anticipated that submaximal contractions 
might allow a greater accumulation of training volume due 
to them inducing less fatigue. It would be interesting to 
examine if such a behavior also occurs for dynamic con-
stant external RT. The solution of Session H exhibits an 
interesting behavior as the inclusion of a minimum threshold 
intensity now favors submaximal contractions compared to 
the MVIC efforts of the solution of Session G. This is pos-
sibly caused by the longer contraction durations, which then 
contribute more to the accumulated fatigue. Session I exhib-
its the same behavior as the MVIC efforts reduce the time 
necessary to accumulate the desired FTI. The same holds 
for the solutions of Sessions J and K, where the submaxi-
mal contractions allow a greater time-under-tension. The 
submaximal contractions are all held until muscle failure. In 
case this is not desired, this could be included into the opti-
mization problem as a constraint. If a minimum threshold 
intensity was chosen, the MVIC efforts are conducted until 
this intensity is reached (see in particular Session B). Ses-
sions C and F differ. Here, the contractions are terminated 
earlier as contractions with the minimum threshold inten-
sity do not contribute to the chosen training goal. Session E 
demonstrates how a focus can be set on higher contraction 
durations without the use of a minimum threshold intensity.

A remark from a mathematical point of view: For all 
sessions, constraints limit the feasible region of the opti-
mization problems and many constraints are active in the 

Table 3  Minimum, maximum, 
and mean durations of 
contractions �

c
 and rests �

r
 for 

all sessions plotted. To a certain 
extent, this data allows to 
examine the real-life feasibility 
of the computed sessions

Session min(�
c
) max(�

c
) mean(�

c
) min(�

r
) max(�

r
) mean(�

r
)

A 19.21 465.46 60.54 1.96 8.76 6.49
B70% 6.24 33.28 11.41 28.63 45.64 38.11
B90% 1.62 9.13 3.04 33.02 56.96 46.83
C 3.71 6.06 4.11 28.90 51.81 45.72
D5 14.94 20.00 17.14 184.96 376.31 278.57
D50 1.70 20.00 3.67 14.38 25.36 20.75
E 16.10 62.36 26.06 7.15 25.63 22.86
F 3.08 6.54 3.52 39.36 73.22 59.45
G 1200.00 1200.00 1200.00 0.00 0.00 0.00
H 4.30 21.76 6.97 20.57 54.54 42.74
I 6.51 12.05 7.25 30.09 48.14 42.45
J 3.69 21.76 6.99 30.57 51.91 42.72
K 5.81 21.76 12.01 42.10 126.68 95.97
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solutions, e.g., maximum or minimum contraction intensities 
are attained, which is expected in an optimal control con-
text. All chosen constraints are solely physiologically moti-
vated—no artificial constraints have been introduced. How-
ever, due to the discretization of the constraints within the 
multiple shooting approach, the algorithm only guarantees 
that the constraints are met at the shooting nodes. In case of 
constraint violations between the shooting grid points, the 
grid can be refined easily to meet the requirements.

As already noticed during the model development [29], 
the grouping of repetitions into sets is not supported by our 
results. Instead, the contractions are spread more evenly over 
the whole time horizon to allow a greater accumulation of 
training volume, i.e., force-time integral. This is a similar 
approach to variants of so-called cluster sets [50], which 
allow to increase training volume by breaking up the tradi-
tional set-repetition structure. Here, the algorithmic optimi-
zation of durations of contractions and rests provides a clear 
advantage over intuitive planning.

5.3  Real‑life feasibility of the computed RT sessions

To ensure the real-life feasibility of the computed RT ses-
sions, several aspects have to be taken into account. First, 
the duration of the contractions may not be too short, as the 
trainees need time to develop MVIC force. Second, the dura-
tion of the submaximal contractions may not be too long, as 
the concept of task failure or limited work capacity is cur-
rently not implemented into the model [29]. Third, the rest 
periods between submaximal contractions may not be too 
short, as the model also does not account for a regeneration 
of work capacity.

Kawakami et al. [31] examined 100 intermittent MVIC 
efforts lasting 1 s followed by 1 s rest of the triceps surae 
muscles and reported no problems in executing this task. 
Table 3 and Fig. 3 show that our solutions do not pro-
pose durations shorter than 1 s for contractions and rests. 
Although a different muscle group was used in the study 
of Kawakami et al. [31], their data demonstrates that such 
short intermittent contractions might be possible in general.

Yoon et al. [55] examined endurance times for sustained 
isometric contractions of the elbow flexors at 90 degrees 
joint angle and at 80% of MVIC force. Although the experi-
mental setup differed slightly compared to that of the experi-
ments used for the model validation [29] (forearm horizontal 
versus forearm vertical to the ground), the mean endurance 
times of 25.0 s for men and 24.3 s for women are consist-
ent with the maximum duration of 21.76 s of our solutions 
for Sessions H, J, and K (see Table 3). To the best of our 
knowledge, no prediction of endurance time or work capac-
ity exists for MVIC efforts. Caffier et al. [18], for example, 
examined MVIC efforts of several muscle groups lasting 
10 min and reported no task failure among the participants. 

Thus, it remains to be validated experimentally if the solu-
tions of Session A, E, and G, which contain sustained MVIC 
efforts of long durations, can be realized in practice.

Although several authors have examined the recovery of 
endurance times (see, for example, the work of Stull and 
Kearney [47] or [32]) and work capacity (see, for example, 
the review by Jones and Vanhatalo [30]), to the best of our 
knowledge, no model of their time course exists that fulfills 
the prerequisites postulated for use in an optimization con-
text [29]. Furthermore, we are not aware of any experimental 
data that rejects the feasibility of the solutions of Sessions 
H, J, and K due to too short rests. If this should be the case, 
lower bounds on the durations of the rests could be incorpo-
rated into the optimal control problem.

6  Limitations and future research

As no fully suitable mathematical model for the more com-
monly used dynamic constant external resistance (DCER) 
training is available, we are optimizing isometric RT ses-
sions. Research shows that the transfer from isometric RT 
to dynamic performance is questionable [39]. Therefore, we 
discourage direct transfer of our findings to DCER or other 
forms of training. However, an extension of our approach 
to DCER training is straightforward once suitable models 
become available. The same holds true for extensions to 
other indicators of muscle fatigue (e.g., power, contraction 
velocity, or muscular endurance), multiple exercises, or 
long-term planning.

Moreover, we are using parameters obtained from the 
elbow flexors, as so far those are the only ones available. 
For this reason, a comparison between muscle groups or par-
ticipants is not possible at the moment. It would be intrigu-
ing to calibrate the model to different muscle groups and 
participants and then examine how the resulting parameters 
affect the optimized RT sessions. [35], for example, after 
analyzing fatigue and recovery patterns of MVIC torque of 
the knee extensors, conclude that individualizing training 
might be important to optimize performance. The authors 
used proton magnetic resonance spectroscopy to analyze 
muscle fiber typology of the gastrocnemius and then clas-
sify the participants into a slow- and a fast-twitch group 
for which they expected different patterns. With a model-
based approach, this classification could be formulated as a 
parameter estimation problem for which the necessary force 
measurements could be obtained in one testing session [28]. 
Afterwards, RT sessions could be optimized individually as 
proposed in this work.

Since we are using local optimization methods, modi-
fied initial guesses do not necessarily lead to identical 
results. Vanishing stages in the employed multi-stage 
formulation could lead to redundant discretized controls. 
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Thus, the computed solutions are neither globally optimal 
nor unique. However, considering that globally optimal 
solutions cannot be efficiently computed for problems 
of this type, starting from an initial (e.g., empirically 
derived) training design, the employed method generates 
an improved design that is locally optimal.

Last, we acknowledge that the model is validated with 
data from laboratory studies. Thus, we face the same prob-
lems as the original studies: the transfer from the labora-
tory to real-life RT needs to be verified experimentally. 
To this end, we outline two potential experimental setups 
in the following, which could be conducted together with 
interested practitioners from the sports sciences.

The first experiment is designed to verify if our model-
based approach allows to achieve a better objective func-
tional value compared to an intuitive approach. For illus-
trative purposes, we choose Session B, which maximizes 
the FTI while ensuring a minimum threshold intensity 
using 25 contractions within 20 min. After the trainees 
have familiarized themselves with the dynamometer, a 
testing session is conducted to individually calibrate the 
model to the trainees’ elbow flexors and obtain reliable 
parameter estimates [28]. After sufficient rest, the train-
ees are asked to intuitively perform a session, which they 
think to be optimal for the given task. An optimized ses-
sion is then computed for each trainee and after resting 
sufficiently again, the trainees are asked to perform the 
optimized session. This order is chosen to prevent any 
learning effects. Afterwards, the data of the two sessions is 
analyzed and the objective functional values are compared. 
Furthermore, the real-life feasibility of the optimized ses-
sions can be evaluated by computing the deviations of pre-
scribed force and actual force.

After a successful first experiment, a second one could be 
conducted to examine whether the chosen objective function 
is beneficial for our training goal. However, this can only 
be done in comparison to another objective functional. For 
illustrative purposes, we compare Sessions B70% and B90% 
with regard to increasing maximum strength. To this end, 
trainees with the same level of RT experience are randomly 
assigned to three groups—a control group, a group following 
optimized training protocols for Session B70% , and a group 
following optimized training protocols for Session B90% . 
At the beginning of the experiment, an MVIC force test is 
conducted. This test is repeated at the end of the experi-
ment and the results are analyzed. We emphasize that in this 
work the sessions are optimized independently of each other. 
Therefore, long-term planning has to be determined by the 
experimenters. Nutrition and recovery should be adequate 
and comparable among the trainees. If desired, the model 
parameters and the optimized sessions could be updated at 
any desired point in time.

7  Conclusion

We demonstrate that a mathematical model-based approach 
could provide valuable impulses for practitioners and com-
plement the predominant manual program design of load-
ing schemes for RT. Although, the differences in the opti-
mized sessions might seem small, one should keep in mind 
that those accumulate during the course of an RT plan over 
weeks and months.

With our approach, training protocols—either motivated 
by current practice or of a more exploratory and unconven-
tional nature—could be examined at a large scale via for-
ward simulations of the model. The flexible formulation of 
different training goals in terms of adjusted objective func-
tions allows to evaluate the performance of training sessions 
in silico. Thus, training recommendations can be analyzed 
and rated with respect to their justification and efficiency 
without the tremendous testing efforts in actual trials.

As our approach is independent of the underlying model, 
we encourage researchers to develop and validate models, 
which are suitable for optimization and which connect the 
training input of different RT types directly to training 
goals such as increasing strength and power, hypertrophy, 
or increasing local muscular endurance. This would extend 
the possibilities to set up the optimization problems and 
might furthermore help to identify the driving mechanisms 
for long-term adaptations. Then, we could exploit the full 
potential of our approach.

In addition to a large variety of application areas, e.g., 
biomechanical movement analysis or the design of sports 
equipment, our work underlines and demonstrates the poten-
tial of quantitative mathematics to analyze and improve 
sports activities.
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