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Abstract
A new dynamic model for predicting road cycling individual time trials with optimal control was created. The model included 
both lateral and longitudinal bicycle dynamics, 3D road geometry, and anaerobic source depletion. The prediction of the 
individual time trial performance was formulated as an optimal control problem and solved with an indirect approach to find 
the pacing and cornering strategies in the respect of the physical/physiological limits of the system. The model was tested 
against the velocity and power output data collected by professional cyclists in two individual time trial Giro d’Italia data 
sets: the first data set (Rovereto, n = 15) was used to adjust the parameters of the model and the second data set (Verona, n = 
13) was used to test the predictive ability of the model. The simulated velocity fell in the CI

95% of the experimental data for 
32 and 18% of the duration of the course for Rovereto and Verona stages, respectively. The simulated power output fell in 
the CI

95% of the experimental data for 50 and 25% of the duration of the course for Rovereto and Verona stages respectively. 
This framework can be used to input rider’s physical/physiological characteristics, 3D road geometry, and conditions to 
generate realistic velocity and power output predictions in individual time trials. It, therefore, constitutes a tool that could 
be used by coaches and athletes to plan the pacing and cornering strategies before the race.

Keywords Bike handling · Tyre-road friction coefficient · Bicycle dynamics · Trajectory · Professional cycling

1 Introduction

In professional cycling, to win an individual time trial (ITT) 
stage, a combination of physiological characteristics, bicycle 
settings, pacing strategy, and riding skills is required. The 
physiological [1], biomechanical [2], and anthropometric [3] 
characteristics, and pacing strategies in professional ITTs [4] 
have been extensively studied and documented. For example, 
physiological determinants of the ITT performance include: 
high values of the power output at the onset of blood lactate 
accumulation (normalised per body weight with exponent 
0.32) [5], high critical power values [6], and high power 
output values eliciting the first ventilatory threshold [7]. 
Regarding the pacing strategy, it has been theoretically and 
experimentally shown that varying the power output accord-
ing to the slope or wind improves ITT performance [8, 9]. 
In brief, the best pacing strategy consists in increasing the 

power output in hard sections (uphills and headwinds) and 
restore energy sources by decreasing the power output in 
the favourable sections (downhills and tailwinds). Little is 
known about the riding skills required to race ITT at the 
highest levels, and how these characteristics might affect 
the pacing strategy.

During ITT stages, athletes race against the clock [10] 
and the contribution of external factors like team strat-
egy and drafting is removed [11]. Mathematical models 
of cycling locomotion [12] have been widely adopted to 
quantify the influence of the aforementioned physiological 
characteristics on ITT performance [13, 14] or to inform 
about the best pacing strategy. The calculation of the pacing 
strategy requires the combination of a cycling model with a 
dynamic optimisation tools. For example, an optimal control 
problem can be formulated [15–20], where the objective is 
to minimise the arrival time by appropriate selection of the 
power output distribution. In these optimal control problems, 
the physiological constraints such as the anaerobic sources 
depletion are typically included by means of the critical 
power model [21, 22].
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Usually, the models adopted to simulate ITT stages are 
monodimensional (1D) and they only equate expressions 
for power production and power demand in the longitudinal 
direction [23–25]. However, the overall speed at which ath-
letes can ride does not only depend on longitudinal forces. 
On corners, the maximal speed is determined by the friction 
coefficient between tyres and road [26] and, therefore, by 
the maximal lateral (i.e., centripetal) forces. A few mod-
els (e.g., [18, 27, 28]) included the corners (or recognised 
their importance) in the calculation of the optimal pacing 
strategy. In corners, longitudinal and lateral forces influence 
each others, and set the limits to the accelerations in the two 
orthogonal directions [29] by creating the so-called friction 
ellipse. This phenomena, in conjunction with the rider’s atti-
tude to push to the limits [30], can differentiate riders by 
skills. As a consequence, models that do not include accel-
erations phases due to the turns cannot inform about realistic 
power output and velocity profiles and take riding skills into 
consideration.

Borrowing upon principles of vehicle dynamics, the opti-
mal trajectory [31] can be defined as the one that the cyclist 
has to follow to complete the track in the minimum time. 
The choice of the trajectory (i.e., the cornering strategy [32]) 
depends on the space available on the road and it is subject 
to dynamics and physical constraints, such as the maximum 
grip of the tyres and the available energy sources.

A rider can negotiate a turn in two ways [33]. In a first 
scenario, the rider tries to maintain a high speed throughout 
the corner and track a path with a large curvature radius. 
This is often the case of those riders who lack in power 
output delivery abilities. In a second scenario, the rider tries 
to deliver the power output as early as possible for a faster 
exit speed and tracks straight trajectories. This is often the 
case of the most powerful athletes and generally the best 
strategy for racing, with a lower entry speed but a faster 
exit speed. This strategy requires a late braking point, and, 
therefore, good braking abilities. The two scenarios lead to 
different velocity, power distributions, and to minimal time 
differences after the single turn. However, they can lead to 
meaningful time differences after long technical sections.

The selection of the best cornering strategy during an ITT 
race is indeed an optimisation problem with a clear goal (i.e., 
the minimisation of the race final time) subject to a num-
ber of physical/physiological constraints. However, optimal 
control problems applied on long and realistic ITT courses 
require considerable computational efforts, as they need to 
be solved for a high number of nodes. If additional vari-
ables and inputs are included, for example, by including lat-
eral bicycle dynamics and anaerobic sources depletion, the 
optimal control problem becomes even more complex and 
challenging (a few examples are available in the literature 
[18, 27, 28]). This complexity and the related computational 
issues limit the applicability of these models in practice.

The goal of this manuscript was to present a numerically 
efficient tool to simulate realistic ITT stages in a reasonable 
amount of time. A cyclist-bicycle model that accounts for lon-
gitudinal–lateral vehicle dynamics and physiological charac-
teristics was adopted. The simulation results were compared 
with experimental data collected during two ITT professional 
stages. Given that the experimental velocity and power distri-
butions are stereotypical between different cyclists, the model 
simulations were compared with the mean of all the riders in 
the sample. Additionally, a 1D model was used to represent 
the current state-of-the-art in the literature [20] and web-based 
tools (e.g., https ://www.bestb ikesp lit.com/bestb ikesp lit.com).

2  Methods

2.1  Rider/bicycle model

2.1.1  The 3D model

Dynamical models that include both longitudinal and lateral 
bicycle dynamics are well known in the field of two-wheeled 
vehicle dynamics [34, 35]. However, they have been rarely 
adopted [36] together with 3D road geometry and anaerobic 
source depletion models to simulate realistic professional 
ITT stages and to obtain detailed turn-by-turn predictions of 
power output and velocity profiles. The 3D model developed 
here was a sort of inverted pendulum moving along a curve. 
The turning rate was directly expressed by the steering angle 
� (rad) on the road surface [35]. The lateral velocity was 
considered negligible, and therefore, the bicycle tire could 
roll without longitudinal or lateral slippage. A schematic 
representation of the model is provided in Fig. 1 and the 
numerical values and units of the parameters are provided 
in the Appendix 6.2.

Cartesian position of the bicycle was described with cur-
vilinear coordinates [37]. In particular: (1) the coordinate s 
(m) defines the longitudinal position along the road midline; 
(2) the coordinate n (m) defines the lateral displacement; and 
(3) the heading � (rad) defines the orientation of the bicycle 
with reference to the heading of the road. The equations of 
motion were written in terms of space coordinate s [20, 37].

Equation 1 describes the dynamics of the heading of the 
bicycle �(s):

where �n (i.e., �n = �∕�max ) is the normalised steering angle 
[the steering angle � (rad) can be expressed as function of 
the handle bar rotation ( �f ) via the steering axis inclination 
� (or front fork inclination) (i.e., � = �f∕ sin(�))], sdot(s) (m/s) 
is the travelling speed along the midline, � (1/m) is the road 
curvature, and L (m) is the bicycle length.

(1)
d�(s)

ds
=

�n(s)�max

L sdot(s)
− �(s),

https://www.bestbikesplit.com
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Equation 2 describes the dynamics of the lateral displace-
ment of the bicycle n:

where v (m/s) is the longitudinal velocity of the bicycle.
Equation 3 describes the dynamics of the longitudinal 

velocity of the bicycle v:

where Wn is the normalised power (i.e., Wn = W∕Wmax ), 
which is positive when the rider is pedalling and negative 

(2)
dn(s)

ds
=

1

sdot(s)
(v(s) sin(�(s))),

(3)

mv(s)

Wmax

dv(s)

ds
=

Wn(s)

sdot(s)

−
v(s)

sdot(s)Wmax

(
mg(crr cos(�(s)) + sin(�(s))))

−
v(s)

sdot(s)Wmax

kv(v(s) − Vw(�(s))
2,

when the rider is braking. The power output (W) is given by 
W+

n
(s)Wmax , where Wmax is the maximum power output and 

the braking power (W) is given by W−
n
(s)�x gm v(s) , where 

�x is the peak longitudinal adherence (that, together with 
the peak lateral adherence �y , creates the friction ellipse 
reported in Fig. 1 [30, 38]). In 3, � (rad) is the slope of the 
road (in the present formulation, the banking angle of the 
road is not included [37]), kv (kg/m) is the air drag coef-
ficient obtained as 0.5AfCD� (where � is the air density 
in kg∕m3 , Af is the cyclists’ frontal area in m2 , and where 
CD is the coefficient of drag [39]), m is the total mass m 
(kg) of the system, and crr is the rolling friction coefficient 
[40]. Estimated wind data (intensity Vw0 and direction wD, 
Fig. 1) were retrieved from https ://www.weath erspa rk.com 
and https ://www.windfi nder .com. Relative wind speed was 
computed as: Vw = Vw0 ⋅ cos(�(s)−wD) . Wind direction was 
expressed with reference to the true North, defined at �∕2 
rad.

Equations in 4 and in 5 describe the dynamics of the 
roll angle � (rad) and its rate of change �dot (rad/s):

where IX0 = h2 m + IX ( m2kg ) is the overall roll moment of 
inertia, h (m) is the height of the center of mass from ground, 
and g ( m/s2 ) is the constant of gravity.

Equation 6 describes the dynamics of the normalised 
power output Wn:

The power output variation vW (W/s) is normalised on maxi-
mal power output variation (i.e., vWn

= vW∕vWmax
).

Equation 7 describes the dynamics of the normalised 
steering angle �n:

where the normalised steering angle rotational velocity v�n 
(rad/s) was obtained from the maximal steering angle rota-
tional velocity (i.e., v�n = v�∕v�max

).
Equation 8 describes the dynamics of travelling speed 

sdot(s) along the reference line:

(4)
d�(s)

ds
=

�dot(s)

sdot(s)

(5)
IX0

hmg

d�dot(s)

ds
=

1

g L sdot(s)
(v(s)2�max�n(s) + L g�(s)),

(6)
dWn(s)

ds
=

vWn
(s)

sdot(s)
.

(7)
d�n(s)

ds
=

v�n (s)

sdot(s)
,

(8)sdot(s) =
v(s) cos(�(s))

1 − n(s)�(s)
.

Fig. 1  Schematic representation of the model. x is the longitudinal 
axis and it points forward, y is the lateral axis and it points leftward, 
and z is the vertical axis and it points upward. Top view, Curvilin-
ear coordinates are highlighted. s is the curvilinear abscissa, n is the 
lateral displacement from the midline of the road, and � is the atti-
tude angle. The road is characterised by the curvature radius k and 
the right R

width
 and left width L

width
 . Friction ellipse is used to define 

the limits to the lateral and longitudinal accelerations. The semi-axes 
of the friction ellipse can be directly computed from the longitudinal 
�x and lateral �y friction coefficients. A schematic compass is used 
to indicate the true North, which gives the reference for the wind. 
The wind is characterised by a magnitude Vw0 and direction wD. The 
steering angle of the bicycle � is also reported. Lateral view, the road 
is characterised by a slope angle � . The bicycle is characterised by a 
length L. Together with the rider, the bicycle forms a rider–bicycle 
system that has a total mass m. The centre of mass of this lumped 
system is positioned at a distance h perpendicular to the road sur-
face. The centre of mass of the system is where the resistive forces 
(i.e., wind resistance and rolling resistance) are applied. Frontal view, 
the contact point on the road is highlighted here. The contact point 
is where the contact forces (braking and traction forces) are applied. 
The roll angle of the rider–bicycle system � is also reported

https://www.weatherspark.com
https://www.windfinder.com
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With this notation, the time t (s) was obtained by simple 
integration of the variable sdot(s).

A modified critical power model [21, 41] was used to 
describe the rider’s ability to sustain the effort above the crit-
ical power threshold (W, WC ). The corresponding dynamic 
equation 9 describes the evolution of the anaerobic sources 
EA (J, normalised with the maximal anaerobic sources, i.e., 
EAn

= EA∕EAn0
):

The fact that energy expenditure and recovery are character-
ised by the same rate is an assumption that might limit the 
applicability of the model [42, 43]. The fact that the maxi-
mal power output Wmax is kept constant during the whole 
race duration is also a limitation, as the ability to deliver 
maximal power output levels decays after spending anaero-
bic energy sources [43].

2.2  Optimal control problem

The problem of finding the pacing and cornering strategies 
was formulated as a constrained optimal control problem. 
The optimal control problem was solved for nodes at every 
0.25 m of the course. The Maple package XOptima, as part 
of software PINS (i.e., a collection of libraries and numeri-
cal solvers for optimal control problems [44]), was used 
to formulate the optimal control problem and generate the 
equations and the Jacobians. PINS solves the optimal con-
trol problem with an indirect approach [45]: it symbolically 
derives the necessary condition of optimality and finds a 
numerical solution for the Pontryagin’s minimum principle. 
This approach allows to analytically formulate the optimisa-
tion problem [46], and to automatically derive the conditions 
of optimality and the Jacobians for the numerical solution.

The objective function J(u) was defined as a weighted 
sum of three different goals subject to the system’s dynamics 
and path constraints:

w h e r e  Lp  i s  t h e  l e n g t h  o f  t h e  s t a g e , 
x =

[
�, n,�,�dot,EAn

,Wn, �, v
]
 is the vector of states, and 

u =
[
v� , vWn

]
 is the vector of controls. The objective func-

tion J(u) minimises the race time and the rate of change of 
the steering angle v� and of the power output vW . In 10, WJ1

 

(9)
dEAn

(s)

ds
= −

1

EAn0sdot(s)

(
Wn(s)

+Wmax −WC

)
.

(10)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

min
u∈U

�
J(u) ∶= �

Lp

0

1

sdot(s)

⎛⎜⎜⎝
1 +WJ1

�
v�

v�max

�2

+WJ2

�
vW

vWmax

�2⎞⎟⎟⎠
ds

�

subject to ∶

b(x(0), x(Lp)) = 0

c(x(s),u(s)) ≥ 0,

and WJ2
 are weighting factors that scale the penalisation of 

the input rate of change. These two elements minimise the 
rate of variation of the inputs together with other goals to: 
generate smooth movements, cope with the delays between 
neural signalling and movement actuation, and to reject the 
noise that increase the variability of the outcome [47–52]. 
The vector b lists the boundary conditions (i.e., the start and 
end values of the states x ) that correspond to the case of a 
bicycle in vertical position. In particular, the initial speed 
was set to 0 and the final speed was free to change. Simi-
larly, the initial value of the anaerobic energy ( EA ) was set 
to the maximum value and the final value was free to change. 
Finally, vector c represents a list of inequality constraints 
(i.e., path constraints), which limited the evolution of the 
states and controls:

where LW(s) and RW(s) are the left width and right width 
of the road borders which determine (with Eq. 11) the lim-
its to the bicycle displacement n from the reference line of 
the road. Equation 12 requires the anaerobic sources EA to 
be positive. Equations 13 and 14 constraint the normalised 
steering angle �n and output power Wn in the range [− 1, 1] . 
Equation 15 is a function that limits the maximum power 
output with the roll angle � , which is different than 0 only 
if the roll angle is in the range [− 20◦, 20◦] . This is because 

cyclists do not pedal during sharp turns. Finally, the lateral 
and longitudinal accelerations are constrained in the fric-
tion ellipse (Eq. 16) (Fig. 1 [30, 38]). The friction ellipse 
represents the combined limits to the lateral and longitudinal 
accelerations that the bicycle–rider system can sustain and 

(11)LW(s) ≤ n(s) ≤ RW(s)

(12)0 ≤EA(s)

(13)−1 ≤Wn(s) ≤ 1

(14)−1 ≤ �n(s) ≤ 1

(15)Wmax = 0 if |�| ≥ 20◦

(16)
(
ax(s)

�x g

)2

+

(
ay(s)

�y g

)2

≤1,
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produces the so-called g–g diagram [38]. The semi-axes of 
the friction ellipse are given by the friction peak coefficients 
�y and �x for lateral and longitudinal directions, respectively. 
The values of �y provide the maximal roll angles that the 
bicycle–rider system can sustain (i.e., �max = arctan(�y) ) and 
they can be used to equally express a road with poor friction 
or a cyclists with a different attitude towards risk.

2.2.1  1D model

The 3D model was compared to a 1D model, which currently 
represents the gold standard in pacing strategy computation. 
The equation of motions were derived from those introduced 
in the previous section. The main simplification was that 
the lateral bicycle dynamics was neglected; therefore, the 
dimension of the system and the number of inputs were 
reduced. The state variables for this model were: v, Wn , EAn , 
and t; the only input was vWn . Riders’ characteristics and 
the other variables (e.g., the attitude angle � and the slope 
� ) and parameters (e.g., the wind magnitude and direction, 
and longitudinal friction coefficient �x ) were the same of 
the 3D model. The 1D model was also used to compute the 
pacing strategy with an optimal control approach, as it has 
been done for the 3D model. However, in the case of the 1D 
model, the objective function (e.g., Eq. 10) did not consider 
the term that penalises the rate of change of the steering 
angle (i.e., WJ1

= 0).

2.3  Rider–bicycle model parameter calibration 
and validation

Experimental data adopted in this study were collected by 28 
professional cyclists at the Giro d’Italia during two different 
stages. Data were then donated by the head scientists of the 
professional teams and used retrospectively in this study. 
Riders gave informed written and verbal consent before pro-
viding the data. The study has been conducted in agreement 
with the declaration of Helsinki and the guidelines of the 
Ethical Committee of the University of Trento. The same 
data collection procedure is routinely performed by the rid-
ers during races and training sessions; therefore, it could not 
cause any harm to the riders nor to their safety and perfor-
mance. Experimental longitudinal velocity and travelled dis-
tance were collected by an odometer connected to a global 
positioning system (GPS) (Garmin Edge 520, 720, 1030, or 
Sigma Rox 11, 12 at 1 Hz sampling frequency). The power 
output data were collected with power meters mounted in the 
central movement (Shimano R9100P, FSA Power2Max NG, 
SRAM RED AXS). The slope of the course was computed 
from altitude barometric data with simple trigonometry. The 
unknown parameters were adjusted manually by trial-and-
error starting from values retrieved from the literature and 
using a residual analysis. Residuals were computed as the 

difference between experimental and simulated data. The 
mean absolute error (MAE, km/h or W) and the root-mean-
square error (RMSE, km/h or W) were used to concisely 
express the goodness of the agreement. The portion ( % ) of 
the course where the predicted values fell within the CI95% of 
the experimental data was also computed. During the cali-
bration of the model, values of the parameters were adjusted 
to minimise MAE and RMSE. The same values were used 
to validate the 1D and 3D models.

The points of the 16th stage of the Giro d’Italia 2018 
(Rovereto, Trento, May 22nd) were tracked using Google 
Earth path tools and then interpolated with 379 clothoids 
using [46]. The length of the course was 34.2 km, with a 
positive altitude gain of 214 m. An overview of the course 
is presented in Fig. 2a. The data of 15 professional cyclists 
taking part in the race were used to calibrate the model, i.e., 
to adjust the parameters of the model (Appendix 6.2).

The points of the complete 21st stage of the Giro d’Italia 
2019 (Verona, June 2nd) were extracted and interpolated 
with 388 clothoids. The length of the course was 16.8 km, 
with a positive altitude gain of 205 m. An overview of the 
course is presented in Fig. 2b. This course was used to vali-
date the models and, hence, test their predictive ability. The 
data of 13 professional cyclists taking part in the race were 
used. The set of parameters obtained during the calibration 
process was used (Appendix 6.2).

Fig. 2  a The course of the 16th stage of the Giro d’Italia 2018 (Rov-
ereto, Trento, May 22nd). b The course of the 21st stage of the Giro 
d’Italia 2019 (Verona, June 2nd). The blue shaded circle indicates 
the turn that is used to compare trajectories for different cornering 
strategies. For both courses, the schematic compass indicates the true 
North, the wind direction and intensity is specified, and the numbers 
identify the distance in metres from the starting line (i.e., the curvi-
linear abscissa). Different distance proportions were used in the two 
panels
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2.4  Sensitivity to rider characteristics

To evaluate the effect of changes in the riders’ characteristics 
on pacing and cornering strategies, three virtual riders were 
created: a typical professional cyclist, an ITT specialist, and 
a weak climber [1]. The characteristics of the different rid-
ers have retrieved from the literature [1, 53] (assuming that 
the critical power corresponds to the onset of blood lactate 
accumulation, which constitutes an approximation [54]). The 
three virtual riders were characterised by different values of 
body weight, frontal area, and critical power (Table 2). The 
3D model (1) was used to simulate the Verona ITT for the 
three virtual riders.

3  Results

Every simulation required less than 5 min to converge to a 
solution (MacBook Pro, 2.8 GHz Intel Core i7).

3.1  Comparison with experimental data

The mean and the standard deviation (SD) of power out-
put and velocity (mean(SD)) registered by the riders were: 
334(48) W and 46.4(1.3) km/h in Rovereto and 346(45) W 
and 42(1.4) km/h in Verona. In Table 1, the results of the 
comparison with the experimental data are reported (abso-
lute values).

The mean CI95% of the experimental data was 2.0 and 1.9 
km/h in terms of speed and 43 and 63 W in terms of power 
for Rovereto and Verona ITT, respectively. The predicted 
speed and power output laid outside the mean CI95% of the 
experimental data in different portions of the course. In 
Figs. 3 and 4, the simulated and experimental data are com-
pared. While the model was able to follow the general trend 
of the experimental data, clear differences can be observed.

3.2  interplay between rider’s characteristics 
and cornering strategies

Using all the space on the road, cyclists can ride along 
straight lines, and travel fast before reaching the limits of 
the tyre’s grip. However, the cornering strategy is highly 
individual (Fig. 5). Between the three virtual riders, the race 
time differences were due to the different power output val-
ues in the straight sections of the course and to the different 
cornering strategies (Fig. 5). Not surprisingly, all the virtual 
riders explored the limits of the grip of the tyres. This was 
confirmed by the similar maximal roll angle values. How-
ever, the differences in the velocity and power distributions 
were relevant, and they led to a time difference of 0.33 s after 
a turn (Fig. 5) or 32 s after the descending phase (4.7 km 
long and 13 turns). The effects of the different power distri-
bution on the longitudinal speed were also apparent in the 
longitudinal acceleration results: after exiting the turn, the 
more powerful rider could promptly accelerate and restore 
high-speed values. All three virtual riders had the same 
braking ability and potential, but the ITT specialist could 
brake later before the turn, therefore reducing the velocity 
to low values. After the turn, the ITT specialist could deliver 
enough power to propel himself out of the corner with high 
speed. The time differences between riders are reported in 
Table 2.

4  Discussion

A 3D model for cycling locomotion was created. It included 
lateral and longitudinal bicycle dynamics and a critical 
power model for human bioenergetics. The model was 
used in an optimal control framework, where the pacing 
and cornering strategy problems were solved together. The 
optimal control problem consisted in four key mathemati-
cal elements: the equation of motions of the rider–bicycle 
system (i.e., Eqs. 1–9), the controls that can influence the 
behaviour of the system (i.e., the steering angle and the 
power output), the constraints that the solution must sat-
isfy (i.e., Eqs. 11–15), and the performance criterion that 
should be minimised by appropriate selection of the control 
(i.e., Eq. 10). The results of the simulations were compared 
against experimental data and suggested that: (1) there was 
an interplay between pacing and cornering strategies, and 
(2) this framework could be used to assess new ITT perfor-
mance indexes and to plan racing strategies on the race day.

The applicability of this model is hindered by limitations. 
(a) The 3D model conjugates both lateral and longitudinal 
dynamics in cycling locomotion, and the aim was to check 
if this model was sensitive to the turns and to the maximal 
lateral accelerations that the bicycle can sustain. The next 
step will be to change the parameters of the rider (e.g., body 

Table 1  Comparison between simulated and experimental data: mean 
average error (MAE), root-mean-square error (RMSE), and fraction 
of the simulated data that fell within the CI

95% of the experimental 
data

Course MAE RMSE Within CI
95%

3D model
Rovereto 2.2 km/h 5.5 km/h 32%

15 W 99 W 50%
Verona − 2.71 km/h 6.2 km/h 18%

57 W 174 W 25%
1D model
Verona 4.4 km/h 7.4 km/h 14%

74 W 166 W 32%
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mass, air drag friction coefficient, critical power, etc.) and to 
check if the 3D model is able to predict individualised pac-
ing and cornering strategies on an athlete-by-athlete basis. 
Anonymised data were used, so the characteristics of the 
individual cyclists were unknown. However, the sample was 
considered a good representation of the professional cyclist 
population and mean values of the parameters were retrieved 
from the literature [1]. (b) ITT stages may not always be 
raced at maximal level [53]: the role of an individual rider 
within a team often determines the intensity at which a time 
trial is raced [55]. However, power output and velocity dis-
tributions were stereotypical across the riders (as indicated 
by a relatively low CI95% ): the riders had to slow down and 
accelerate in the same sections of the course. Of course, 
absolute power output and velocity values were expected 
to be different, and to obtain personalised simulations, it 
would be important to know rider-specific parameters like 
frontal area, body mass, and critical power [6]. (c) The exact 
values of road width and banking were unknown. Further-
more, errors in slope and wind data estimation could have 
negatively affect the predictive ability of the models. (d) 
Experimental data were not available for all the variables. 
Therefore, it was impossible to evaluate the goodness of the 

predictions of the roll angles, lateral accelerations, and steer-
ing angles. Similarly, the choice of the bioenergetic model 
(i.e., the critical power model) might not have been the best 
possible choice [22] and this assumption cannot be tested 
against any experimental data. (e) In the adopted version of 
the critical power model, the time characteristics ( � ) for the 
discharge and the recharge of the anaerobic sources were 
considered equal. In the critical power model proposed by 
Skiba et al. [56], �-recharge was much slower than �-dis-
charge and it was affected by the recovery conditions. As a 
consequence, using a value for � was an assumption that lim-
ited the accuracy of the models. (f) Different riding positions 
were not included. However, they could have had influence 
on the frontal area of the riders (and, therefore, the aerody-
namic drag coefficient) [57], their ability to deliver maximal 
power outputs [58], and cycling efficiency [59]. (g) The driv-
etrain efficiency was not taken into account. Accordingly, 
in [25], the estimated power output needed to be divided by 
a chain efficiency factor. Therefore, power output could be 
underestimated. (h) The aforementioned limitations could 
only in part explain the discrepancies between simulated 
and experimental data in Figs. 3 and 4. Another source of 
error could lie within the optimal control approach. Optimal 

Fig. 3  Comparison between simulated (solid line) and mean experimental data and CI
95% (shaded) in the Rovereto stage. From top to bottom: 

power output profile, velocity profile, and elevation profile
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control is regarded as one of the best tools to simulate human 
movement, but the objective function should reflect what the 
riders are trying to achieve [48]. In this framework, the race 
time and the rate of change of the steering angle and power 
were minimised. However, in ITT raced on uneven terrains, 
the pacing strategy is regulated by highly complex interac-
tions between the peripheral sensory feedback, the perceived 
effort, and the anticipated workload remaining [4]. It would 
be challenging to include all these complex interactions in 
this optimal control framework. (i) The problem was highly 
non-linear and there was no formal method to guarantee 
that the solution constituted a global optimum. An indirect 
method with penalty approximation of the constrain problem 
on control was used; therefore, the second derivative of the 
cost function with respect to the control was positive and the 
solution found was a minimum [60].

In spite of the limitations, this work represents a step-
forward in the current literature: it follows and extends the 
work of Maroński [15], Swain [61], Gordon [16], and Wolf 
et al. [20], and takes the problem of pacing strategy calcu-
lation during ITT races to a next level of complexity and 
potential. This framework currently represents one of the 
few published tools (other examples are [43] or [62]) that 
can be used to evaluate the interplay between the physical/

physiological characteristics, the 3D road geometry, the 
race-day conditions, the pacing/cornering strategies, and 
the overall ITT performance.

In 2014 [28] and 2015 [63], Sundrström and colleagues 
included the turns as constraints to the maximal velocity 
(computed from turning radii) in a 1D model of bicycle 
dynamics. Their simulation results confirmed what it was 
already anecdotally known, i.e., turns can affect the pacing 
strategy and impact on the performance time. However, 
their model cannot be used to study the optimal trajec-
tory in different turns, because the lateral displacement 
from the midline and the 3D geometry of the road are 
not taken into account [33]. Furthermore, they imposed 
a speed constraint linked to the road curvature, and not 
based on the real trajectory of the riders. More recently, 
Fitton and Symons [64] presented an interesting multidi-
mensional model for track cycling. Despite the elegant 
analytical solution for the forward dynamics, this model 
cannot be used in long ITT courses, mainly because it 
does not include the bioenergetics constraints and it is not 
presented together with a dynamic optimisation tool.

In the present work, the predictive power of the 3D model 
was compared to that of a 1D model. In Fig. 4 and in Table 2, 
the differences between the two estimations are presented. 

Fig. 4  Comparison between simulated 3D model (solid line) and 1D 
model (dashed line) and mean experimental data and CI

95% (shaded) 
in the Verona stage. From top to bottom: power output profile, veloc-

ity profile, and elevation profile (with the limits of the descending 
section). The blue shaded circle indicates the turn that is used to com-
pare trajectories
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The 1D model could correctly predict maximal speed val-
ues, while the 3D model often underestimated the actual 
longitudinal speed of the rider. These differences could be 
due to the variations of the power output predicted by the 3D 
model, that could deplete the anaerobic energy sources faster 
than a constant power output value. This might indicate that 
turns could affect the power that can be delivered during 
the flat straight portions of the ITT, because the accelera-
tions after the turns require an additional power output that 
depletes the anaerobic energy sources. From Table 2, it is 
also evident that a 1D model could not correctly estimate the 
speed on single turns and after long technical sections. For 
example, the 1D model predicts that the descending section 
(4.7 km, 13 turns) of the Verona ITT could be completed in 
4 min and 32 sec (and 6.43 s to complete the single turn (120 
m)): this was unrealistic, because a rider cannot complete a 
hair-pin turn at 67 km/h without crashing.

Indirect optimal control approaches have already shown 
their potential in locomotion [60], biomechanics [65], and 
pacing strategy in ITT [27]. However, De Jong et al. [18] 
only considered the longitudinal bicycle dynamics, and 
therefore only one input at time, i.e., the mechanical power.

Jeukendrup and Martin [14] used a mathematical model 
[25] to calculate the contribution of physiological, mechani-
cal, and environmental factors on the 40 km ITT perfor-
mance in elite cyclists. They estimated the contribution of a 
training programme which includes high intensity or altitude 
training, CHO-electrolyte solutions assumed during the race, 
caffeine ingestion prior the race, and a bicycle mass reduc-
tion. The contribution of the riding skills and the presence 
of a series of turn (i.e., a technical section) are yet to be esti-
mated, as they depend on the ITT course and, in particular, 
on the extension of the technical sections. The results of this 
study suggest that physical/physiological characteristics and 
riding skills are linked together in the determination of the 
pacing and cornering strategies. For example, Fig. 5 shows 
that the most powerful athletes (e.g., the ITT specialist), to 
exploit their power output to the maximum, must be able to 
brake hard before the turns and to deliver high power output 
values after.

The 3D model presented here allows the calculation 
of new performance indexes (e.g., the friction ellipse) 
and the estimation of new variables (e.g., steering angle, 
roll angle, lateral accelerations, etc., Fig. 5) starting from 
odometer and GPS data. This model might be used to eval-
uate the time-differences between riders after completing 
a turn and to compare cyclists with different riding skills, 
different attitude to risk or to simulate dry/wet road condi-
tions. For example, it can hypothesised that the closer the 
cyclists are going to the edge of the friction ellipse, the 
more they are risking. The framework presented here can 
be used to test such hypotheses.

Fig. 5  In the top graph, the trajectories of three virtual cyclists with differ-
ent physical/physiological characteristics have been obtained by simulation. 
The three riders represent: the typical professional rider (solid line), an indi-
vidual time trial specialist (dashed line), and a weak climber (dash-dot line). 
Trajectories are compared for a hair pin turn during the downhill section of a 
an individual time trial (Verona, Giro d’Italia, 2018). From top to bottom, the 
longitudinal speeds (v, km/h) of the three virtual cyclists are compared to the 
experimental data. The shaded area represents the CI

95% of the experimental 
data. The lateral displacement from the midline of the road (n, m) of the three 
virtual cyclists is given and the roll angle ( � , ◦ ) values are provided. The abso-
lute power (W, W) and the longitudinal acceleration ( ax , m/s

2 ) are reported in 
the lower graphs
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5  Conclusions

A model that included both longitudinal and lateral bicy-
cle dynamics, 3D road geometry, and rider’s anaerobic 
sources depletion was presented. This model, in an opti-
mal control formulation, could simulate professional ITT 
stages. This framework, therefore, constitutes a tool for: 
computing the pacing strategy of ITT stages in advance 
and evaluating the contribution of riding skills and road 
conditions to the ITT performance. The same depth of 
analysis cannot be obtained with the existing 1D mod-
els. However, the model presented here relies on crucial 
assumptions and simplifications that need to be refined. 
Additionally, a powerful optimal control solver such as 
PINS and a considerable computational effort are needed 
to solve the optimal control problem.
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6. Appendix

6.1 Vehicle dynamics and bioenergetics

6.2 Numerical values

m = 77 kg, cyclist’s body mass + bicycle mass
IX = 77 kgm2,
h = 1.2 m, height of the centre of mass from road surface
� = 1.23 kg∕m3

Af = 0.35 m2 , frontal area
kv = 1∕2AfCD� = 0.13 kg/m, air drag force coefficient
crr = 0.0035, rolling friction coefficient
g= 9.81 m/s2 , constant of gravity
L= 1.4 m, bicycle length
�max = 0.52 rad, maximal steering angle
vWnmax

 = 50 W/s, maximal power output variation
aymax = axmax  = 9.81 m/s2  ,  maximal accelera-
tion (�y = �x = 1)

WJ1
 = 0.01, steering angle weight in the objective function

WJ2
 =0.01, power output variation weight in the objective 

function
n0 = 0 m, initial lateral displacement
�0 = 0 rad, initial attitude
�0 = 0 rad, initial roll angle
�dot0 = 0 rad/s, initial roll rotational velocity
�n0 = 0, initial normalised steering angle

Table 2  Final time and 
local turn times obtained by 
simulation

The characteristics of the different specialists from the literature [1, 53]. The final time of the winner of the 
stage was 22:07 (mm:ss) and the final time of the last finisher was 26:27 (mm:ss)

Characteristics Typical rider ITT specialist Weak climber

Total mass (body+bicycle) (kg) 77 (69+8) 88 (80+8) 61 (53+8)
Frontal area ( m2) 0.35 0.35 0.28
Critical power (W) 386 478 275
Anaerobic sources (kJ) 22 22 22
3D model
 Final time (mm:ss) 24:14 22:46 25:04
 Turn 1 time (s) 9.077 8.892 9.155
 Descending time (mm:ss) 05:29 05:08 05:40

1D model
 Final time (mm:ss) 21:08 20:00 21:42
 Turn 1 time (s) 6.43 6.04 6.65
 Descending time (s) 04:32 04:14 04:42

Experimental data (mean (SD))
 Final time (mm:ss (s)) 23:54 (44.9)
 Turn 1 time (s (s)) 8.92 (0.97)
 Descending time (s) 04:59 (7.32)
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Wn0 = WC∕Wmax , initial normalised power output
EAn0 = 22.000 J, initial anaerobic sources
WC = 440 W, critical power output
Wmax = 1870 W, maximal power output
EAnzero = 22.000 J, maximal anaerobic sources
Lwidth = 4 m, left road width
Rwidth = 4 m, right road width
Vw0 = 2.6 and 2.7 m/s2 , wind velocity (Rovereto and 
Verona ITT, respectively)
wD = −�∕2 and −3∕4� , wind direction (Rovereto and 
Verona ITT, respectively)
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